File size: 41,500 Bytes
734b6a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
"""
Copyright NVIDIA/Megatron
Helper functions and classes from multiple sources.
"""
from collections.abc import Iterable
from deepspeed.moe.utils import is_moe_param
import os
import psutil
import gc
from math import sqrt
import torch
from deepspeed import comm as dist
try:
from torch._six import inf
except ModuleNotFoundError:
from torch import inf
from deepspeed.utils import groups, logger
from deepspeed.utils.bwc import (bwc_tensor_model_parallel_rank, bwc_pipeline_parallel_world_size,
bwc_pipeline_parallel_group)
from deepspeed.runtime.constants import PIPE_REPLICATED
from numpy import prod
from deepspeed.accelerator import get_accelerator
from deepspeed.module_inject.policy import transpose
from torch.nn import functional as F
torch_memory_reserved = get_accelerator().memory_reserved
torch_max_memory_reserved = get_accelerator().max_memory_reserved
class DummyOptim():
"""
Dummy optimizer presents model parameters as a param group, this is
primarily used to allow ZeRO-3 without an optimizer
"""
def __init__(self, params):
self.param_groups = []
self.param_groups.append({'params': params})
graph_cache = {}
def graph_process(replay_first_step, func, *args, **kwargs):
# `func` should only contain operations on the GPU
# Please ensure that the memory address of the data required by 'func' remains constant
if func.__name__ not in graph_cache:
cuda_stream = get_accelerator().Stream()
cuda_stream.wait_stream(get_accelerator().current_stream())
with get_accelerator().stream(cuda_stream):
func(*args, **kwargs)
get_accelerator().current_stream().wait_stream(cuda_stream)
graph_cache[func.__name__] = get_accelerator().create_graph()
with get_accelerator().capture_to_graph(graph_cache[func.__name__]):
func(*args, **kwargs)
if replay_first_step:
get_accelerator().replay_graph(graph_cache[func.__name__])
else:
get_accelerator().replay_graph(graph_cache[func.__name__])
def noop_decorator(func):
return func
class noop_context(object):
def __init__(self):
pass
def __enter__(self):
pass
def __exit__(self, exc_type, exc_val, exc_tb):
pass
def ensure_directory_exists(filename):
"""Create the directory path to ``filename`` if it does not already exist.
Args:
filename (str): A file path.
"""
dirname = os.path.dirname(filename)
os.makedirs(dirname, exist_ok=True)
def set_random_seed(seed):
"""Set the random seed for common PRNGs used during training: random, numpy, and torch.
Args:
seed (int): the seed to use
"""
import numpy
import random
random.seed(seed)
numpy.random.seed(seed)
torch.manual_seed(seed)
def is_model_parallel_parameter(p) -> bool:
if hasattr(p, 'model_parallel') and p.model_parallel:
return True
if hasattr(p, 'tensor_model_parallel') and p.tensor_model_parallel:
return True
return False
def copy_to_device(item, device, criterion_func):
"""
Return a copy of tensor on specified device.
Works on individual tensors, and tensors contained/nested in lists, tuples, and dicts.
Parameters:
item: tensor to copy or (possibly nested) container of tensors to copy.
device: target device
criterion_func: Function to restrict copy operation to items meet criterion
Returns:
None
"""
if criterion_func(item):
return item.to(device)
elif isinstance(item, list):
return [copy_to_device(v, device, criterion_func) for v in item]
elif isinstance(item, tuple):
return tuple([copy_to_device(v, device, criterion_func) for v in item])
elif isinstance(item, dict):
return {k: copy_to_device(v, device, criterion_func) for k, v in item.items()}
else:
return item
def move_to_device(item, device, criterion_func):
"""
Move tensor on to specified device by changing the storage.
Works on individual tensors, and tensors contained/nested in lists, tuples, and dicts.
Parameters:
item: tensor to move or (possibly nested) container of tensors to move.
device: target device
criterion_func: Function to restrict move operation to items meet criterion
Returns:
None
"""
if criterion_func(item):
device_copy = item.to(device)
item.data = device_copy.data
return item
elif isinstance(item, list):
return [move_to_device(v, device, criterion_func) for v in item]
elif isinstance(item, tuple):
return tuple([move_to_device(v, device, criterion_func) for v in item])
elif isinstance(item, dict):
return {k: move_to_device(v, device, criterion_func) for k, v in item.items()}
else:
return item
def get_norm_with_moe_layers_fast(all_groups_norm, group):
# This implementation standardizes the grad_norm across ranks. A more precise implementation can be found in 'get_norm_with_moe_layers'.
# Need to allreduce (avg) the norms across different ranks because moe params will not be synced during allreduce
scaled_norm = all_groups_norm * 1.0 / float(dist.get_world_size(group=group))
scaled_norm_tensor = torch.tensor(scaled_norm, device=get_accelerator().current_device(), dtype=torch.float)
dist.all_reduce(scaled_norm_tensor, group=group)
all_groups_norm = scaled_norm_tensor.item()
#print(f"old = {all_groups_norm_old} and new = {all_groups_norm} at rank: {deepspeed.comm.get_rank()}")
return all_groups_norm
class CheckOverflow(object):
'''Checks for overflow in gradient across parallel process'''
def __init__(self, param_groups=None, mpu=None, zero_reduce_scatter=False, deepspeed=None):
self.mpu = mpu
self.params = [] if param_groups else None
self.zero_reduce_scatter = zero_reduce_scatter
self.deepspeed = deepspeed
self.has_moe_params = False
if param_groups:
for group in param_groups:
for param in group:
self.params.append(param)
if is_moe_param(param):
self.has_moe_params = True
def check_using_norm(self, norm_group, reduce_overflow=True):
# TODO: I don't think reduce_overflow is needed if mpu is None
overflow = -1 in norm_group
overflow_gpu = get_accelerator().FloatTensor([overflow])
if self.has_moe_params:
# In this case, we need to do an all_reduce across
# the expert_parallel_group, so that if there was
# an overflow due to expert weights, we detect it
# Only need to check groups.get_largest_expert_parallel_group()
dist.all_reduce(overflow_gpu, op=dist.ReduceOp.MAX, group=groups._get_max_expert_parallel_group())
if self.mpu is not None:
dist.all_reduce(overflow_gpu, op=dist.ReduceOp.MAX, group=self.mpu.get_model_parallel_group())
elif reduce_overflow:
dist.all_reduce(overflow_gpu, op=dist.ReduceOp.MAX)
dist.barrier()
overflow = overflow_gpu[0].item()
return bool(overflow)
def check(self, param_groups=None):
params = []
has_moe_params = False
if param_groups is None:
params = self.params
has_moe_params = self.has_moe_params
else:
assert param_groups is not None, \
"self.params and param_groups both cannot be none"
for group in param_groups:
for param in group:
params.append(param)
if is_moe_param(param):
has_moe_params = True
return self.has_overflow(params, has_moe_params=has_moe_params)
# `params` is a list / generator of torch.Variable
def has_overflow_serial(self, params):
for i, p in enumerate(params):
if p.grad is not None and self._has_inf_or_nan(p.grad.data, i):
return True
return False
def has_overflow(self, params, has_moe_params=None):
if has_moe_params is None:
has_moe_params = self.has_moe_params
overflow = self.has_overflow_serial(params)
# Since each model parallel GPU carries only part of the model,
# make sure overflow flag is synced across all the model parallel GPUs
overflow_gpu = get_accelerator().ByteTensor([overflow])
# deepspeed.comm.all_reduce(overflow_gpu,
# op=deepspeed.comm.ReduceOp.MAX,
# group=mpu.get_model_parallel_group())
if has_moe_params:
# All reduce this across expert_parallel_group, so that if an expert
# overflows, we detect it here
dist.all_reduce(overflow_gpu, op=dist.ReduceOp.MAX, group=groups._get_max_expert_parallel_group())
if self.zero_reduce_scatter:
dist.all_reduce(overflow_gpu, op=dist.ReduceOp.MAX, group=dist.get_world_group())
elif self.mpu is not None:
if self.deepspeed is not None:
using_pipeline = hasattr(self.deepspeed, 'pipeline_enable_backward_allreduce')
if (using_pipeline and self.deepspeed.pipeline_enable_backward_allreduce is False) or (
not using_pipeline and self.deepspeed.enable_backward_allreduce is False):
dist.all_reduce(overflow_gpu, op=dist.ReduceOp.MAX, group=self.mpu.get_data_parallel_group())
dist.all_reduce(overflow_gpu, op=dist.ReduceOp.MAX, group=self.mpu.get_model_parallel_group())
elif self.deepspeed is not None and self.deepspeed.enable_backward_allreduce is False:
dist.all_reduce(overflow_gpu, op=dist.ReduceOp.MAX, group=dist.get_world_group())
overflow = overflow_gpu[0].item()
return bool(overflow)
# `x` is a torch.Tensor
@staticmethod
def _has_inf_or_nan(x, i):
try:
# if x is half, the .float() incurs an additional deep copy, but it's necessary if
# Pytorch's .sum() creates a one-element tensor of the same type as x
# (which is true for some recent version of pytorch).
cpu_sum = float(x.float().sum())
# More efficient version that can be used if .sum() returns a Python scalar
# cpu_sum = float(x.sum())
except RuntimeError as instance:
# We want to check if inst is actually an overflow exception.
# RuntimeError could come from a different error.
# If so, we still want the exception to propagate.
if "value cannot be converted" not in instance.args[0]:
raise
return True
else:
if cpu_sum == float('inf') or cpu_sum == -float('inf') or cpu_sum != cpu_sum:
return True
return False
def _handle_overflow(cpu_sum, x, i):
import math
rank = dist.get_rank()
if rank == 0:
t_i = -1
for v_i, v in enumerate(x.data.contiguous().view(-1)):
if not math.isfinite(float(v)):
t_i = v_i
break
logger.info(f"rank {rank} detected overflow {cpu_sum} in tensor {i}:{t_i} shape {x.shape}")
def get_global_norm(norm_list):
""" Compute total from a list of norms
"""
total_norm = 0.0
for norm in norm_list:
total_norm += norm**2.0
# logger.info(f'norm_list = {norm_list} global = {sqrt(total_norm)}')
return sqrt(total_norm)
def clip_grad_norm_(parameters, max_norm, norm_type=2, mpu=None):
"""Clips gradient norm of an iterable of parameters.
This has been adapted from Nvidia megatron. We add norm averaging
to consider MoE params when calculating norm as they will result
in different norms across different ranks.
This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and
added functionality to handle model parallel parameters. Note that
the gradients are modified in place.
Arguments:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
max_norm (float or int): max norm of the gradients
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
infinity norm.
Returns:
Total norm of the parameters (viewed as a single vector).
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
all_norms = []
if norm_type == inf:
for p in parameters:
all_norms.append(p.grad.data.abs().max().float())
total_norm = torch.stack(all_norms).max()
total_norm = total_norm.to(get_accelerator().current_device_name())
# Take max across all GPUs.
if mpu is not None:
dist.all_reduce(total_norm, op=dist.ReduceOp.MAX, group=mpu.get_model_parallel_group())
else:
total_norm = 0
for p in parameters:
if mpu is not None:
if (mpu.get_model_parallel_rank() == 0) or is_model_parallel_parameter(p):
param_norm = p.grad.data.detach().float().norm(norm_type)
all_norms.append(param_norm)
else:
param_norm = p.grad.data.detach().float().norm(norm_type)
all_norms.append(param_norm)
if len(all_norms) > 0:
total_norm = torch.stack(all_norms).square().sum().float()
else:
total_norm = get_accelerator().FloatTensor([0.0])
total_norm = total_norm.to(get_accelerator().current_device_name())
# Sum across all model parallel GPUs.
if mpu is not None:
dist.all_reduce(total_norm, op=dist.ReduceOp.SUM, group=mpu.get_model_parallel_group())
total_norm = total_norm.pow(1. / norm_type)
# Need to average total_norm across different GPUs due to the presence of moe params
pg = groups._get_data_parallel_group()
scaled_norm = total_norm * 1.0 / float(dist.get_world_size(group=pg))
scaled_norm_tensor = scaled_norm
dist.all_reduce(scaled_norm_tensor, group=pg)
total_norm = scaled_norm_tensor
total_norm = total_norm.to(parameters[0].device)
max_norm = torch.tensor([float(max_norm)], device=total_norm.device)
clip_coef = max_norm / (total_norm + 1e-6)
tmp_tensor = torch.tensor([1.0], device=clip_coef.device)
clip_coef = torch.min(tmp_tensor, clip_coef)
for p in parameters:
p.grad.data.mul_(clip_coef)
return total_norm
def get_flattened_grad_norm(parameters, norm_type=2, mpu=None, grad_norm_mask=None):
"""Get grad norm of an iterable of parameters.
This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and
added functionality to handle model parallel parameters. Note that
the gradients are modified in place. Taken from Nvidia Megatron.
Arguments:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
infinity norm.
grad_norm_mask (List[Tensor]): A list of Tensor, where
each Tensor is a 2D Tensor containing ranges of [start_index, end_index].
Returns:
Total norm of the parameters (viewed as a single vector).
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
if norm_type == inf:
total_norm = max(p.grad.data.abs().max() for p in parameters)
total_norm_cuda = get_accelerator().FloatTensor([float(total_norm)])
# Take max across all GPUs.
if mpu is not None:
dist.all_reduce(total_norm_cuda, op=dist.ReduceOp.MAX, group=mpu.get_model_parallel_group())
total_norm = total_norm_cuda[0].item()
else:
total_norm = 0.
for idx, p in enumerate(parameters):
# Use grad_norm_mask to avoid redundant computation of flattened gradient norm
if grad_norm_mask is not None and len(grad_norm_mask[idx]) > 0:
# A loop-free implementation to create a mask tensor based on a range list
# which is logically equivalent to the following implementation.
# # mask_tensor_ = torch.zeros_like(p, device=p.device, dtype=bool)
# # for mask_idx in grad_norm_mask[idx]:
# # mask_tensor_[mask_idx[0]:mask_idx[1]] = True
cum_sum_pairs = torch.tensor([1, -1], device=get_accelerator().current_device(),
dtype=p.dtype).repeat(grad_norm_mask[idx].shape[0], 1)
mask_tensor = torch.zeros(p.shape[0] + 1, device=get_accelerator().current_device(), dtype=p.dtype)
mask_tensor = mask_tensor.scatter_(0, grad_norm_mask[idx].view(-1),
cum_sum_pairs.view(-1)).cumsum(0).bool()[:-1]
param_norm = torch.masked_fill(p.grad.data, mask_tensor, 0).float().norm(norm_type)
else:
param_norm = p.grad.data.float().norm(norm_type)
total_norm += param_norm.item()**norm_type
# Sum across all model parallel GPUs.
total_norm_cuda = get_accelerator().FloatTensor([float(total_norm)])
if mpu is not None:
dist.all_reduce(total_norm_cuda, op=dist.ReduceOp.SUM, group=mpu.get_model_parallel_group())
total_norm = total_norm_cuda[0].item()**(1. / norm_type)
if total_norm == float('inf') or total_norm == -float('inf') or total_norm != total_norm:
total_norm = -1
return total_norm
def get_grad_zeros(parameters, mpu=None):
"""Compute the number of grads with zero values.
This is adapted from get_grad_norm
Arguments:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
Returns:
Total number of params with zero values (viewed as a single vector).
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
total_zeros = 0.
tensor_mp_rank = bwc_tensor_model_parallel_rank(mpu=mpu)
for p in parameters:
# Pipeline parallelism may replicate parameters. Avoid multi-counting.
if hasattr(p, PIPE_REPLICATED) and p.ds_pipe_replicated:
continue
# Filter to avoid over-counting replicated tensors from tensor
# model parallelism
if (tensor_mp_rank > 0) and not is_model_parallel_parameter(p):
continue
count_zeros = p.grad.numel() - torch.count_nonzero(p.grad)
total_zeros += count_zeros.item()
# Sum across all model parallel GPUs.
total_zeros_cuda = get_accelerator().FloatTensor([float(total_zeros)])
if mpu is not None:
dist.all_reduce(total_zeros_cuda, op=dist.ReduceOp.SUM, group=mpu.get_model_parallel_group())
total_zeros = total_zeros_cuda[0].item()
return total_zeros
def get_weight_norm(parameters, norm_type=2, mpu=None):
"""Get norm of an iterable of parameters.
This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and
added functionality to handle model parallel parameters. Note that
the gradients are modified in place. Taken from Nvidia Megatron.
Arguments:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
infinity norm.
Returns:
Total norm of the parameters (viewed as a single vector).
-1 if the norm value is NaN or Inf.
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
norm_type = float(norm_type)
if norm_type == inf:
total_norm = max(p.data.abs().max() for p in parameters)
total_norm_cuda = get_accelerator().FloatTensor([float(total_norm)])
# Take max across all GPUs.
if mpu is not None:
dist.all_reduce(total_norm_cuda, op=dist.ReduceOp.MAX, group=mpu.get_model_parallel_group())
total_norm = total_norm_cuda[0].item()
else:
total_norm = 0.
tensor_mp_rank = bwc_tensor_model_parallel_rank(mpu=mpu)
for p in parameters:
# Pipeline parallelism may replicate parameters. Avoid multi-counting.
if hasattr(p, PIPE_REPLICATED) and p.ds_pipe_replicated:
continue
# Filter to avoid over-counting replicated tensors from tensor
# model parallelism
if (tensor_mp_rank > 0) and not is_model_parallel_parameter(p):
continue
param_norm = p.data.float().norm(norm_type)
total_norm += param_norm**norm_type
# Sum across all model parallel GPUs.
total_norm_cuda = get_accelerator().FloatTensor([float(total_norm)])
if mpu is not None:
dist.all_reduce(total_norm_cuda, op=dist.ReduceOp.SUM, group=mpu.get_model_parallel_group())
total_norm = total_norm_cuda[0].item()**(1. / norm_type)
if total_norm == float('inf') or total_norm == -float('inf') or total_norm != total_norm:
total_norm = -1
return total_norm
def prefix_sum_inc(weights):
""" Compute an inclusive prefix sum.
Example:
>>> prefix_sum_inc([3,4,5])
[3, 7, 12]
"""
weights_ = [w for w in weights]
for x in range(1, len(weights_)):
weights_[x] += weights_[x - 1]
return weights_
def partition_uniform(num_items, num_parts):
import numpy
parts = [0] * (num_parts + 1)
# First check for the trivial edge case
if num_items <= num_parts:
for p in range(num_parts + 1):
parts[p] = min(p, num_items)
return parts
chunksize = num_items // num_parts
residual = num_items - (chunksize * num_parts)
parts = numpy.arange(0, (num_parts + 1) * chunksize, chunksize)
for i in range(residual):
parts[i + 1:] += 1
parts = parts.tolist()
return parts
def partition_balanced(weights, num_parts):
"""
use dynamic programming solve `The Linear Partition Problem`.
see https://www8.cs.umu.se/kurser/TDBAfl/VT06/algorithms/BOOK/BOOK2/NODE45.HTM
"""
import numpy as np
n = len(weights)
m = num_parts
if n <= m:
return partition_uniform(n, m)
dp_max = np.full((n + 1, m + 1), np.inf)
dp_min = np.full((n + 1, m + 1), np.inf)
dp_cost = np.full((n + 1, m + 1), np.inf)
position = np.zeros((n + 1, m + 1), dtype=int)
prefix_sum = np.zeros((n + 1))
prefix_sum[1:] = np.cumsum(weights)
dp_max[0, 0] = 0
dp_cost[0, 0] = 0
for i in range(1, n + 1):
for j in range(1, min(i, m) + 1):
for k in range(i):
max_sum = max(dp_max[k, j - 1], prefix_sum[i] - prefix_sum[k])
min_sum = min(dp_min[k, j - 1], prefix_sum[i] - prefix_sum[k])
cost = max_sum - min_sum
if dp_cost[i, j] >= cost:
dp_cost[i, j] = cost
dp_max[i, j] = max_sum
dp_min[i, j] = min_sum
position[i, j] = k
parts = [n]
for i in reversed(range(1, m + 1)):
parts.append(position[parts[-1], i])
parts.reverse()
return parts
class PartitionedTensor:
def __init__(self, tensor, group, partition_meta=None):
super().__init__()
self.group = group
self.num_parts = dist.get_world_size(group=self.group)
self.rank = dist.get_rank(group=self.group)
self.orig_size = list(tensor.size())
self.orig_device = tensor.device
self.local_data, self.partition = self._partition_tensor(tensor)
self.even_split = tensor.numel() % self.num_parts == 0
@classmethod
def from_meta(cls, meta, local_part, group, device=get_accelerator().device_name()):
assert meta.dtype == torch.long
dummy = torch.ones(dist.get_world_size(group=group))
part_obj = cls(tensor=dummy, group=group)
meta = meta.tolist()
# [N, list0, ..., listN-1]
part_obj.orig_size = meta[1:(1 + meta[0])]
meta = meta[1 + meta[0]:]
part_obj.orig_device = device
part_obj.local_data = local_part.detach()
part_obj.group = group
# Partition is encoded like the rowptr of a CSR matrix:
# [num_parts, rank, 0, part_1, ..., part_num_parts]
# TODO: support shuffle between different partition granularities
assert part_obj.num_parts == meta[0]
assert part_obj.rank == meta[1]
part_obj.partition = meta[2:] # length num_parts+1
return part_obj
def _partition_tensor(self, tensor):
partition = partition_uniform(num_items=tensor.numel(), num_parts=self.num_parts)
start = partition[self.rank]
length = partition[self.rank + 1] - start
tensor_part = tensor.detach().contiguous().view(-1).narrow(0, start=start, length=length).clone()
return tensor_part, partition
def full(self, device=None):
if device is None:
device = self.orig_device
# Allocate the full tensor as a flat buffer.
full_numel = prod(self.full_size())
flat_tensor = torch.zeros([full_numel], dtype=self.local_data.dtype, device=device)
if self.even_split:
# Collect the full tensor
dist.all_gather_into_tensor(flat_tensor, self.local_data, group=self.group)
else:
for part_id in range(self.num_parts):
part_size = self.partition[part_id + 1] - self.partition[part_id]
buf = flat_tensor.narrow(0, start=self.partition[part_id], length=part_size)
if part_id == self.rank:
buf.copy_(self.local_data)
dist.broadcast(buf, part_id, self.group)
return flat_tensor.view(self.full_size()).clone().detach()
def to_meta(self):
"""Returns a torch.LongTensor that encodes partitioning information.
Can be used along with ``data()`` to serialize a ``PartitionedTensor`` for
communication.
Returns:
torch.LongTensor: a tensor encoding the meta-information for the partitioning
"""
meta = []
meta.append(len(self.orig_size))
meta += list(self.orig_size)
meta.append(self.num_parts)
meta.append(self.rank)
meta += self.partition
return torch.LongTensor(data=meta).to(self.orig_device)
def data(self):
return self.local_data
def local_size(self):
return self.local_data.size()
def full_size(self):
return self.orig_size
mem_alloced = 0
mem_cached = 0
def memory_status(msg, print_rank=-1, reset_max=False):
global mem_alloced, mem_cached
rank = dist.get_rank()
if print_rank != -1 and rank != print_rank:
return
get_accelerator().synchronize()
if reset_max:
get_accelerator().reset_max_memory_cached()
get_accelerator().reset_max_memory_allocated()
new_alloced = get_accelerator().memory_allocated()
new_cached = get_accelerator().memory_cached()
delta_alloced = new_alloced - mem_alloced
delta_cached = new_cached - mem_cached
mem_cached = new_cached
mem_alloced = new_alloced
max_alloced = get_accelerator().max_memory_allocated()
max_cached = get_accelerator().max_memory_cached()
# convert to GB for printing
new_alloced /= 1024**3
new_cached /= 1024**3
delta_alloced /= 1024**3
delta_cached /= 1024**3
max_alloced /= 1024**3
max_cached /= 1024**3
print(
f'RANK={rank} MEMSTATS', msg, f'device={get_accelerator().current_device_name()} '
f'current alloc={new_alloced:0.4f}GB (delta={delta_alloced:0.4f}GB max={max_alloced:0.4f}GB) '
f'current cache={new_cached:0.4f}GB (delta={delta_cached:0.4f}GB max={max_cached:0.4f}GB)')
def get_ma_status():
if dist.is_initialized() and not dist.get_rank() == 0:
return 0
return get_accelerator().memory_allocated()
def empty_cache():
get_accelerator().empty_cache()
get_accelerator().reset_peak_memory_stats()
def see_memory_usage(message, force=False):
if not force:
return
if dist.is_initialized() and not dist.get_rank() == 0:
return
# python doesn't do real-time garbage collection so do it explicitly to get the correct RAM reports
gc.collect()
# Print message except when distributed but not rank 0
logger.info(message)
logger.info(f"MA {round(get_accelerator().memory_allocated() / (1024 * 1024 * 1024),2 )} GB \
Max_MA {round(get_accelerator().max_memory_allocated() / (1024 * 1024 * 1024),2)} GB \
CA {round(torch_memory_reserved() / (1024 * 1024 * 1024),2)} GB \
Max_CA {round(torch_max_memory_reserved() / (1024 * 1024 * 1024))} GB ")
vm_stats = psutil.virtual_memory()
used_GB = round(((vm_stats.total - vm_stats.available) / (1024**3)), 2)
logger.info(f'CPU Virtual Memory: used = {used_GB} GB, percent = {vm_stats.percent}%')
# get the peak memory to report correct data, so reset the counter for the next call
get_accelerator().reset_peak_memory_stats()
def call_to_str(base, *args, **kwargs):
"""Construct a string representation of a call.
Args:
base (str): name of the call
args (tuple, optional): args to ``base``
kwargs (dict, optional): kwargs supplied to ``base``
Returns:
str: A string representation of base(*args, **kwargs)
"""
name = f'{base}('
if args:
name += ', '.join(repr(arg) for arg in args)
if kwargs:
name += ', '
if kwargs:
name += ', '.join(f'{key}={repr(arg)}' for key, arg in kwargs.items())
name += ')'
return name
def get_only_unique_item(items):
item_set = set(items)
if len(item_set) != 1:
raise RuntimeError(f"expected there to be only one unique element in {items}")
unique_item, = item_set
return unique_item
def get_global_norm_of_tensors(input_tensors, norm_type=2, mpu=None, use_graph=False, moe_ep_group=None):
"""Get norm of an iterable of tensors.
This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and
added functionality to handle model parallel parameters. Taken from Nvidia Megatron.
Arguments:
input_tensors (Iterable[Tensor]): an iterable of Tensors will have norm computed
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
infinity norm.
Returns:
Total norm of the tensors (viewed as a single vector).
"""
assert isinstance(input_tensors, Iterable), f'expected Iterable type not {type(input_tensors)}'
assert all([torch.is_tensor(t) for t in input_tensors]), f'expected list of only tensors'
norm_type = float(norm_type)
all_norms = []
if norm_type == inf:
for t in input_tensors:
all_norms.append(t.data.abs().max().float())
total_norm = torch.stack(all_norms).max()
device_total_norm = total_norm.to(get_accelerator().current_device_name())
# Max across model parallel
if mpu is not None:
# For MoE grads, max over model parallel only if MoE-TP is enabled
if moe_ep_group is None or groups._get_expert_model_parallel_world_size() > 1:
dist.all_reduce(device_total_norm, op=dist.ReduceOp.MAX, group=mpu.get_model_parallel_group())
# If MoE grads and MoE-TP disabled, max over pipeline parallel
elif bwc_pipeline_parallel_world_size(mpu) > 1:
dist.all_reduce(device_total_norm, op=dist.ReduceOp.MAX, group=bwc_pipeline_parallel_group(mpu))
# MoE grads: max across expert parallel group
if moe_ep_group is not None:
dist.all_reduce(device_total_norm, op=dist.ReduceOp.MAX, group=moe_ep_group)
total_norm = device_total_norm.to(input_tensors[0].device)
else:
if 'norm_tensors_compute_buffer' not in graph_cache or len(
graph_cache['norm_tensors_compute_buffer']) != len(input_tensors):
graph_cache['norm_tensors_compute_buffer'] = [
torch.empty([], dtype=torch.float, device=get_accelerator().current_device_name())
for t in input_tensors
]
compute_buffer = graph_cache['norm_tensors_compute_buffer']
def _norm_tensors(tensor_list, _compute_buffer, _norm_type):
for i, t in enumerate(tensor_list):
_compute_buffer[i].data.copy_(t.data.float().norm(_norm_type)**_norm_type)
if i != 0:
_compute_buffer[0].data.add_(_compute_buffer[i].data)
if use_graph:
graph_process(False, _norm_tensors, input_tensors, compute_buffer, norm_type)
else:
_norm_tensors(input_tensors, compute_buffer, norm_type)
device_total_norm = compute_buffer[0].float().detach()
# Sum across model parallel
if mpu is not None:
# For MoE grads, sum over model parallel only if MoE-TP is enabled
if moe_ep_group is None or groups._get_expert_model_parallel_world_size() > 1:
dist.all_reduce(device_total_norm, op=dist.ReduceOp.SUM, group=mpu.get_model_parallel_group())
# If MoE grads and MoE-TP disabled, sum over pipeline parallel
elif bwc_pipeline_parallel_world_size(mpu) > 1:
dist.all_reduce(device_total_norm, op=dist.ReduceOp.SUM, group=bwc_pipeline_parallel_group(mpu))
# MoE grads: sum across expert parallel group
if moe_ep_group is not None:
dist.all_reduce(device_total_norm, op=dist.ReduceOp.SUM, group=moe_ep_group)
total_norm = device_total_norm.to(input_tensors[0].device).pow(1. / norm_type)
inf_or_nan = total_norm.isinf().logical_or(total_norm.isnan())
total_norm.masked_fill_(inf_or_nan, -1)
return total_norm
def clip_tensors_by_global_norm(input_tensors, max_norm=1.0, global_norm=None, mpu=None, eps=1e-6, use_graph=False):
"""Clip list of tensors by global norm.
Args:
input_tensors: List of tensors to be clipped
global_norm (float, optional): Precomputed norm. Defaults to None.
mpu (optional): model parallelism unit. Defaults to None.
eps (float, optional): epsilon value added to grad norm. Defaults to 1e-6
Returns:
float: the global norm
"""
if global_norm is None:
global_norm = get_global_norm_of_tensors(input_tensors, mpu=mpu, use_graph=use_graph)
clip_coef = max_norm / (global_norm + eps)
if clip_coef < 1:
if use_graph:
def clip_tensors(_tensor_list, _clip_coef_tensor):
for t in _tensor_list:
t.detach().mul_(_clip_coef_tensor)
if 'clip_coef_tensor' not in graph_cache:
# Alloc memory
graph_cache['clip_coef_tensor'] = torch.tensor(clip_coef,
dtype=torch.float32).to(get_accelerator().device_name())
clip_coef_tensor = graph_cache['clip_coef_tensor']
clip_coef_tensor.copy_(torch.tensor(clip_coef, dtype=torch.float32))
graph_process(False, clip_tensors, input_tensors, clip_coef_tensor)
else:
for t in input_tensors:
t.detach().mul_(clip_coef)
return global_norm
def align_dense_tensors(tensor_list, alignment):
num_elements = sum(t.numel() for t in tensor_list)
remaining = num_elements % alignment
if remaining:
elements_to_add = alignment - remaining
pad_tensor = torch.zeros(elements_to_add, device=tensor_list[0].device, dtype=tensor_list[0].dtype)
padded_tensor_list = tensor_list + [pad_tensor]
else:
padded_tensor_list = tensor_list
return padded_tensor_list
def all_gather_into_tensor_dp_groups(groups_flat, partitioned_param_groups, dp_process_group):
for group_id, (group_flat, partitioned_params) in enumerate(zip(groups_flat, partitioned_param_groups)):
partition_id = dist.get_rank(group=dp_process_group[group_id])
dp_world_size = dist.get_world_size(group=dp_process_group[group_id])
if dp_world_size == 1:
# no groups share optimizer states
# pipeline parallel with bf16 will default call this even if dp size = 1.
continue
dist.all_gather_into_tensor(group_flat, partitioned_params[partition_id], dp_process_group[group_id])
def all_gather_dp_groups(groups_flat, partitioned_param_groups, dp_process_group, start_alignment_factor,
allgather_bucket_size):
if dist.has_all_gather_into_tensor():
return all_gather_into_tensor_dp_groups(groups_flat, partitioned_param_groups, dp_process_group)
for group_id, partitioned_params in enumerate(partitioned_param_groups):
# Sequential AllGather Best of both worlds
partition_id = dist.get_rank(group=dp_process_group[group_id])
dp_world_size = dist.get_world_size(group=dp_process_group[group_id])
if dp_world_size == 1:
# no groups share optimizer states
# pipeline parallel with bf16 will default call this even if dp size = 1.
continue
num_shards = max(1, partitioned_params[partition_id].numel() * dp_world_size // allgather_bucket_size)
shard_size = partitioned_params[partition_id].numel() // num_shards
# Enforce nccl/rccl alignment of start location of each shard
shard_size = shard_size - (shard_size % start_alignment_factor)
num_elements = shard_size
assert shard_size * num_shards <= partitioned_params[partition_id].numel()
for shard_id in range(num_shards):
if shard_id == (num_shards - 1):
num_elements = partitioned_params[partition_id].numel() - shard_id * shard_size
shard_list = []
for dp_id in range(dp_world_size):
curr_shard = partitioned_params[dp_id].narrow(0, shard_id * shard_size, num_elements).detach()
shard_list.append(curr_shard)
dist.all_gather(shard_list, shard_list[partition_id], dp_process_group[group_id])
class TLinear(torch.nn.Linear):
def __init__(self, orig_layer, name=""):
self.name = name
super().__init__(orig_layer.weight.shape[1], orig_layer.weight.shape[0], bias=(orig_layer.bias is not None))
self.weight.data = transpose(orig_layer.weight.data)
self.bias = orig_layer.bias
self._fwd_func = self._fwd_bias_add if self.bias is not None else self._fwd
def _fwd(self, input):
return F.linear(input, self.weight)
def _fwd_bias_add(self, input):
return F.linear(input, self.weight, bias=self.bias)
def forward(self, input):
return self._fwd_func(input)
def get_inactive_params(param_list):
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
return [param for param in param_list if (hasattr(param, 'ds_id') and \
param.ds_status == ZeroParamStatus.NOT_AVAILABLE)]
def get_norm_with_moe_layers(non_expert_norm, mpu, expert_tensors, norm_type=2):
""" Compute the global norm with MoE experts
Inputs:
non_expert_norm (float) : the calculated norm of the non-expert params
expert_tensors (Dict[ep_name, List[Tensor]): Dictionary of expert group name to list of grad tensors
norm_type (int): the norm to use
Returns:
if norm is (-/+) inf, returns -1
otherwise the global norm (float)
"""
def to_tensor(v):
return get_accelerator().FloatTensor(float(v)).detach()
group_norms = [non_expert_norm]
for exp_name, tensors in expert_tensors.items():
group_norm = get_global_norm_of_tensors(input_tensors=tensors,
mpu=mpu,
norm_type=norm_type,
use_graph=False,
moe_ep_group=groups._get_expert_parallel_group(exp_name))
group_norms.append(group_norm)
# check if all norms are valid
group_norms = torch.stack([to_tensor(norm) for norm in group_norms])
if group_norms.eq(-1).any():
return -1
# combine norms
if norm_type == inf:
total_norm = group_norms.max().item()
else:
total_norm = group_norms.pow(norm_type).sum()
total_norm = total_norm.item()**(1. / norm_type)
if total_norm == float('inf') or total_norm == -float('inf'):
total_norm = -1
return total_norm
|