File size: 23,247 Bytes
734b6a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import types
import torch
import numpy as np
from deepspeed import comm as dist
from deepspeed.utils.torch import required_torch_version
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from deepspeed.accelerator import get_accelerator


class OnebitLamb(torch.optim.Optimizer):
    """Implements the 1-bit Lamb algorithm. Currently GPU-only.
    For usage example please see https://www.deepspeed.ai/tutorials/onebit-lamb/
    For technical details please see our paper https://arxiv.org/abs/2104.06069.

    Arguments:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups.
        lr (float, optional): learning rate. (default: 1e-3)
        freeze_step (int, optional): Number of steps for warmup (uncompressed)
            stage before we start using compressed communication. (default 100000)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square. (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability. (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        max_coeff(float, optional): maximum value of the lamb coefficient (default: 10.0)
        min_coeff(float, optional): minimum value of the lamb coefficient (default: 0.01)
        amsgrad (boolean, optional): whether to use the AMSGrad variant of this
            algorithm from the paper `On the Convergence of Adam and Beyond`_
            (default: False) NOT SUPPORTED in 1-bit Lamb!
        eps_inside_sqrt (boolean, optional): in the 'update parameters' step,
            adds eps to the bias-corrected second moment estimate before
            evaluating square root instead of adding it to the square root of
            second moment estimate as in the original paper. (default: False)
        cuda_aware (boolean, required): Set True if the underlying MPI implementation
            supports CUDA-Aware communication. (default: False)
        comm_backend_name (string, optional): Set to 'mpi' if needed. (default: 'nccl')
        coeff_beta (float, optional): coefficient used for computing
            running averages of lamb coefficient (default: 0.9) note that you may want to
            increase or decrease this beta depending on the freeze_step you choose, as
            1/(1 - coeff_beta) should be smaller than or equal to freeze_step
        factor_max (float, optional): maximum value of scaling factor to the frozen lamb
            coefficient during compression stage (default: 4.0)
        factor_min (float, optional): minimum value of scaling factor to the frozen lamb
            coefficient during compression stage (default: 0.5)
        factor_threshold (float, optional): threshold of how much the scaling factor can
            fluctuate between steps (default: 0.1)
    .. _Large Batch Optimization for Deep Learning\\: Training BERT in 76 minutes:
        https://arxiv.org/abs/1904.00962
    .. _Adam\\: A Method for Stochastic Optimization:
        https://arxiv.org/abs/1412.6980
    .. _On the Convergence of Adam and Beyond:
        https://openreview.net/forum?id=ryQu7f-RZ
    """

    def __init__(self,
                 params,
                 deepspeed=None,
                 lr=1e-3,
                 freeze_step=100000,
                 bias_correction=True,
                 betas=(0.9, 0.999),
                 eps=1e-8,
                 eps_inside_sqrt=False,
                 weight_decay=0.,
                 max_grad_norm=0.,
                 max_coeff=10.0,
                 min_coeff=0.01,
                 amsgrad=False,
                 cuda_aware=False,
                 comm_backend_name='nccl',
                 coeff_beta=0.9,
                 factor_max=4.0,
                 factor_min=0.5,
                 factor_threshold=0.1):

        if amsgrad:
            raise RuntimeError('1-bit Lamb does not support the AMSGrad variant.')

        defaults = dict(lr=lr,
                        bias_correction=bias_correction,
                        betas=betas,
                        eps=eps,
                        weight_decay=weight_decay,
                        max_grad_norm=max_grad_norm,
                        max_coeff=max_coeff,
                        min_coeff=min_coeff)

        super(OnebitLamb, self).__init__(params, defaults)
        self.eps_mode = 0 if eps_inside_sqrt else 1
        self.deepspeed = deepspeed
        self.lamb_freeze_key = False
        self.initialize = False
        self.freeze_step = freeze_step
        self.cuda_aware = cuda_aware
        self.coeff_beta = coeff_beta
        self.factor_max = factor_max
        self.factor_min = factor_min
        self.factor_threshold = factor_threshold
        self.using_pipeline = False

        self.comm_backend_name = comm_backend_name

        assert dist.is_initialized(), "Please initialize the torch distributed backend."
        # Empty initializer. Set handle based on the comm backend as follows.
        self.comm_backend_handle = None
        if self.comm_backend_name == 'nccl':
            assert (
                required_torch_version(min_version=1.8)
            ), "Please use torch 1.8 or greater to enable NCCL backend in 1-bit Adam. Alternatively, please specify 'mpi' as the 'comm_backend_name' in config file to proceed with the MPI backend"
            from deepspeed.runtime.comm.nccl import NcclBackend
            self.using_pipeline = hasattr(self.deepspeed, 'pipeline_enable_backward_allreduce')
            self.comm_backend_handle = NcclBackend(self.deepspeed.mpu)
        elif self.comm_backend_name == 'mpi':
            from deepspeed.runtime.comm.mpi import MpiBackend
            self.comm_backend_handle = MpiBackend(cuda_aware)
        elif self.comm_backend_name == 'hccl':
            from deepspeed.runtime.comm.hccl import HcclBackend
            self.using_pipeline = hasattr(self.deepspeed, 'pipeline_enable_backward_allreduce')
            self.comm_backend_handle = HcclBackend(self.deepspeed.mpu)

        self.size = self.comm_backend_handle.size

        self.divider = int(self.size * 8 / np.gcd(self.size, 8))

        self.exp_avg_flat = []
        self.dummy_exp_avg = {}
        self.corrected_tensor_sizes = []
        self.server_chunk_sizes = []
        self.worker_errors = []
        self.server_errors = []

        self.lamb_coeffs = []

    def step(self, closure=None, grads=None):
        """Performs a single optimization step.
        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
            grads (list of tensors, optional): weight gradient to use for the
                optimizer update. If gradients have type torch.half, parameters
                are expected to be in type torch.float. (default: None)
        """
        loss = None
        if closure is not None:
            loss = closure()

        if grads is None:
            grads_group = [None] * len(self.param_groups)
        # backward compatibility
        # assuming a list/generator of parameter means single group
        elif isinstance(grads, types.GeneratorType):
            grads_group = [grads]
        elif type(grads[0]) != list:
            grads_group = [grads]
        else:
            grads_group = grads

        # remove the previous stats
        del self.lamb_coeffs[:]

        if self.lamb_freeze_key:
            exp_avg_last_step = []
            for group in self.param_groups:
                exp_avg_last_step.append([self.state[p]['exp_avg'].detach().clone() for p in group['params']])
            if 'scaling_coeff' not in self.state[self.param_groups[0]['params'][0]]:
                # Compute the scaling_coeff for each momentum at the end of warmup stage.
                # This is used to reduce compression error during compression stage.
                momentum_scales = []
                for group in self.param_groups:
                    momentum_scales.append([(torch.linalg.norm(self.state[p]['exp_avg']) /
                                             np.sqrt(torch.numel(self.state[p]['exp_avg']))).item()
                                            for p in group['params']])
                united_scale = sum([sum(x) for x in momentum_scales]) / sum([len(x) for x in momentum_scales])
                for i, group in enumerate(self.param_groups):
                    for j, p in enumerate(group['params']):
                        self.state[p]['scaling_coeff'] = united_scale / momentum_scales[i][j]

        for group, grads_this_group in zip(self.param_groups, grads_group):
            if grads_this_group is None:
                grads_this_group = [None] * len(group['params'])

            bias_correction = 1 if group['bias_correction'] else 0

            for p, grad in zip(group['params'], grads_this_group):
                if p.grad is None and grad is None:
                    continue
                if grad is None:
                    grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError('1-bit Lamb does not support sparse gradients')

                state = self.state[p]

                # State initialization
                if len(state) == 0 or (len(state) == 1 and 'scaling_coeff' in state.keys()):
                    state['step'] = 0
                    state['lamb_coeff_freeze'] = 0.0
                    state['last_factor'] = 1.0
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p.data)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(p.data)
                    state['exp_avg_sq_fresh'] = torch.zeros_like(p.data)

                if not self.initialize:
                    self.lamb_freeze_key = True

                exp_avg, exp_avg_sq, exp_avg_sq_fresh = state['exp_avg'], state['exp_avg_sq'], state[
                    'exp_avg_sq_fresh']
                beta1, beta2 = group['betas']
                max_coeff = group['max_coeff']
                min_coeff = group['min_coeff']

                state['step'] += 1

                if self.lamb_freeze_key is False:
                    # warmup stage, baseline Lamb optimization
                    exp_avg.mul_(beta1).add_(1 - beta1, grad)
                    exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                    if state['step'] == self.freeze_step:
                        exp_avg_sq_fresh.data = exp_avg_sq.detach().clone()
                    grad = None
                    if self.initialize:
                        weight_norm = p.data.pow(2).sum().sqrt()
                        update = exp_avg / (exp_avg_sq.sqrt() + group['eps'])
                        if group['weight_decay'] > 0.0:
                            update += group['weight_decay'] * p.data
                        update_norm = update.pow(2).sum().sqrt()
                        lamb_coeff = 1.0
                        if weight_norm != 0 and update_norm != 0:
                            lamb_coeff = (weight_norm / update_norm).item()
                            if lamb_coeff > max_coeff:
                                lamb_coeff = max_coeff
                            if lamb_coeff < min_coeff:
                                lamb_coeff = min_coeff
                        if lamb_coeff != 1.0:
                            state['lamb_coeff_freeze'] = self.coeff_beta * state['lamb_coeff_freeze'] + (
                                1 - self.coeff_beta) * lamb_coeff
                        self.lamb_coeffs.append(lamb_coeff)
                        with torch.no_grad():
                            p.add_(-group['lr'] * lamb_coeff * update)
                else:
                    # compression stage, update each momentum locally, then
                    # communicate based on the compressed_allreduce below
                    if self.initialize:
                        exp_avg.mul_(beta1).add_(1 - beta1, grad)
                        exp_avg.mul_(self.state[p]['scaling_coeff'])
                    grad = None

        # init fused momentum
        if len(self.exp_avg_flat) == 0:
            momentum_groups = []
            tensor_size = 0
            for group in self.param_groups:
                for p in group['params']:
                    momentum_groups.append(self.state[p]['exp_avg'])
                    tensor_size += torch.numel(p.data)
            corrected_tensor_size = tensor_size
            if tensor_size % (self.size * self.divider) != 0:
                difference = ((self.size * self.divider) - (tensor_size % (self.size * self.divider)))
                corrected_tensor_size += difference
                self.dummy_exp_avg[0] = torch.zeros(difference, device=momentum_groups[0].data.device)
                momentum_groups.append(self.dummy_exp_avg[0])
            self.corrected_tensor_sizes.append(corrected_tensor_size)
            self.server_chunk_sizes.append(corrected_tensor_size // self.size)

            self.exp_avg_flat.append(_flatten_dense_tensors([p.detach().clone() for p in momentum_groups]))
            updated_params = _unflatten_dense_tensors(self.exp_avg_flat[0], momentum_groups)
            for p, q in zip(momentum_groups, updated_params):
                p.data = q.data

        if self.initialize and len(self.worker_errors) == 0:
            get_accelerator().empty_cache()
            for i in range(len(self.exp_avg_flat)):
                self.worker_errors.append(
                    torch.zeros(self.corrected_tensor_sizes[i], device=self.exp_avg_flat[i].device))
                self.server_errors.append(torch.zeros(self.server_chunk_sizes[i], device=self.exp_avg_flat[i].device))
            get_accelerator().empty_cache()

        if self.lamb_freeze_key:
            if self.size > 1:
                for i in range(len(self.exp_avg_flat)):
                    if not self.initialize:
                        get_accelerator().empty_cache()
                        self.worker_errors.append(
                            torch.zeros(self.corrected_tensor_sizes[i], device=self.exp_avg_flat[i].device))
                        self.server_errors.append(
                            torch.zeros(self.server_chunk_sizes[i], device=self.exp_avg_flat[i].device))
                        get_accelerator().empty_cache()
                        if dist.get_rank() == 0:
                            print("Cupy Buffers Initialized Successfully.")

                        self.comm_backend_handle.compressed_allreduce(self.exp_avg_flat[i], self.worker_errors[0],
                                                                      self.server_errors[0], self.deepspeed.local_rank)

                        if dist.get_rank() == 0:
                            print('Pop out errors', flush=True)
                        del self.worker_errors[:]
                        del self.server_errors[:]
                    else:
                        self.comm_backend_handle.compressed_allreduce(self.exp_avg_flat[i], self.worker_errors[i],
                                                                      self.server_errors[i], self.deepspeed.local_rank)

        if self.lamb_freeze_key and self.initialize:
            for i, group in enumerate(self.param_groups):
                bias_correction = 1 if group['bias_correction'] else 0

                for j, p in enumerate(group['params']):
                    state = self.state[p]
                    exp_avg, exp_avg_sq, exp_avg_sq_fresh = state['exp_avg'], state['exp_avg_sq'], state[
                        'exp_avg_sq_fresh']
                    beta1, beta2 = group['betas']
                    exp_avg.div_(self.state[p]['scaling_coeff'])
                    # Because 1-bit compression cannot represent exact zero, it is required to
                    # provide a momentum mask for those params that have constant exact zeros in their
                    # momentums, otherwise the compression error would keep accumulating.
                    # For example, for BERT pre-training seq 128, bert.embeddings.position_embeddings.weight
                    # always have exact zeros in its momentum for row 129 to 512, because it only
                    # learns up to seq length 128 while the model supports up to 512 seq length.
                    # (See example in DeepSpeedExamples/bing_bert/deepspeed_train.py about how
                    # to add this exp_avg_mask for BERT pre-training.)
                    if 'exp_avg_mask' in group:
                        if exp_avg.device != group['exp_avg_mask'].device:
                            group['exp_avg_mask'] = group['exp_avg_mask'].to(device=exp_avg.device)
                        exp_avg.mul_(group['exp_avg_mask'])

                    grad_reconstruct = ((exp_avg - exp_avg_last_step[i][j] * beta1) / (1 - beta1))
                    exp_avg_sq_fresh.mul_(beta2).addcmul_(1 - beta2, grad_reconstruct, grad_reconstruct)
                    denom = exp_avg_sq.sqrt() + group['eps']
                    update_prelim = exp_avg / denom

                    if group['weight_decay'] > 0.0:
                        update = update_prelim + group['weight_decay'] * p.data
                    else:
                        update = update_prelim

                    lamb_coeff = 1.0
                    update_norm = update.pow(2).sum().sqrt()
                    denom_real = exp_avg_sq_fresh.sqrt() + group['eps']
                    factor = (denom / denom_real).max().item()
                    if group['weight_decay'] > 0.0:
                        update_ratio = min(1.0, (update_prelim.pow(2).sum().sqrt() / update_norm).item())
                        factor = factor * update_ratio + (1.0 - update_ratio)
                    if factor > self.factor_max:
                        factor = self.factor_max
                    if factor < self.factor_min:
                        factor = self.factor_min
                    if factor > state['last_factor'] * (1.0 + self.factor_threshold):
                        factor = state['last_factor'] * (1.0 + self.factor_threshold)
                    if factor < state['last_factor'] * (1.0 - self.factor_threshold):
                        factor = state['last_factor'] * (1.0 - self.factor_threshold)
                    state['last_factor'] = factor
                    lamb_coeff = state['lamb_coeff_freeze'] * factor
                    self.lamb_coeffs.append(lamb_coeff)
                    with torch.no_grad():
                        p.add_(-group['lr'] * lamb_coeff * update)
            del exp_avg_last_step[:]
            exp_avg_last_step = None

        if not self.initialize:
            self.lamb_freeze_key = False
            self.initialize = True
            print(f"Finished the initialization step at rank {dist.get_rank()}")
            return loss

        if self.lamb_freeze_key is False:
            if state['step'] >= self.freeze_step:
                print('OnebitLamb - starting compressed communication')
                self.lamb_freeze_key = True
                if self.using_pipeline:
                    self.deepspeed.pipeline_enable_backward_allreduce = False
                else:
                    self.deepspeed.enable_backward_allreduce = False

        return loss

    def load_state_dict(self, state_dict):
        """
        Overrides load_state_dict() to add special handling when loading checkpoints
        """
        # Because at different stage exp_avg_mask may change (e.g.,
        # BERT pre-training seqlen 128 and 512 ), we don't use the exp_avg_mask
        # in checkpoints but always use the one user provided in training script.
        # (See example in DeepSpeedExamples/bing_bert/deepspeed_train.py.)
        # Thus here we keep the exp_avg_mask unchanged when loading checkpoint
        for i, group in enumerate(self.param_groups):
            if 'exp_avg_mask' in group:
                state_dict['param_groups'][i]['exp_avg_mask'] = group['exp_avg_mask']
            elif 'exp_avg_mask' not in group and 'exp_avg_mask' in state_dict['param_groups'][i]:
                state_dict['param_groups'][i].pop('exp_avg_mask')
        super().load_state_dict(state_dict)
        # need to reset the fused momentum since loading states will break the linking
        del self.exp_avg_flat[:]
        self.dummy_exp_avg.clear()
        del self.corrected_tensor_sizes[:]
        del self.server_chunk_sizes[:]
        if self.state[self.param_groups[0]['params'][0]]['step'] < self.freeze_step:
            if dist.get_rank() == 0:
                print("Checkpoint loaded and OnebitLamb warmup stage starts/continues.")
            if self.lamb_freeze_key is True:
                self.lamb_freeze_key = False
                if self.using_pipeline:
                    self.deepspeed.pipeline_enable_backward_allreduce = True
                else:
                    self.deepspeed.enable_backward_allreduce = True
            for group in self.param_groups:
                for p in group['params']:
                    self.state[p]['lamb_coeff_freeze'] = 0.0
                    self.state[p]['last_factor'] = 1.0
                    if 'scaling_coeff' in self.state[p]:
                        self.state[p].pop('scaling_coeff')
        else:
            if dist.get_rank() == 0:
                print("Checkpoint loaded and OnebitLamb compression stage starts/continues.")
            if self.lamb_freeze_key is False:
                self.lamb_freeze_key = True
                if self.using_pipeline:
                    self.deepspeed.pipeline_enable_backward_allreduce = False
                else:
                    self.deepspeed.enable_backward_allreduce = False
        # We reset the compression errors when loading checkpoints for 3 reasons:
        # 1) The worker and server error at each GPU are distinct, so in current implementation
        # only rank 0's errors are saved in the checkpoint. Thus we have to reset the errors.
        # If we want to save them correctly we need O(num_gpu*model_size) memory in order to
        # gather all the error, which is a very large memory requirement. It's possible to save
        # them in a distributed way, but it will make the checkpoint saving/loading much more complicated.
        # 2) Even if we are able to save the compression errors correctly, you need to have the
        # exact same number of GPUs in order to load them correctly.
        # 3) We verified on BERT pre-training that occasionally resetting the compression error
        # at checkpoint loading does not affect the convergence.
        # However, please avoid frequent checkpoint loading which could break the error
        # compensation mechanism thus affect the convergence.
        del self.worker_errors[:]
        del self.server_errors[:]

    def get_lamb_coeffs(self):
        return self.lamb_coeffs