File size: 10,076 Bytes
734b6a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import torch
import cupy
import time
import numpy as np
from mpi4py import MPI

from deepspeed.runtime.compression.cupy import CupyBackend


class MpiBackend(object):

    def __init__(self, cuda_aware):
        self.comm = MPI.COMM_WORLD
        self.rank = self.comm.Get_rank()
        self.size = self.comm.Get_size()
        self.cuda_aware = cuda_aware
        self.compression_backend = CupyBackend()

    def my_igather(self, rank, size, comm, sendbuf, recbuf, root):
        req = []
        if rank == root:
            for idx in range(size):
                if idx != rank:
                    req.append(comm.Irecv(recbuf[idx], source=idx))
                else:
                    recbuf[rank] = sendbuf
        else:
            req.append(comm.Isend(sendbuf, dest=root))
        return req

    def gather_cuda(self, rank, world_size, comm, cupy_sign_list_packed, cupy_recvbuf_sign, cupy_worker_scale,
                    cupy_recvbuf_scale):
        # We do in-place operations on cupy buffers so we do not return any buffers
        requests = []
        for idx in range(world_size):
            req_sign = self.my_igather(rank, world_size, comm, cupy_sign_list_packed[idx], cupy_recvbuf_sign, root=idx)
            requests += req_sign

        for idx in range(world_size):
            req_scale = self.my_igather(rank, world_size, comm, cupy_worker_scale, cupy_recvbuf_scale, root=idx)
            requests += req_scale

        MPI.Request.Waitall(requests)

    def gather_host(self, rank, world_size, comm, cupy_sign_list_packed, cupy_recvbuf_sign, cupy_worker_scale,
                    cupy_recvbuf_scale):

        # In-place operations are not possible for newly created cupy arrays
        # so we need to return the new buffers
        numpy_recvbuf_sign = np.zeros([world_size, cupy_sign_list_packed[rank].size],
                                      dtype=cupy_sign_list_packed[0].dtype)
        numpy_recvbuf_scale = np.zeros([world_size, 1], dtype=cupy_worker_scale.dtype)

        # 1. convert from cupy to numpy
        numpy_sign_list_packed = cupy_sign_list_packed

        for idx in range(world_size):
            numpy_sign_list_packed[idx] = cupy.asnumpy(cupy_sign_list_packed[idx])

        numpy_worker_scale = cupy.asnumpy(cupy_worker_scale)
        numpy_recvbuf_scale = cupy.asnumpy(cupy_recvbuf_scale)

        cupy.cuda.get_current_stream().synchronize()

        # 2. use numpy buffers for communication
        requests = []

        for idx in range(world_size):
            req_sign = self.my_igather(rank,
                                       world_size,
                                       comm,
                                       numpy_sign_list_packed[idx],
                                       numpy_recvbuf_sign,
                                       root=idx)
            requests += req_sign

        for idx in range(world_size):
            req_scale = self.my_igather(rank, world_size, comm, numpy_worker_scale, numpy_recvbuf_scale, root=idx)
            requests += req_scale

        MPI.Request.Waitall(requests)

        # 3. Convert back from numpy to cupy
        cupy_recvbuf_sign = cupy.asarray(numpy_recvbuf_sign)
        for idx in range(world_size):
            cupy_sign_list_packed[idx] = cupy.asarray(numpy_sign_list_packed[idx])

        cupy_worker_scale = cupy.asarray(numpy_worker_scale)
        cupy_recvbuf_scale = cupy.asarray(numpy_recvbuf_scale)
        cupy.cuda.get_current_stream().synchronize()

        return cupy_sign_list_packed, cupy_recvbuf_sign, cupy_worker_scale, cupy_recvbuf_scale

    def allgather_cuda(self, comm, cupy_server_sign_packed, cupy_recvbuf_sign_server, cupy_server_scale,
                       cupy_recvbuf_scale_server):
        comm.Allgather(cupy_server_sign_packed, cupy_recvbuf_sign_server)
        comm.Allgather(cupy_server_scale, cupy_recvbuf_scale_server)

    def allgather_host(self, comm, cupy_server_sign_packed, cupy_recvbuf_sign_server, cupy_server_scale,
                       cupy_recvbuf_scale_server):

        # 1. Convert cupy to numpy
        numpy_recvbuf_sign_server = np.zeros([comm.Get_size(), cupy_server_sign_packed.size],
                                             dtype=cupy_server_sign_packed.dtype)
        numpy_recvbuf_scale_server = np.zeros([comm.Get_size(), 1], dtype=cupy_server_scale.dtype)

        numpy_server_sign_packed = cupy.asnumpy(cupy_server_sign_packed)
        numpy_recvbuf_sign_server = cupy.asnumpy(cupy_recvbuf_sign_server)
        numpy_server_scale = cupy.asnumpy(cupy_server_scale)
        numpy_recvbuf_scale_server = cupy.asnumpy(cupy_recvbuf_scale_server)
        cupy.cuda.get_current_stream().synchronize()

        # 2. Communicate numpy buffers
        comm.Allgather(numpy_server_sign_packed, numpy_recvbuf_sign_server)
        comm.Allgather(numpy_server_scale, numpy_recvbuf_scale_server)
        comm.Barrier()

        # 3. Convert numpy back to cupy
        cupy_server_sign_packed = cupy.asarray(numpy_server_sign_packed)
        cupy_recvbuf_sign_server = cupy.asarray(numpy_recvbuf_sign_server)
        cupy_server_scale = cupy.asarray(numpy_server_scale)
        cupy_recvbuf_scale_server = cupy.asarray(numpy_recvbuf_scale_server)
        cupy.cuda.get_current_stream().synchronize()

        return cupy_server_sign_packed, cupy_recvbuf_sign_server, cupy_server_scale, cupy_recvbuf_scale_server

    def compressed_allreduce(self, buffer_m: torch.tensor, worker_error, server_error, local_rank):

        all_start_time = time.time()
        original_shape = buffer_m.size()
        if len(original_shape) > 1:
            buffer_m = torch.flatten(buffer_m)
        original_size = buffer_m.numel()
        worker_error_size = worker_error.numel()
        cupy.cuda.Device(local_rank).use()

        if original_size != worker_error_size:
            empty_tensor = torch.zeros(worker_error_size - original_size, device=buffer_m.device)
            buffer_m = torch.cat([buffer_m, empty_tensor])

        buffer_m.add_(worker_error)
        worker_scale = torch.linalg.norm(buffer_m) / np.sqrt(torch.numel(buffer_m))
        worker_error.set_(buffer_m - worker_scale * buffer_m.sign().add_(1).bool().float().add_(-0.5).mul_(2.0))

        cupy_sign_list_packed = self.compression_backend.compress_by_chunk(
            self.compression_backend.torch2cupy(buffer_m.sign_().add_(1).bool()), self.size)
        cupy_worker_scale = self.compression_backend.torch2cupy(worker_scale)

        cupy_recvbuf_sign = cupy.zeros([self.size, cupy_sign_list_packed[self.rank].size],
                                       dtype=cupy_sign_list_packed[0].dtype)
        cupy_recvbuf_scale = cupy.zeros([self.size, 1], dtype=cupy_worker_scale.dtype)

        # Communication Phase 1
        gather_start = time.time()
        if self.cuda_aware:
            self.gather_cuda(self.rank, self.size, self.comm, cupy_sign_list_packed, cupy_recvbuf_sign,
                             cupy_worker_scale, cupy_recvbuf_scale)
        else:
            _, cupy_recvbuf_sign, _, cupy_recvbuf_scale = self.gather_host(self.rank, self.size, self.comm,
                                                                           cupy_sign_list_packed, cupy_recvbuf_sign,
                                                                           cupy_worker_scale, cupy_recvbuf_scale)
        gather_end = time.time()

        # cupy_sign_list_packed, cupy_worker_scale, worker_scale = None, None, None
        cupy_sign_list_packed = None

        compensated_server_m = self.compression_backend.cupy2torch(
            (cupy.unpackbits(cupy_recvbuf_sign.flatten())).reshape(self.size, -1)).float().add_(-0.5).mul_(2.0).mul_(
                self.compression_backend.cupy2torch(cupy_recvbuf_scale).mul_(1 / self.size)).sum(0)
        compensated_server_m.add_(server_error)
        server_scale = torch.linalg.norm(compensated_server_m) / np.sqrt(compensated_server_m.numel())
        server_error.set_(compensated_server_m -
                          server_scale * compensated_server_m.sign().add_(1).bool().float().add_(-0.5).mul_(2.0))

        cupy_server_scale = self.compression_backend.torch2cupy(server_scale)

        cupy_server_sign_packed = self.compression_backend.compress_by_chunk(
            self.compression_backend.torch2cupy(compensated_server_m.sign_().add_(1).bool()), 1)
        compensated_server_m = None

        cupy_recvbuf_sign_server = cupy.zeros([self.size, cupy_server_sign_packed[0].size],
                                              dtype=cupy_recvbuf_sign.dtype)
        cupy_recvbuf_scale_server = cupy.zeros([self.size, 1], dtype=cupy_recvbuf_scale.dtype)
        # cupy_recvbuf_sign, cupy_recvbuf_scale = None, None
        cupy_recvbuf_sign = None

        # Communication Phase 2
        if self.cuda_aware:
            self.allgather_cuda(self.comm, cupy_server_sign_packed[0], cupy_recvbuf_sign_server, cupy_server_scale,
                                cupy_recvbuf_scale_server)
        else:
            _, cupy_recvbuf_sign_server, _, cupy_recvbuf_scale_server = self.allgather_host(
                self.comm, cupy_server_sign_packed[0], cupy_recvbuf_sign_server, cupy_server_scale,
                cupy_recvbuf_scale_server)

        # cupy_server_sign_packed, cupy_server_scale, server_scale = None, None, None
        cupy_server_sign_packed = None

        buffer_m.data.copy_(
            self.compression_backend.cupy2torch((cupy.unpackbits(cupy_recvbuf_sign_server.flatten())).reshape(
                self.size, -1)).float().add_(-0.5).mul_(2.0).mul_(
                    self.compression_backend.cupy2torch(cupy_recvbuf_scale_server)).flatten().data)
        if original_size != worker_error_size:
            buffer_m = buffer_m[0:original_size]
        if len(original_shape) > 1:
            buffer_m = buffer_m.reshape(original_shape)

        # cupy_recvbuf_sign_server, cupy_recvbuf_scale_server = None, None

        return buffer_m