File size: 6,081 Bytes
0cee4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

from .constants import *
import copy
from ..config_utils import get_scalar_param


# TODO: Reducing config verbosity by returning None or {} when disabled.
# One challenge is that we still need to somehow include the default values,
# for example the *_ENABLED has default of false.
def get_data_efficiency_config(param_dict):
    output = {}
    output[DATA_EFFICIENCY_ENABLED] = get_data_efficiency_enabled(param_dict)
    output[DATA_EFFICIENCY_SEED] = get_data_efficiency_seed(param_dict)
    if DATA_EFFICIENCY not in param_dict.keys():
        param_dict[DATA_EFFICIENCY] = {}
    sub_param_dict = param_dict[DATA_EFFICIENCY]
    output[DATA_SAMPLING] = get_data_sampling(sub_param_dict)
    output[DATA_ROUTING] = get_data_routing(sub_param_dict)

    return output


def get_data_efficiency_enabled(param_dict):
    if DATA_EFFICIENCY in param_dict.keys():
        return get_scalar_param(param_dict[DATA_EFFICIENCY], DATA_EFFICIENCY_ENABLED, DATA_EFFICIENCY_ENABLED_DEFAULT)
    else:
        return False


def get_data_efficiency_seed(param_dict):
    if DATA_EFFICIENCY in param_dict.keys():
        return get_scalar_param(param_dict[DATA_EFFICIENCY], DATA_EFFICIENCY_SEED, DATA_EFFICIENCY_SEED_DEFAULT)
    else:
        return DATA_EFFICIENCY_SEED_DEFAULT


def get_data_sampling(param_dict):
    output = {}
    output[DATA_SAMPLING_ENABLED] = get_data_sampling_enabled(param_dict)
    output[DATA_SAMPLING_NUM_EPOCHS] = get_data_sampling_num_epochs(param_dict)
    output[DATA_SAMPLING_NUM_WORKERS] = get_data_sampling_num_workers(param_dict)
    if DATA_SAMPLING not in param_dict.keys():
        param_dict[DATA_SAMPLING] = {}
    sub_param_dict = param_dict[DATA_SAMPLING]
    output[CURRICULUM_LEARNING] = get_curriculum_learning(sub_param_dict)

    return output


def get_data_sampling_enabled(param_dict):
    if DATA_SAMPLING in param_dict.keys():
        return get_scalar_param(param_dict[DATA_SAMPLING], DATA_SAMPLING_ENABLED, DATA_SAMPLING_ENABLED_DEFAULT)
    else:
        return False


def get_data_sampling_num_epochs(param_dict):
    if DATA_SAMPLING in param_dict.keys():
        return get_scalar_param(param_dict[DATA_SAMPLING], DATA_SAMPLING_NUM_EPOCHS, DATA_SAMPLING_NUM_EPOCHS_DEFAULT)
    else:
        return DATA_SAMPLING_NUM_EPOCHS_DEFAULT


def get_data_sampling_num_workers(param_dict):
    if DATA_SAMPLING in param_dict.keys():
        return get_scalar_param(param_dict[DATA_SAMPLING], DATA_SAMPLING_NUM_WORKERS,
                                DATA_SAMPLING_NUM_WORKERS_DEFAULT)
    else:
        return DATA_SAMPLING_NUM_WORKERS_DEFAULT


def get_curriculum_learning(param_dict):
    output = {}
    output[CURRICULUM_LEARNING_ENABLED] = get_curriculum_learning_enabled(param_dict)
    if CURRICULUM_LEARNING not in param_dict.keys():
        param_dict[CURRICULUM_LEARNING] = {}
    sub_param_dict = param_dict[CURRICULUM_LEARNING]
    if output[CURRICULUM_LEARNING_ENABLED]:
        assert CURRICULUM_LEARNING_METRICS in sub_param_dict.keys(
        ), f"Curriculum learning is enabled, {CURRICULUM_LEARNING_METRICS} must be specified"
        for key, val in get_curriculum_learning_params(param_dict).items():
            output[key] = val
    return output


def get_curriculum_learning_enabled(param_dict):
    if CURRICULUM_LEARNING in param_dict.keys():
        return get_scalar_param(param_dict[CURRICULUM_LEARNING], CURRICULUM_LEARNING_ENABLED,
                                CURRICULUM_LEARNING_ENABLED_DEFAULT)
    else:
        return False


def get_curriculum_learning_params(param_dict):
    if CURRICULUM_LEARNING in param_dict.keys():
        curriculum_learning_params = copy.copy(param_dict[CURRICULUM_LEARNING])
        curriculum_learning_params.pop(CURRICULUM_LEARNING_ENABLED)
        return curriculum_learning_params
    else:
        return {}


def get_curriculum_enabled_legacy(param_dict):
    if CURRICULUM_LEARNING_LEGACY in param_dict.keys():
        return get_scalar_param(param_dict[CURRICULUM_LEARNING_LEGACY], CURRICULUM_ENABLED_LEGACY,
                                CURRICULUM_ENABLED_DEFAULT_LEGACY)
    else:
        return False


def get_curriculum_params_legacy(param_dict):
    if CURRICULUM_LEARNING_LEGACY in param_dict.keys():
        curriculum_params = copy.copy(param_dict[CURRICULUM_LEARNING_LEGACY])
        curriculum_params.pop(CURRICULUM_ENABLED_LEGACY)
        return curriculum_params
    else:
        return False


def get_data_routing(param_dict):
    output = {}
    output[DATA_ROUTING_ENABLED] = get_data_routing_enabled(param_dict)
    if DATA_ROUTING not in param_dict.keys():
        param_dict[DATA_ROUTING] = {}
    sub_param_dict = param_dict[DATA_ROUTING]
    output[RANDOM_LTD] = get_random_ltd(sub_param_dict)

    return output


def get_data_routing_enabled(param_dict):
    if DATA_ROUTING in param_dict.keys():
        return get_scalar_param(param_dict[DATA_ROUTING], DATA_ROUTING_ENABLED, DATA_ROUTING_ENABLED_DEFAULT)
    else:
        return False


def get_random_ltd(param_dict):
    output = {}
    output[RANDOM_LTD_ENABLED] = RANDOM_LTD_ENABLED_DEFAULT
    output[RANDOM_LTD_LAYER_TOKEN_LR_SCHEDULE] = {}
    output[RANDOM_LTD_LAYER_TOKEN_LR_SCHEDULE][
        RANDOM_LTD_LAYER_TOKEN_LR_ENABLED] = RANDOM_LTD_LAYER_TOKEN_LR_ENABLED_DEFAULT
    if get_random_ltd_enabled(param_dict):
        output[RANDOM_LTD_ENABLED] = get_random_ltd_enabled(param_dict)
        for key, val in get_random_ltd_params(param_dict).items():
            output[key] = val
    return output


def get_random_ltd_enabled(param_dict):
    if RANDOM_LTD in param_dict.keys():
        return get_scalar_param(param_dict[RANDOM_LTD], RANDOM_LTD_ENABLED, RANDOM_LTD_ENABLED_DEFAULT)
    else:
        return False


def get_random_ltd_params(param_dict):
    if RANDOM_LTD in param_dict.keys():
        random_ltd_params = copy.copy(param_dict[RANDOM_LTD])
        random_ltd_params.pop(RANDOM_LTD_ENABLED)
        return random_ltd_params
    else:
        return {}