File size: 7,815 Bytes
179036e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team
"""
Copyright NVIDIA/apex
This file is adapted from NVIDIA/apex/optimizer/fused_adam and implements the LAMB optimizer
"""
import types
import torch
from deepspeed.ops.op_builder import FusedLambBuilder


class FusedLamb(torch.optim.Optimizer):
    """Implements the LAMB algorithm. Currently GPU-only.

    LAMB was proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes.
    https://arxiv.org/abs/1904.00962

    Arguments:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups.
        lr (float, optional): learning rate. (default: 1e-3)
        bias_correction (bool, optional): bias correction (default: True)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square. (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability. (default: 1e-8)
        eps_inside_sqrt (boolean, optional): in the 'update parameters' step,
            adds eps to the bias-corrected second moment estimate before
            evaluating square root instead of adding it to the square root of
            second moment estimate as in the original paper. (default: False)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        max_grad_norm (float, optional): value used to clip global grad norm
            (default: 0.0)
        max_coeff(float, optional): maximum value of the lamb coefficient (default: 10.0)
        min_coeff(float, optional): minimum value of the lamb coefficient (default: 0.01)
        amsgrad (boolean, optional): NOT SUPPORTED in FusedLamb!
    """

    def __init__(self,
                 params,
                 lr=1e-3,
                 bias_correction=True,
                 betas=(0.9, 0.999),
                 eps=1e-8,
                 eps_inside_sqrt=False,
                 weight_decay=0.,
                 max_grad_norm=0.,
                 max_coeff=10.0,
                 min_coeff=0.01,
                 amsgrad=False):
        self.fused_lamb_cuda = FusedLambBuilder().load()

        if amsgrad:
            raise RuntimeError('FusedLamb does not support the AMSGrad variant.')
        defaults = dict(lr=lr,
                        bias_correction=bias_correction,
                        betas=betas,
                        eps=eps,
                        weight_decay=weight_decay,
                        max_grad_norm=max_grad_norm,
                        max_coeff=max_coeff,
                        min_coeff=min_coeff)
        super(FusedLamb, self).__init__(params, defaults)
        self.eps_mode = 0 if eps_inside_sqrt else 1
        self.lamb_coeffs = []

    def step(self, closure=None, grads=None, output_params=None, scale=1., grad_norms=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
            grads (list of tensors, optional): weight gradient to use for the
                optimizer update. If gradients have type torch.half, parameters
                are expected to be in type torch.float. (default: None)
            output params (list of tensors, optional): A reduced precision copy
                of the updated weights written out in addition to the regular
                updated weights. Have to be of same type as gradients. (default: None)
            scale (float, optional): factor to divide gradient tensor values
                by before applying to weights. (default: 1)
        """
        loss = None
        if closure is not None:
            loss = closure()

        if grads is None:
            grads_group = [None] * len(self.param_groups)
        # backward compatibility
        # assuming a list/generator of parameter means single group
        elif isinstance(grads, types.GeneratorType):
            grads_group = [grads]
        elif type(grads[0]) != list:
            grads_group = [grads]
        else:
            grads_group = grads

        if output_params is None:
            output_params_group = [None] * len(self.param_groups)
        elif isinstance(output_params, types.GeneratorType):
            output_params_group = [output_params]
        elif type(output_params[0]) != list:
            output_params_group = [output_params]
        else:
            output_params_group = output_params

        if grad_norms is None:
            grad_norms = [None] * len(self.param_groups)

        #remove the previous coeffs
        del self.lamb_coeffs[:]

        for group, grads_this_group, output_params_this_group, grad_norm_group in zip(
                self.param_groups, grads_group, output_params_group, grad_norms):
            if grads_this_group is None:
                grads_this_group = [None] * len(group['params'])
            if output_params_this_group is None:
                output_params_this_group = [None] * len(group['params'])

            if grad_norm_group is None:
                grad_norm_group = [None] * len(group['params'])
            elif not isinstance(grad_norm_group, list):
                grad_norm_group = [grad_norm_group]

            bias_correction = 1 if group['bias_correction'] else 0

            for p, grad, output_param, grad_norm in zip(group['params'], grads_this_group, output_params_this_group,
                                                        grad_norm_group):

                # compute combined scale factor for this group
                combined_scale = scale
                if group['max_grad_norm'] > 0:
                    # norm is in fact norm*scale
                    clip = ((grad_norm / scale) + 1e-6) / group['max_grad_norm']
                    if clip > 1:
                        combined_scale = clip * scale

                #note: p.grad should not ever be set for correct operation of mixed precision optimizer that sometimes sends None gradients
                if p.grad is None and grad is None:
                    continue
                if grad is None:
                    grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError('FusedLamb does not support sparse gradients')

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p.data)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(p.data)

                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                beta1, beta2 = group['betas']
                max_coeff = group['max_coeff']
                min_coeff = group['min_coeff']

                state['step'] += 1

                out_p = torch.tensor([], dtype=torch.float) if output_param is None else output_param
                lamb_coeff = self.fused_lamb_cuda.lamb(p.data, out_p, exp_avg, exp_avg_sq, grad, group['lr'], beta1,
                                                       beta2, max_coeff, min_coeff, group['eps'], combined_scale,
                                                       state['step'], self.eps_mode, bias_correction,
                                                       group['weight_decay'])
                self.lamb_coeffs.append(lamb_coeff)
        return loss

    def get_lamb_coeffs(self):
        lamb_coeffs = [lamb_coeff.item() for lamb_coeff in self.lamb_coeffs]
        return lamb_coeffs