File size: 7,027 Bytes
734b6a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import torch
from ..module_inject.replace_policy import HFBertLayerPolicy, replace_policies
from deepspeed.accelerator import get_accelerator


class WeightQuantization(object):

    def __init__(self, mlp_extra_grouping=True, mp_size=1):
        self.dense_scales = []
        self.qkv_scales = []
        self.mlp4hh_scales = []
        self.mlph4h_scales = []
        self.mlp_extra_grouping = mlp_extra_grouping
        self.mp_size = mp_size

    def quantize_data(self, data, quantize_bits, groups, key=None):
        data_groups = torch.split(data.float().view(-1), data.numel() // groups)
        max_d = [max(g.max(), g.min().abs()) for g in data_groups]
        data_scale = [float(1 << quantize_bits) / (2 * mx + 1e-5) for mx in max_d]
        data_int = [(g * s) for g, s in zip(data_groups, data_scale)]
        data_int = [
            di.round().clamp(-(1 << (quantize_bits - 1)), (((1 << (quantize_bits - 1)) - 1))) for di in data_int
        ]
        data_int = torch.cat(data_int).reshape(data.shape)
        data_int = data_int.to(torch.int8)
        data_scale = torch.cat([s.unsqueeze(0).unsqueeze(0) for s in data_scale])
        return data_int, data_scale

    def is_mlp(self, data, merge_count=1):
        return ((self.mp_size *data.shape[0] * merge_count) / data.shape[1] == 4 or \
                (self.mp_size *data.shape[1] * merge_count) / data.shape[0] == 4)

    def is_qkv(self, data):
        return ((self.mp_size * data.shape[0]) / data.shape[1] == 3 or \
                (self.mp_size * data.shape[1]) / data.shape[0] == 3)

    def Quantize(self, value_list, quantize_bits, groups, key, merge_dim=0):
        if self.mlp_extra_grouping and self.is_mlp(value_list[0], merge_count=len(value_list)):
            groups *= 2
        q_scale = []
        index = 0
        for data in value_list:
            data_int, data_scale = self.quantize_data(data, quantize_bits, groups, key)
            q_scale.append(data_scale)
            value_list[index] = data_int
            index += 1
        q_scale = (1 /
                   torch.cat(q_scale, dim=merge_dim).to(get_accelerator().current_device_name()).view(-1).unsqueeze(0))
        if "mlp.dense_4h_to_h.weight" in key:
            self.mlp4hh_scales.append(q_scale)
        elif "mlp.dense_h_to_4h.weight" in key:
            self.mlph4h_scales.append(q_scale)
        elif "attention.query_key_value.weight" in key:
            self.qkv_scales.append(q_scale)
        else:
            self.dense_scales.append(q_scale)
        return value_list

    def merge_layer_scales(self, layer_scales):
        max_dim = max([s.shape[-1] for s in layer_scales])
        layer_scales = [
            torch.cat((s, torch.zeros((1, max_dim - s.shape[-1]), device=get_accelerator().current_device_name())),
                      dim=-1) if s.shape[-1] < max_dim else s for s in layer_scales
        ]
        return torch.cat(layer_scales).unsqueeze(0)

    def merge_scales(self):
        all_scales = []
        for dense_scale, qkv_scale, m4hh_scale, mh4h_scale in \
            zip(self.dense_scales, self.qkv_scales, self.mlp4hh_scales, self.mlph4h_scales):
            all_scales.append(self.merge_layer_scales([qkv_scale, dense_scale, mh4h_scale, m4hh_scale]))
        return torch.cat(all_scales)

    def merge_scales_split(self, split_count):
        all_scales = [[] for _ in range(split_count)]
        for dense_scale, qkv_scale, m4hh_scale, mh4h_scale in \
            zip(self.dense_scales, self.qkv_scales, self.mlp4hh_scales, self.mlph4h_scales):
            dense_scale = torch.split(dense_scale, dense_scale.numel() // split_count)
            qkv_scale = torch.split(qkv_scale, qkv_scale.numel() // split_count)
            m4hh_scale = torch.split(m4hh_scale, m4hh_scale.numel() // split_count)
            mh4h_scale = torch.split(mh4h_scale, mh4h_scale.numel() // split_count)
            for s in range(split_count):
                all_scales[s].append(
                    torch.cat([
                        torch.cat((qkv_scale[s], torch.zeros_like(qkv_scale[s])), dim=1),
                        torch.cat((dense_scale[s], torch.zeros_like(dense_scale[s])), dim=1), mh4h_scale[s],
                        m4hh_scale[s]
                    ]).unsqueeze(0))
            for scales_a in all_scales:
                torch.cat(scales_a)
        return all_scales

    def sd_quantize_megatron(self, sd, quantize_bits, groups):
        keys = sd.keys()
        for key in keys:
            value_list = [sd[key]]
            if "attention.dense.weight" in key or "mlp.dense_4h_to_h.weight" in key or \
                "mlp.dense_h_to_4h.weight" in key or "attention.query_key_value.weight" in key:
                value_list = self.Quantize(value_list, quantize_bits, groups, key=key)
            sd[key] = value_list[0]

        all_scales = self.merge_scales()
        return sd, all_scales

    def model_quantize(self, model, quantize_policy, quantize_bits, groups):
        all_scales = []

        def quantize_fn(layer, policy_cls):
            policy = policy_cls(layer)

            _, qkvw, _, dense_w, _, _ = policy.attention()
            _, _h4h_w, _, _4hh_w, _ = policy.mlp()
            keys = [qkvw, dense_w, _h4h_w, _4hh_w]
            layer_scales = []

            for key in range(len(keys)):
                if self.mlp_extra_grouping and self.is_mlp(keys[key]):
                    data_quantized, data_scale = self.quantize_data(keys[key], quantize_bits, groups * 2)
                elif policy_cls is HFBertLayerPolicy and self.is_qkv(keys[key]):
                    data_quantized, data_scale = self.quantize_data(keys[key], quantize_bits, groups * 3)
                else:
                    data_quantized, data_scale = self.quantize_data(keys[key], quantize_bits, groups)
                keys[key].copy_(data_quantized)
                layer_scales.append((1 / data_scale.to(get_accelerator().current_device_name()).view(-1).unsqueeze(0)))
            all_scales.append(self.merge_layer_scales(layer_scales))
            return layer

        def _quantize_module(model, policies):
            for name, child in model.named_children():
                if child.__class__ in policies:
                    quantize_fn, replace_policy = policies[child.__class__]
                    setattr(model, name, quantize_fn(child, replace_policy))
                else:
                    _quantize_module(child, policies)

            return model

        policy = {}
        if quantize_policy is not None:
            for layer_name, replace_policy in quantize_policy.items():
                policy.update({layer_name: (quantize_fn, replace_policy)})
        else:
            for plcy in replace_policies:
                policy.update({plcy._orig_layer_class: (quantize_fn, plcy)})

        quantized_module = _quantize_module(model, policy)

        return quantized_module, torch.cat(all_scales)