File size: 41,581 Bytes
0cee4ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import os
from typing import Union
from enum import Enum
import torch
import json
import hjson
import copy
import base64
from .constants import *
from .fp16.loss_scaler import (
INITIAL_LOSS_SCALE,
SCALE_WINDOW,
DELAYED_SHIFT,
CONSECUTIVE_HYSTERESIS,
MIN_LOSS_SCALE,
)
from .config_utils import (
get_scalar_param,
dict_raise_error_on_duplicate_keys,
ScientificNotationEncoder,
)
from .zero.config import get_zero_config, ZeroStageEnum
from .activation_checkpointing.config import DeepSpeedActivationCheckpointingConfig
from ..comm.config import DeepSpeedCommsConfig
from ..monitor.config import get_monitor_config
from ..inference.config import WeightQuantConfig
from .compiler import get_compile_config
from deepspeed import comm as dist
from deepspeed.runtime.config_utils import DeepSpeedConfigModel
from ..git_version_info import version as __version__
from ..utils import logger
from ..elasticity import (
elasticity_enabled,
compute_elastic_config,
ensure_immutable_elastic_config,
)
from ..elasticity.config import ElasticityConfigError
from ..elasticity.constants import (
ELASTICITY,
IGNORE_NON_ELASTIC_BATCH_INFO,
IGNORE_NON_ELASTIC_BATCH_INFO_DEFAULT,
MODEL_PARALLEL_SIZE,
MODEL_PARALLEL_SIZE_DEFAULT,
NUM_GPUS_PER_NODE,
NUM_GPUS_PER_NODE_DEFAULT,
)
from ..profiling.config import DeepSpeedFlopsProfilerConfig
from ..autotuning.config import DeepSpeedAutotuningConfig
from ..nebula.config import DeepSpeedNebulaConfig
from ..compression.config import get_compression_config, get_quantize_enabled
from ..compression.constants import *
from .swap_tensor.aio_config import get_aio_config
from .data_pipeline.config import get_data_efficiency_enabled, get_data_efficiency_config, get_curriculum_enabled_legacy, get_curriculum_params_legacy
from .data_pipeline.constants import *
TENSOR_CORE_ALIGN_SIZE = 8
ADAGRAD_OPTIMIZER = 'adagrad'
ADAM_OPTIMIZER = 'adam'
ADAMW_OPTIMIZER = 'adamw'
LAMB_OPTIMIZER = 'lamb'
ONEBIT_ADAM_OPTIMIZER = 'onebitadam'
ZERO_ONE_ADAM_OPTIMIZER = 'zerooneadam'
ONEBIT_LAMB_OPTIMIZER = 'onebitlamb'
MUADAM_OPTIMIZER = 'muadam'
MUADAMW_OPTIMIZER = 'muadamw'
MUSGD_OPTIMIZER = 'musgd'
LION_OPTIMIZER = 'lion'
DEEPSPEED_OPTIMIZERS = [
ADAGRAD_OPTIMIZER, ADAM_OPTIMIZER, ADAMW_OPTIMIZER, LAMB_OPTIMIZER, ONEBIT_ADAM_OPTIMIZER, ONEBIT_LAMB_OPTIMIZER,
ZERO_ONE_ADAM_OPTIMIZER, MUADAM_OPTIMIZER, MUADAMW_OPTIMIZER, MUSGD_OPTIMIZER, LION_OPTIMIZER
]
# extra optimizer parameters for adam/adamw
TORCH_ADAM_PARAM = "torch_adam"
# default to adamw logic for adam/adamw optimizers unless user explicitly opts out
ADAM_W_MODE = "adam_w_mode"
ADAM_W_MODE_DEFAULT = True
class DeepSpeedConfigError(Exception):
pass
class DtypeEnum(Enum):
# The torch dtype must always be the first value (so we return torch.dtype)
fp16 = torch.float16, "torch.float16", "fp16", "float16", "half"
fp32 = torch.float32, "torch.float32", "fp32", "float32", "float"
int8 = torch.int8, "torch.int8", "int8"
bf16 = torch.bfloat16, "torch.bfloat16", "bf16", "bfloat16"
# Copied from https://stackoverflow.com/a/43210118
# Allows us to use multiple values for each Enum index and returns first
# listed value when Enum is called
def __new__(cls, *values):
obj = object.__new__(cls)
# first value is canonical value
obj._value_ = values[0]
for other_value in values[1:]:
cls._value2member_map_[other_value] = obj
obj._all_values = values
return obj
def __repr__(self):
return "<%s.%s: %s>" % (
self.__class__.__name__,
self._name_,
", ".join([repr(v) for v in self._all_values]),
)
def get_pld_enabled(param_dict):
if PROGRESSIVE_LAYER_DROP in param_dict.keys():
return get_scalar_param(param_dict[PROGRESSIVE_LAYER_DROP], PLD_ENABLED, PLD_ENABLED_DEFAULT)
else:
return False
def get_pld_params(param_dict):
if PROGRESSIVE_LAYER_DROP in param_dict.keys():
pld_params = copy.copy(param_dict[PROGRESSIVE_LAYER_DROP])
pld_params.pop(PLD_ENABLED)
return pld_params
else:
return False
def get_amp_enabled(param_dict):
if AMP in param_dict.keys():
return get_scalar_param(param_dict[AMP], AMP_ENABLED, AMP_ENABLED_DEFAULT)
else:
return False
def get_amp_params(param_dict):
if AMP in param_dict.keys():
amp_params = copy.copy(param_dict[AMP])
amp_params.pop(AMP_ENABLED)
return amp_params
else:
return False
def get_fp16_enabled(param_dict):
if FP16 in param_dict.keys():
return get_scalar_param(param_dict[FP16], FP16_ENABLED, FP16_ENABLED_DEFAULT)
else:
return False
def get_bfloat16_enabled(param_dict):
for key in [BFLOAT16, BFLOAT16_OLD]:
if key in param_dict.keys():
return get_scalar_param(param_dict[key], BFLOAT16_ENABLED, BFLOAT16_ENABLED_DEFAULT)
return False
def get_bfloat16_immediate_grad_update(param_dict):
for key in [BFLOAT16, BFLOAT16_OLD]:
if key in param_dict.keys():
return get_scalar_param(param_dict[key], BFLOAT16_IMMEDIATE_GRAD_UPDATE,
BFLOAT16_IMMEDIATE_GRAD_UPDATE_DEFAULT)
return False
def get_fp16_master_weights_and_grads_enabled(param_dict):
if get_fp16_enabled(param_dict):
return get_scalar_param(param_dict[FP16], FP16_MASTER_WEIGHTS_AND_GRADS, FP16_MASTER_WEIGHTS_AND_GRADS_DEFAULT)
else:
return False
def get_fp16_auto_cast(param_dict):
if get_fp16_enabled(param_dict):
return get_scalar_param(param_dict[FP16], FP16_AUTO_CAST, FP16_AUTO_CAST_DEFAULT)
def get_loss_scale(param_dict):
if get_fp16_enabled(param_dict):
return get_scalar_param(param_dict[FP16], FP16_LOSS_SCALE, FP16_LOSS_SCALE_DEFAULT)
elif get_bfloat16_enabled(param_dict):
return 1.0
else:
return FP16_LOSS_SCALE_DEFAULT
def get_initial_dynamic_scale(param_dict):
if get_fp16_enabled(param_dict):
initial_scale_power = get_scalar_param(param_dict[FP16], FP16_INITIAL_SCALE_POWER,
FP16_INITIAL_SCALE_POWER_DEFAULT)
elif get_bfloat16_enabled(param_dict):
initial_scale_power = 0
else:
initial_scale_power = FP16_INITIAL_SCALE_POWER_DEFAULT
return 2**initial_scale_power
def get_dynamic_loss_scale_args(param_dict):
loss_scale_args = None
if get_fp16_enabled(param_dict):
fp16_dict = param_dict[FP16]
dynamic_loss_args = [
FP16_INITIAL_SCALE_POWER,
FP16_LOSS_SCALE_WINDOW,
FP16_MIN_LOSS_SCALE,
FP16_HYSTERESIS,
FP16_CONSECUTIVE_HYSTERESIS,
]
if any(arg in list(fp16_dict.keys()) for arg in dynamic_loss_args):
init_scale = get_scalar_param(fp16_dict, FP16_INITIAL_SCALE_POWER, FP16_INITIAL_SCALE_POWER_DEFAULT)
scale_window = get_scalar_param(fp16_dict, FP16_LOSS_SCALE_WINDOW, FP16_LOSS_SCALE_WINDOW_DEFAULT)
delayed_shift = get_scalar_param(fp16_dict, FP16_HYSTERESIS, FP16_HYSTERESIS_DEFAULT)
consecutive_hysteresis = get_scalar_param(fp16_dict, FP16_CONSECUTIVE_HYSTERESIS,
FP16_CONSECUTIVE_HYSTERESIS_DEFAULT)
min_loss_scale = get_scalar_param(fp16_dict, FP16_MIN_LOSS_SCALE, FP16_MIN_LOSS_SCALE_DEFAULT)
loss_scale_args = {
INITIAL_LOSS_SCALE: 2**init_scale,
SCALE_WINDOW: scale_window,
DELAYED_SHIFT: delayed_shift,
CONSECUTIVE_HYSTERESIS: consecutive_hysteresis,
MIN_LOSS_SCALE: min_loss_scale,
}
return loss_scale_args
def get_gradient_accumulation_steps(param_dict):
return get_scalar_param(param_dict, GRADIENT_ACCUMULATION_STEPS, GRADIENT_ACCUMULATION_STEPS_DEFAULT)
def get_sparse_gradients_enabled(param_dict):
return get_scalar_param(param_dict, SPARSE_GRADIENTS, SPARSE_GRADIENTS_DEFAULT)
def get_communication_data_type(param_dict,
comm_type=COMMUNICATION_DATA_TYPE,
comm_data_type_default=COMMUNICATION_DATA_TYPE_DEFAULT):
val = get_scalar_param(param_dict, comm_type, comm_data_type_default)
val = val.lower() if val is not None else val
if val is None:
return val # we must determine it by other parameters
elif val == "fp32":
return torch.float32
elif val == "fp16":
return torch.float16
elif val == "bf16":
return torch.bfloat16
raise ValueError(f"Invalid communication_data_type. Supported data types: ['fp16', 'bf16', 'fp32']. Got: {val}")
def get_prescale_gradients(param_dict):
return get_scalar_param(param_dict, PRESCALE_GRADIENTS, PRESCALE_GRADIENTS_DEFAULT)
def get_gradient_predivide_factor(param_dict):
return get_scalar_param(param_dict, GRADIENT_PREDIVIDE_FACTOR, GRADIENT_PREDIVIDE_FACTOR_DEFAULT)
def get_steps_per_print(param_dict):
return get_scalar_param(param_dict, STEPS_PER_PRINT, STEPS_PER_PRINT_DEFAULT)
def get_disable_allgather(param_dict):
return get_scalar_param(param_dict, DISABLE_ALLGATHER, DISABLE_ALLGATHER_DEFAULT)
def get_dump_state(param_dict):
return get_scalar_param(param_dict, DUMP_STATE, DUMP_STATE_DEFAULT)
def get_gradient_clipping(param_dict):
return get_scalar_param(param_dict, GRADIENT_CLIPPING, GRADIENT_CLIPPING_DEFAULT)
def get_graph_harvesting(param_dict):
return get_scalar_param(param_dict, GRAPH_HARVESTING, GRAPH_HARVESTING_DEFAULT)
def get_sparse_attention(param_dict):
if SPARSE_ATTENTION in param_dict.keys():
sparsity = param_dict[SPARSE_ATTENTION]
mode = get_sparse_attention_mode(sparsity)
if mode == SPARSE_DENSE_MODE:
return get_sparse_dense_config(sparsity)
elif mode == SPARSE_FIXED_MODE:
return get_sparse_fixed_config(sparsity)
elif mode == SPARSE_VARIABLE_MODE:
return get_sparse_variable_config(sparsity)
elif mode == SPARSE_BIGBIRD_MODE:
return get_sparse_bigbird_config(sparsity)
elif mode == SPARSE_BSLONGFORMER_MODE:
return get_sparse_bslongformer_config(sparsity)
else:
raise NotImplementedError(f"Given sparsity mode, {mode}, has not been implemented yet!")
else:
return None
def get_sparse_dense_config(sparsity):
block = get_scalar_param(sparsity, SPARSE_BLOCK, SPARSE_BLOCK_DEFAULT)
return {SPARSE_MODE: SPARSE_DENSE_MODE, SPARSE_BLOCK: block}
def get_sparse_fixed_config(sparsity):
block = get_scalar_param(sparsity, SPARSE_BLOCK, SPARSE_BLOCK_DEFAULT)
different_layout_per_head = get_scalar_param(
sparsity,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD_DEFAULT,
)
num_local_blocks = get_scalar_param(sparsity, SPARSE_NUM_LOCAL_BLOCKS, SPARSE_NUM_LOCAL_BLOCKS_DEFAULT)
num_global_blocks = get_scalar_param(sparsity, SPARSE_NUM_GLOBAL_BLOCKS, SPARSE_NUM_GLOBAL_BLOCKS_DEFAULT)
attention = get_scalar_param(sparsity, SPARSE_ATTENTION_TYPE, SPARSE_ATTENTION_TYPE_DEFAULT)
horizontal_global_attention = get_scalar_param(
sparsity,
SPARSE_HORIZONTAL_GLOBAL_ATTENTION,
SPARSE_HORIZONTAL_GLOBAL_ATTENTION_DEFAULT,
)
num_different_global_patterns = get_scalar_param(
sparsity,
SPARSE_NUM_DIFFERENT_GLOBAL_PATTERNS,
SPARSE_NUM_DIFFERENT_GLOBAL_PATTERNS_DEFAULT,
)
return {
SPARSE_MODE: SPARSE_FIXED_MODE,
SPARSE_BLOCK: block,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD: different_layout_per_head,
SPARSE_NUM_LOCAL_BLOCKS: num_local_blocks,
SPARSE_NUM_GLOBAL_BLOCKS: num_global_blocks,
SPARSE_ATTENTION_TYPE: attention,
SPARSE_HORIZONTAL_GLOBAL_ATTENTION: horizontal_global_attention,
SPARSE_NUM_DIFFERENT_GLOBAL_PATTERNS: num_different_global_patterns,
}
def get_sparse_variable_config(sparsity):
block = get_scalar_param(sparsity, SPARSE_BLOCK, SPARSE_BLOCK_DEFAULT)
different_layout_per_head = get_scalar_param(
sparsity,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD_DEFAULT,
)
num_random_blocks = get_scalar_param(sparsity, SPARSE_NUM_RANDOM_BLOCKS, SPARSE_NUM_RANDOM_BLOCKS_DEFAULT)
local_window_blocks = get_scalar_param(sparsity, SPARSE_LOCAL_WINDOW_BLOCKS, SPARSE_LOCAL_WINDOW_BLOCKS_DEFAULT)
global_block_indices = get_scalar_param(sparsity, SPARSE_GLOBAL_BLOCK_INDICES, SPARSE_GLOBAL_BLOCK_INDICES_DEFAULT)
global_block_end_indices = get_scalar_param(
sparsity,
SPARSE_GLOBAL_BLOCK_END_INDICES,
SPARSE_GLOBAL_BLOCK_END_INDICES_DEFAULT,
)
attention = get_scalar_param(sparsity, SPARSE_ATTENTION_TYPE, SPARSE_ATTENTION_TYPE_DEFAULT)
horizontal_global_attention = get_scalar_param(
sparsity,
SPARSE_HORIZONTAL_GLOBAL_ATTENTION,
SPARSE_HORIZONTAL_GLOBAL_ATTENTION_DEFAULT,
)
return {
SPARSE_MODE: SPARSE_VARIABLE_MODE,
SPARSE_BLOCK: block,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD: different_layout_per_head,
SPARSE_NUM_RANDOM_BLOCKS: num_random_blocks,
SPARSE_LOCAL_WINDOW_BLOCKS: local_window_blocks,
SPARSE_GLOBAL_BLOCK_INDICES: global_block_indices,
SPARSE_GLOBAL_BLOCK_END_INDICES: global_block_end_indices,
SPARSE_ATTENTION_TYPE: attention,
SPARSE_HORIZONTAL_GLOBAL_ATTENTION: horizontal_global_attention,
}
def get_sparse_bigbird_config(sparsity):
block = get_scalar_param(sparsity, SPARSE_BLOCK, SPARSE_BLOCK_DEFAULT)
different_layout_per_head = get_scalar_param(
sparsity,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD_DEFAULT,
)
num_random_blocks = get_scalar_param(sparsity, SPARSE_NUM_RANDOM_BLOCKS, SPARSE_NUM_RANDOM_BLOCKS_DEFAULT)
num_sliding_window_blocks = get_scalar_param(
sparsity,
SPARSE_NUM_SLIDING_WINDOW_BLOCKS,
SPARSE_NUM_SLIDING_WINDOW_BLOCKS_DEFAULT,
)
num_global_blocks = get_scalar_param(sparsity, SPARSE_NUM_GLOBAL_BLOCKS, SPARSE_NUM_GLOBAL_BLOCKS_DEFAULT)
return {
SPARSE_MODE: SPARSE_BIGBIRD_MODE,
SPARSE_BLOCK: block,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD: different_layout_per_head,
SPARSE_NUM_RANDOM_BLOCKS: num_random_blocks,
SPARSE_NUM_SLIDING_WINDOW_BLOCKS: num_sliding_window_blocks,
SPARSE_NUM_GLOBAL_BLOCKS: num_global_blocks,
}
def get_sparse_bslongformer_config(sparsity):
block = get_scalar_param(sparsity, SPARSE_BLOCK, SPARSE_BLOCK_DEFAULT)
different_layout_per_head = get_scalar_param(
sparsity,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD_DEFAULT,
)
num_sliding_window_blocks = get_scalar_param(
sparsity,
SPARSE_NUM_SLIDING_WINDOW_BLOCKS,
SPARSE_NUM_SLIDING_WINDOW_BLOCKS_DEFAULT,
)
global_block_indices = get_scalar_param(sparsity, SPARSE_GLOBAL_BLOCK_INDICES, SPARSE_GLOBAL_BLOCK_INDICES_DEFAULT)
global_block_end_indices = get_scalar_param(
sparsity,
SPARSE_GLOBAL_BLOCK_END_INDICES,
SPARSE_GLOBAL_BLOCK_END_INDICES_DEFAULT,
)
return {
SPARSE_MODE: SPARSE_BSLONGFORMER_MODE,
SPARSE_BLOCK: block,
SPARSE_DIFFERENT_LAYOUT_PER_HEAD: different_layout_per_head,
SPARSE_NUM_SLIDING_WINDOW_BLOCKS: num_sliding_window_blocks,
SPARSE_GLOBAL_BLOCK_INDICES: global_block_indices,
SPARSE_GLOBAL_BLOCK_END_INDICES: global_block_end_indices,
}
def get_sparse_attention_mode(param_dict):
if SPARSE_MODE in param_dict.keys():
return param_dict[SPARSE_MODE]
else:
return SPARSE_MODE_DEFAULT
def get_sparse_attention_type(param_dict):
if SPARSE_ATTENTION_TYPE in param_dict.keys():
return param_dict[SPARSE_ATTENTION_TYPE]
else:
return SPARSE_ATTENTION_TYPE_DEFAULT
def get_pipeline_config(param_dict):
"""Parses pipeline engine configuration. """
default_pipeline = {
"stages": "auto",
"partition": "best",
"seed_layers": False,
"activation_checkpoint_interval": 0,
"pipe_partitioned": True,
"grad_partitioned": True,
}
config = default_pipeline
for key, val in param_dict.get("pipeline", {}).items():
config[key] = val
return config
def get_optimizer_name(param_dict):
if OPTIMIZER in param_dict.keys() and TYPE in param_dict[OPTIMIZER].keys():
return param_dict[OPTIMIZER][TYPE]
else:
return OPTIMIZER_TYPE_DEFAULT
def get_optimizer_params(param_dict):
if (get_optimizer_name(param_dict) is not None and OPTIMIZER_PARAMS in param_dict[OPTIMIZER].keys()):
return param_dict[OPTIMIZER][OPTIMIZER_PARAMS]
else:
return None
def get_optimizer_gradient_clipping(param_dict):
optimizer_params = get_optimizer_params(param_dict)
if optimizer_params is not None and MAX_GRAD_NORM in optimizer_params.keys():
return optimizer_params[MAX_GRAD_NORM]
else:
return None
def get_optimizer_legacy_fusion(param_dict):
if OPTIMIZER in param_dict.keys() and LEGACY_FUSION in param_dict[OPTIMIZER].keys():
return param_dict[OPTIMIZER][LEGACY_FUSION]
else:
return LEGACY_FUSION_DEFAULT
def get_zero_allow_untested_optimizer(param_dict):
return get_scalar_param(param_dict, ZERO_ALLOW_UNTESTED_OPTIMIZER, ZERO_ALLOW_UNTESTED_OPTIMIZER_DEFAULT)
def get_zero_force_ds_cpu_optimizer(param_dict):
return get_scalar_param(param_dict, ZERO_FORCE_DS_CPU_OPTIMIZER, ZERO_FORCE_DS_CPU_OPTIMIZER_DEFAULT)
def get_scheduler_name(param_dict):
if SCHEDULER in param_dict.keys() and TYPE in param_dict[SCHEDULER].keys():
return param_dict[SCHEDULER][TYPE]
else:
return SCHEDULER_TYPE_DEFAULT
def get_scheduler_params(param_dict):
if (get_scheduler_name(param_dict) is not None and SCHEDULER_PARAMS in param_dict[SCHEDULER].keys()):
return param_dict[SCHEDULER][SCHEDULER_PARAMS]
else:
return None
def get_train_batch_size(param_dict):
return get_scalar_param(param_dict, TRAIN_BATCH_SIZE, TRAIN_BATCH_SIZE_DEFAULT)
def get_train_micro_batch_size_per_gpu(param_dict):
return get_scalar_param(
param_dict,
TRAIN_MICRO_BATCH_SIZE_PER_GPU,
TRAIN_MICRO_BATCH_SIZE_PER_GPU_DEFAULT,
)
def get_wall_clock_breakdown(param_dict):
return get_scalar_param(param_dict, WALL_CLOCK_BREAKDOWN, WALL_CLOCK_BREAKDOWN_DEFAULT)
def get_memory_breakdown(param_dict):
return get_scalar_param(param_dict, MEMORY_BREAKDOWN, MEMORY_BREAKDOWN_DEFAULT)
class HybridEngineConfig(DeepSpeedConfigModel):
enabled: bool = False
max_out_tokens: int = 512
inference_tp_size: int = 1
release_inference_cache: bool = False
pin_parameters: bool = True
tp_gather_partition_size: int = 8
def get_hybrid_engine_config(param_dict):
hybrid_engine_config_dict = param_dict.get("hybrid_engine", {})
hybrid_engine_config = HybridEngineConfig(**hybrid_engine_config_dict)
return hybrid_engine_config
def get_expert_data_topo_config(param_dict):
return get_scalar_param(param_dict, USE_DATA_BEFORE_EXPERT_PARALLEL, USE_DATA_BEFORE_EXPERT_PARALLEL_DEFAULT)
def get_eigenvalue_config(param_dict):
if get_quantize_enabled(param_dict):
param_dict = param_dict[QUANTIZE_TRAINING]
assert not get_eigenvalue_enabled(param_dict), "Eigenvalue based MoQ is temporarily disabled"
return (
get_eigenvalue_enabled(param_dict),
get_eigenvalue_verbose(param_dict),
get_eigenvalue_max_iter(param_dict),
get_eigenvalue_tol(param_dict),
get_eigenvalue_stability(param_dict),
get_eigenvalue_gas_boundary_resolution(param_dict),
get_eigenvalue_layer_name(param_dict),
get_eigenvalue_layer_num(param_dict),
)
else:
return (
EIGENVALUE_ENABLED_DEFAULT,
EIGENVALUE_VERBOSE_DEFAULT,
EIGENVALUE_MAX_ITER_DEFAULT,
EIGENVALUE_TOL_DEFAULT,
EIGENVALUE_STABILITY_DEFAULT,
EIGENVALUE_GAS_BOUNDARY_RESOLUTION_DEFAULT,
EIGENVALUE_LAYER_NAME_DEFAULT,
EIGENVALUE_LAYER_NUM_DEFAULT,
)
def get_eigenvalue_enabled(param_dict):
if EIGENVALUE in param_dict.keys():
return get_scalar_param(param_dict[EIGENVALUE], EIGENVALUE_ENABLED, EIGENVALUE_ENABLED_DEFAULT)
else:
return EIGENVALUE_ENABLED_DEFAULT
def get_eigenvalue_verbose(param_dict):
if EIGENVALUE in param_dict.keys():
return get_scalar_param(param_dict[EIGENVALUE], EIGENVALUE_VERBOSE, EIGENVALUE_VERBOSE_DEFAULT)
else:
return EIGENVALUE_VERBOSE_DEFAULT
def get_eigenvalue_max_iter(param_dict):
if EIGENVALUE in param_dict.keys():
return get_scalar_param(param_dict[EIGENVALUE], EIGENVALUE_MAX_ITER, EIGENVALUE_MAX_ITER_DEFAULT)
else:
return EIGENVALUE_MAX_ITER_DEFAULT
def get_eigenvalue_tol(param_dict):
if EIGENVALUE in param_dict.keys():
return get_scalar_param(param_dict[EIGENVALUE], EIGENVALUE_TOL, EIGENVALUE_TOL_DEFAULT)
else:
return EIGENVALUE_TOL_DEFAULT
def get_eigenvalue_stability(param_dict):
if EIGENVALUE in param_dict.keys():
return get_scalar_param(param_dict[EIGENVALUE], EIGENVALUE_STABILITY, EIGENVALUE_STABILITY_DEFAULT)
else:
return EIGENVALUE_STABILITY_DEFAULT
def get_eigenvalue_gas_boundary_resolution(param_dict):
if EIGENVALUE in param_dict.keys():
return get_scalar_param(
param_dict[EIGENVALUE],
EIGENVALUE_GAS_BOUNDARY_RESOLUTION,
EIGENVALUE_GAS_BOUNDARY_RESOLUTION_DEFAULT,
)
else:
return EIGENVALUE_GAS_BOUNDARY_RESOLUTION_DEFAULT
def get_eigenvalue_layer_name(param_dict):
if EIGENVALUE in param_dict.keys():
return get_scalar_param(param_dict[EIGENVALUE], EIGENVALUE_LAYER_NAME, EIGENVALUE_LAYER_NAME_DEFAULT)
else:
return EIGENVALUE_LAYER_NAME_DEFAULT
def get_eigenvalue_layer_num(param_dict):
if EIGENVALUE in param_dict.keys():
return get_scalar_param(param_dict[EIGENVALUE], EIGENVALUE_LAYER_NUM, EIGENVALUE_LAYER_NUM_DEFAULT)
else:
return EIGENVALUE_LAYER_NUM_DEFAULT
def get_checkpoint_params(param_dict):
return param_dict.get(CHECKPOINT, {})
def get_data_types_params(param_dict):
return param_dict.get(DATA_TYPES, {})
def get_checkpoint_tag_validation_mode(checkpoint_params):
tag_validation_mode = checkpoint_params.get(CHECKPOINT_TAG_VALIDATION, CHECKPOINT_TAG_VALIDATION_DEFAULT)
tag_validation_mode = tag_validation_mode.upper()
if tag_validation_mode in CHECKPOINT_TAG_VALIDATION_MODES:
return tag_validation_mode
else:
raise DeepSpeedConfigError(
"Checkpoint config contains invalid tag_validation "
f"value of {tag_validation_mode}, expecting one of {CHECKPOINT_TAG_VALIDATION_MODES}")
def get_checkpoint_parallel_write_pipeline(checkpoint_params):
par_write_params = checkpoint_params.get(CHECKPOINT_PARALLEL_WRITE, {})
par_write_pipeline = par_write_params.get(CHECKPOINT_PARALLEL_WRITE_PIPELINE_STAGE,
CHECKPOINT_PARALLEL_WRITE_PIPELINE_STAGE_DEFAULT)
if par_write_pipeline in [True, False]:
return par_write_pipeline
else:
raise DeepSpeedConfigError("checkpoint::parallel_write::pipeline_stage "
f"value of '{par_write_pipeline}' is invalid, expecting: true or false")
def get_dataloader_drop_last(param_dict):
return get_scalar_param(param_dict, DATALOADER_DROP_LAST, DATALOADER_DROP_LAST_DEFAULT)
'''Write deepspeed config files by modifying basic templates.
Can be used for quickly changing parameters via command line parameters.'''
class DeepSpeedConfigWriter:
def __init__(self, data=None):
self.data = data if data is not None else {}
def add_config(self, key, value):
self.data[key] = value
def load_config(self, filename):
self.data = json.load(open(filename, "r"), object_pairs_hook=dict_raise_error_on_duplicate_keys)
def write_config(self, filename):
with open(filename, "w") as outfile:
json.dump(self.data, outfile)
class DeepSpeedConfig(object):
def __init__(self, config: Union[str, dict], mpu=None):
super(DeepSpeedConfig, self).__init__()
if isinstance(config, dict):
self._param_dict = config
elif os.path.exists(config):
self._param_dict = hjson.load(open(config, "r"), object_pairs_hook=dict_raise_error_on_duplicate_keys)
else:
try:
config_decoded = base64.urlsafe_b64decode(config).decode('utf-8')
self._param_dict = hjson.loads(config_decoded)
except (UnicodeDecodeError, AttributeError):
raise ValueError(
f"Expected a string path to an existing deepspeed config, or a dictionary or a valid base64. Received: {config}"
)
try:
self.global_rank = dist.get_rank()
if mpu is None:
self.world_size = dist.get_world_size()
else:
self.world_size = mpu.get_data_parallel_world_size()
except:
self.global_rank = 0
self.world_size = 1
# If elastic-mode enabled, update compute + update _param_dict
self.elasticity_enabled = elasticity_enabled(self._param_dict)
if self.elasticity_enabled:
logger.info("DeepSpeed elasticity support enabled")
final_batch_size, valid_gpus, micro_batch_size = compute_elastic_config(
ds_config=self._param_dict,
target_deepspeed_version=__version__,
world_size=self.world_size,
)
elastic_dict = self._param_dict[ELASTICITY]
# Ensure the resource scheduler saw the same elastic config we are using at runtime
ensure_immutable_elastic_config(runtime_elastic_config_dict=elastic_dict)
self.elastic_model_parallel_size = elastic_dict.get(MODEL_PARALLEL_SIZE, MODEL_PARALLEL_SIZE_DEFAULT)
if self.elastic_model_parallel_size < 1:
raise ElasticityConfigError("Model-Parallel size cannot be less than 1, "
f"given model-parallel size: {self.elastic_model_parallel_size}")
self.num_gpus_per_node = elastic_dict.get(NUM_GPUS_PER_NODE, NUM_GPUS_PER_NODE_DEFAULT)
if self.num_gpus_per_node < 1:
raise ElasticityConfigError("NUmber of GPUs per node cannot be less than 1, "
f"given number of GPUs per node: {self.num_gpus_per_node}")
ignore_non_elastic_batch_info = elastic_dict.get(IGNORE_NON_ELASTIC_BATCH_INFO,
IGNORE_NON_ELASTIC_BATCH_INFO_DEFAULT)
if not ignore_non_elastic_batch_info:
batch_params = [
TRAIN_BATCH_SIZE,
TRAIN_MICRO_BATCH_SIZE_PER_GPU,
GRADIENT_ACCUMULATION_STEPS,
]
if any(map(lambda t: t in self._param_dict, batch_params)):
raise ElasticityConfigError("One or more batch related parameters were found in your " \
f"ds_config ({TRAIN_BATCH_SIZE}, {TRAIN_MICRO_BATCH_SIZE_PER_GPU}, and/or " \
f"{GRADIENT_ACCUMULATION_STEPS}). These parameters *will not be used* since " \
"elastic training is enabled, which takes control of these parameters. " \
"If you want to suppress this error (the parameters will be silently ignored) " \
f"please set {IGNORE_NON_ELASTIC_BATCH_INFO}':true in your elasticity config.")
# micro_bsz * world_size * gas = total_batch_size
# gas = total_batch_size // (micro_bsz * world_size)
gradient_accu_steps = final_batch_size // (micro_batch_size * self.world_size)
if TRAIN_BATCH_SIZE in self._param_dict:
logger.warning("[Elasticity] overriding training_batch_size: "
f"{self._param_dict[TRAIN_BATCH_SIZE]} -> {final_batch_size}")
if TRAIN_MICRO_BATCH_SIZE_PER_GPU in self._param_dict:
logger.warning("[Elasticity] overriding train_micro_batch_size_per_gpu: "
f"{self._param_dict[TRAIN_MICRO_BATCH_SIZE_PER_GPU]} -> {micro_batch_size}")
if GRADIENT_ACCUMULATION_STEPS in self._param_dict:
logger.warning("[Elasticity] overriding gradient_accumulation_steps: "
f"{self._param_dict[GRADIENT_ACCUMULATION_STEPS]} -> {gradient_accu_steps}")
logger.info(f"[Elasticity] valid GPU counts: {valid_gpus}")
self._param_dict[TRAIN_BATCH_SIZE] = final_batch_size
self._param_dict[TRAIN_MICRO_BATCH_SIZE_PER_GPU] = micro_batch_size
self._param_dict[GRADIENT_ACCUMULATION_STEPS] = gradient_accu_steps
# Pass a copy so that user json is unmodified, e.g. for logging
self._initialize_params(copy.copy(self._param_dict))
self._configure_train_batch_size()
self._do_sanity_check()
def _initialize_params(self, param_dict):
self.train_batch_size = get_train_batch_size(param_dict)
#print(f"beginning get_train_batch_size = {get_train_batch_size}")
self.train_micro_batch_size_per_gpu = get_train_micro_batch_size_per_gpu(param_dict)
self.gradient_accumulation_steps = get_gradient_accumulation_steps(param_dict)
self.steps_per_print = get_steps_per_print(param_dict)
self.dump_state = get_dump_state(param_dict)
self.disable_allgather = get_disable_allgather(param_dict)
self.communication_data_type = get_communication_data_type(param_dict)
self.seq_parallel_communication_data_type = get_communication_data_type(
param_dict, SEQ_PARALLEL_COMMUNICATION_DATA_TYPE, SEQ_PARALLEL_COMMUNICATION_DATA_TYPE_DEFAULT)
self.prescale_gradients = get_prescale_gradients(param_dict)
self.gradient_predivide_factor = get_gradient_predivide_factor(param_dict)
self.sparse_gradients_enabled = get_sparse_gradients_enabled(param_dict)
self.zero_config = get_zero_config(param_dict)
self.mics_shard_size = self.zero_config.mics_shard_size
self.mics_hierarchial_params_gather = self.zero_config.mics_hierarchical_params_gather
self.zero_optimization_stage = self.zero_config.stage
self.zero_enabled = self.zero_optimization_stage > 0
self.activation_checkpointing_config = DeepSpeedActivationCheckpointingConfig(param_dict)
self.comms_config = DeepSpeedCommsConfig(param_dict)
self.monitor_config = get_monitor_config(param_dict)
self.gradient_clipping = get_gradient_clipping(param_dict)
self.fp16_enabled = get_fp16_enabled(param_dict)
self.fp16_auto_cast = get_fp16_auto_cast(param_dict)
self.bfloat16_enabled = get_bfloat16_enabled(param_dict)
self.bfloat16_immediate_grad_update = get_bfloat16_immediate_grad_update(param_dict)
assert not (self.fp16_enabled
and self.bfloat16_enabled), 'bfloat16 and fp16 modes cannot be simultaneously enabled'
self.fp16_master_weights_and_gradients = get_fp16_master_weights_and_grads_enabled(param_dict)
self.amp_enabled = get_amp_enabled(param_dict)
self.amp_params = get_amp_params(param_dict)
self.loss_scale = get_loss_scale(param_dict)
self.initial_dynamic_scale = get_initial_dynamic_scale(param_dict)
self.dynamic_loss_scale_args = get_dynamic_loss_scale_args(param_dict)
self.compression_config = get_compression_config(param_dict)
self.graph_harvesting = get_graph_harvesting(param_dict)
self.optimizer_name = get_optimizer_name(param_dict)
if (self.optimizer_name is not None and self.optimizer_name.lower() in DEEPSPEED_OPTIMIZERS):
self.optimizer_name = self.optimizer_name.lower()
self.optimizer_params = get_optimizer_params(param_dict)
self.optimizer_legacy_fusion = get_optimizer_legacy_fusion(param_dict)
self.zero_allow_untested_optimizer = get_zero_allow_untested_optimizer(param_dict)
self.zero_force_ds_cpu_optimizer = get_zero_force_ds_cpu_optimizer(param_dict)
self.scheduler_name = get_scheduler_name(param_dict)
self.scheduler_params = get_scheduler_params(param_dict)
self.flops_profiler_config = DeepSpeedFlopsProfilerConfig(param_dict)
self.wall_clock_breakdown = (get_wall_clock_breakdown(param_dict) | self.flops_profiler_config.enabled)
self.memory_breakdown = get_memory_breakdown(param_dict)
self.autotuning_config = DeepSpeedAutotuningConfig(param_dict)
(
self.eigenvalue_enabled,
self.eigenvalue_verbose,
self.eigenvalue_max_iter,
self.eigenvalue_tol,
self.eigenvalue_stability,
self.eigenvalue_gas_boundary_resolution,
self.eigenvalue_layer_name,
self.eigenvalue_layer_num,
) = get_eigenvalue_config(param_dict)
self.use_data_before_expert_parallel_ = get_expert_data_topo_config(param_dict)
self.hybrid_engine = get_hybrid_engine_config(param_dict)
self.sparse_attention = get_sparse_attention(param_dict)
self.pipeline = get_pipeline_config(param_dict)
self.pld_enabled = get_pld_enabled(param_dict)
self.pld_params = get_pld_params(param_dict)
self.curriculum_enabled_legacy = get_curriculum_enabled_legacy(param_dict)
self.curriculum_params_legacy = get_curriculum_params_legacy(param_dict)
self.data_efficiency_enabled = get_data_efficiency_enabled(param_dict)
self.data_efficiency_config = get_data_efficiency_config(param_dict)
checkpoint_params = get_checkpoint_params(param_dict)
validation_mode = get_checkpoint_tag_validation_mode(checkpoint_params)
self.checkpoint_tag_validation_enabled = (validation_mode != ValidationMode.IGNORE)
self.checkpoint_tag_validation_fail = validation_mode == ValidationMode.FAIL
self.load_universal_checkpoint = checkpoint_params.get(LOAD_UNIVERSAL_CHECKPOINT,
LOAD_UNIVERSAL_CHECKPOINT_DEFAULT)
self.use_node_local_storage = checkpoint_params.get(USE_NODE_LOCAL_STORAGE_CHECKPOINT,
USE_NODE_LOCAL_STORAGE_CHECKPOINT_DEFAULT)
data_types_params = get_data_types_params(param_dict)
self.grad_accum_dtype = data_types_params.get(GRAD_ACCUM_DTYPE, GRAD_ACCUM_DTYPE_DEFAULT)
par_write_pipe = get_checkpoint_parallel_write_pipeline(checkpoint_params)
self.checkpoint_parallel_write_pipeline = par_write_pipe
self.aio_config = get_aio_config(param_dict)
self.dataloader_drop_last = get_dataloader_drop_last(param_dict)
self.nebula_config = DeepSpeedNebulaConfig(param_dict)
self.weight_quantization_config = WeightQuantConfig(
**param_dict['weight_quantization']) if 'weight_quantization' in param_dict else None
self.compile_config = get_compile_config(param_dict)
def _batch_assertion(self):
train_batch = self.train_batch_size
micro_batch = self.train_micro_batch_size_per_gpu
grad_acc = self.gradient_accumulation_steps
assert (train_batch > 0), f"Train batch size: {train_batch} has to be greater than 0"
assert (micro_batch > 0), f"Micro batch size per gpu: {micro_batch} has to be greater than 0"
assert (grad_acc > 0), f"Gradient accumulation steps: {grad_acc} has to be greater than 0"
assert train_batch == micro_batch * grad_acc * self.world_size, (
f"Check batch related parameters. train_batch_size is not equal "
"to micro_batch_per_gpu * gradient_acc_step * world_size "
f"{train_batch} != {micro_batch} * {grad_acc} * {self.world_size}")
def _set_batch_related_parameters(self):
train_batch = self.train_batch_size
micro_batch = self.train_micro_batch_size_per_gpu
grad_acc = self.gradient_accumulation_steps
#print(f"train_batch = {train_batch}, micro_batch={micro_batch}")
# all values are provided nothing needs to be set
if train_batch is not None and micro_batch is not None and grad_acc is not None:
return
# global_accumulation_steps needs to be set
elif train_batch is not None and micro_batch is not None:
grad_acc = train_batch // micro_batch
grad_acc //= self.world_size
self.gradient_accumulation_steps = grad_acc
# micro_batch_per_gpu needs to be set
elif train_batch is not None and grad_acc is not None:
micro_batch = train_batch // self.world_size
micro_batch //= grad_acc
self.train_micro_batch_size_per_gpu = micro_batch
# train_batch_size needs to be set
elif micro_batch is not None and grad_acc is not None:
train_batch_size = micro_batch * grad_acc
train_batch_size *= self.world_size
self.train_batch_size = train_batch_size
# gradient_accumulation_steps and micro_batch_per_gpus is set
elif train_batch is not None:
self.gradient_accumulation_steps = 1
self.train_micro_batch_size_per_gpu = train_batch // self.world_size
# train_batch_size and gradient_accumulation_step is set
elif micro_batch is not None:
self.train_batch_size = micro_batch * self.world_size
self.gradient_accumulation_steps = 1
# either none of the three parameters are provided or just gradient_accumulation_step is provided
else:
assert False, \
'Either train_batch_size or train_micro_batch_size_per_gpu needs to be provided'
def _configure_train_batch_size(self):
self._set_batch_related_parameters()
self._batch_assertion()
def _do_sanity_check(self):
self._do_error_check()
self._do_warning_check()
def print_user_config(self):
logger.info(" json = {}".format(
json.dumps(
self._param_dict,
sort_keys=True,
indent=4,
cls=ScientificNotationEncoder,
separators=(",", ":"),
)))
def print(self, name):
logger.info("{}:".format(name))
for arg in sorted(vars(self)):
if arg != "_param_dict":
dots = "." * (29 - len(arg))
logger.info(" {} {} {}".format(arg, dots, getattr(self, arg)))
self.print_user_config()
def _do_error_check(self):
assert (self.train_micro_batch_size_per_gpu
), "DeepSpeedConfig: {} is not defined".format(TRAIN_MICRO_BATCH_SIZE_PER_GPU)
assert (
self.gradient_accumulation_steps), "DeepSpeedConfig: {} is not defined".format(GRADIENT_ACCUMULATION_STEPS)
if self.zero_enabled:
assert (self.zero_optimization_stage <=
ZeroStageEnum.max_stage), "DeepSpeedConfig: Maximum supported ZeRO stage is {}".format(
ZeroStageEnum.max_stage)
if self.fp16_master_weights_and_gradients:
assert self.zero_enabled and self.zero_optimization_stage == ZeroStageEnum.gradients, "Fp16_master_weights_and_grads is only supported with ZeRO Stage 2 for now."
def _do_warning_check(self):
fp16_enabled = self.fp16_enabled
vocabulary_size = self._param_dict.get(VOCABULARY_SIZE, VOCABULARY_SIZE_DEFAULT)
if vocabulary_size and vocabulary_size % TENSOR_CORE_ALIGN_SIZE != 0:
logger.warning(
"DeepSpeedConfig: vocabulary size {} is not aligned to {}, may import tensor core utilization.".format(
vocabulary_size, TENSOR_CORE_ALIGN_SIZE))
if (self.optimizer_params is not None and MAX_GRAD_NORM in self.optimizer_params.keys()
and self.optimizer_params[MAX_GRAD_NORM] > 0):
if fp16_enabled:
if self.global_rank == 0:
logger.warning("DeepSpeedConfig: In FP16 mode, DeepSpeed will pass {}:{} to FP16 wrapper".format(
MAX_GRAD_NORM, self.optimizer_params[MAX_GRAD_NORM]))
else:
if self.global_rank == 0:
logger.warning(
"DeepSpeedConfig: In FP32 mode, DeepSpeed does not permit MAX_GRAD_NORM ({}) > 0, setting to zero"
.format(self.optimizer_params[MAX_GRAD_NORM]))
self.optimizer_params[MAX_GRAD_NORM] = 0.0
|