File size: 156,370 Bytes
37a0d05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# cython: language_level = 3
"""Dataset is currently unstable. APIs subject to change without notice."""
from cython.operator cimport dereference as deref
import codecs
import collections
from libcpp cimport bool
import pyarrow as pa
from pyarrow.lib cimport *
from pyarrow.lib import ArrowTypeError, frombytes, tobytes, _pac
from pyarrow.includes.libarrow_dataset cimport *
from pyarrow._acero cimport ExecNodeOptions
from pyarrow._compute cimport Expression, _bind
from pyarrow._compute import _forbid_instantiation
from pyarrow._fs cimport FileSystem, FileSelector, FileInfo
from pyarrow._csv cimport (
ConvertOptions, ParseOptions, ReadOptions, WriteOptions)
from pyarrow.util import _is_iterable, _is_path_like, _stringify_path
from pyarrow._json cimport ParseOptions as JsonParseOptions
from pyarrow._json cimport ReadOptions as JsonReadOptions
_DEFAULT_BATCH_SIZE = 2**17
_DEFAULT_BATCH_READAHEAD = 16
_DEFAULT_FRAGMENT_READAHEAD = 4
# Initialise support for Datasets in ExecPlan
Initialize()
_orc_fileformat = None
_orc_imported = False
def _get_orc_fileformat():
"""
Import OrcFileFormat on first usage (to avoid circular import issue
when `pyarrow._dataset_orc` would be imported first)
"""
global _orc_fileformat
global _orc_imported
if not _orc_imported:
try:
from pyarrow._dataset_orc import OrcFileFormat
_orc_fileformat = OrcFileFormat
except ImportError as e:
_orc_fileformat = None
finally:
_orc_imported = True
return _orc_fileformat
_dataset_pq = False
def _get_parquet_classes():
"""
Import Parquet class files on first usage (to avoid circular import issue
when `pyarrow._dataset_parquet` would be imported first)
"""
global _dataset_pq
if _dataset_pq is False:
try:
import pyarrow._dataset_parquet as _dataset_pq
except ImportError:
_dataset_pq = None
def _get_parquet_symbol(name):
"""
Get a symbol from pyarrow.parquet if the latter is importable, otherwise
return None.
"""
_get_parquet_classes()
return _dataset_pq and getattr(_dataset_pq, name)
cdef CFileSource _make_file_source(object file, FileSystem filesystem=None, object file_size=None):
cdef:
CFileSource c_source
shared_ptr[CFileSystem] c_filesystem
CFileInfo c_info
c_string c_path
shared_ptr[CRandomAccessFile] c_file
shared_ptr[CBuffer] c_buffer
int64_t c_size
if isinstance(file, Buffer):
c_buffer = pyarrow_unwrap_buffer(file)
c_source = CFileSource(move(c_buffer))
elif _is_path_like(file):
if filesystem is None:
raise ValueError("cannot construct a FileSource from "
"a path without a FileSystem")
c_filesystem = filesystem.unwrap()
c_path = tobytes(_stringify_path(file))
if file_size is not None:
c_size = file_size
c_info = FileInfo(c_path, size=c_size).unwrap()
c_source = CFileSource(move(c_info), move(c_filesystem))
else:
c_source = CFileSource(move(c_path), move(c_filesystem))
elif hasattr(file, 'read'):
# Optimistically hope this is file-like
c_file = get_native_file(file, False).get_random_access_file()
c_source = CFileSource(move(c_file))
else:
raise TypeError("cannot construct a FileSource "
"from " + str(file))
return c_source
cdef CSegmentEncoding _get_segment_encoding(str segment_encoding):
if segment_encoding == "none":
return CSegmentEncoding_None
elif segment_encoding == "uri":
return CSegmentEncoding_Uri
raise ValueError(f"Unknown segment encoding: {segment_encoding}")
cdef str _wrap_segment_encoding(CSegmentEncoding segment_encoding):
if segment_encoding == CSegmentEncoding_None:
return "none"
elif segment_encoding == CSegmentEncoding_Uri:
return "uri"
raise ValueError("Unknown segment encoding")
cdef Expression _true = Expression._scalar(True)
cdef class Dataset(_Weakrefable):
"""
Collection of data fragments and potentially child datasets.
Arrow Datasets allow you to query against data that has been split across
multiple files. This sharding of data may indicate partitioning, which
can accelerate queries that only touch some partitions (files).
"""
def __init__(self):
_forbid_instantiation(self.__class__)
cdef void init(self, const shared_ptr[CDataset]& sp):
self.wrapped = sp
self.dataset = sp.get()
self._scan_options = dict()
@staticmethod
cdef wrap(const shared_ptr[CDataset]& sp):
type_name = frombytes(sp.get().type_name())
classes = {
'union': UnionDataset,
'filesystem': FileSystemDataset,
'in-memory': InMemoryDataset,
}
class_ = classes.get(type_name, None)
if class_ is None:
raise TypeError(type_name)
cdef Dataset self = class_.__new__(class_)
self.init(sp)
return self
cdef shared_ptr[CDataset] unwrap(self) nogil:
return self.wrapped
@property
def partition_expression(self):
"""
An Expression which evaluates to true for all data viewed by this
Dataset.
"""
return Expression.wrap(self.dataset.partition_expression())
def replace_schema(self, Schema schema not None):
"""
Return a copy of this Dataset with a different schema.
The copy will view the same Fragments. If the new schema is not
compatible with the original dataset's schema then an error will
be raised.
Parameters
----------
schema : Schema
The new dataset schema.
"""
cdef shared_ptr[CDataset] copy = GetResultValue(
self.dataset.ReplaceSchema(pyarrow_unwrap_schema(schema))
)
d = Dataset.wrap(move(copy))
if self._scan_options:
# Preserve scan options if set.
d._scan_options = self._scan_options.copy()
return d
def get_fragments(self, Expression filter=None):
"""Returns an iterator over the fragments in this dataset.
Parameters
----------
filter : Expression, default None
Return fragments matching the optional filter, either using the
partition_expression or internal information like Parquet's
statistics.
Returns
-------
fragments : iterator of Fragment
"""
if self._scan_options.get("filter") is not None:
# Accessing fragments of a filtered dataset is not supported.
# It would be unclear if you wanted to filter the fragments
# or the rows in those fragments.
raise ValueError(
"Retrieving fragments of a filtered or projected "
"dataset is not allowed. Remove the filtering."
)
return self._get_fragments(filter)
def _get_fragments(self, Expression filter):
cdef:
CExpression c_filter
if filter is None:
c_fragments = move(GetResultValue(self.dataset.GetFragments()))
else:
c_filter = _bind(filter, self.schema)
c_fragments = move(GetResultValue(
self.dataset.GetFragments(c_filter)))
for maybe_fragment in c_fragments:
yield Fragment.wrap(GetResultValue(move(maybe_fragment)))
def _scanner_options(self, options):
"""Returns the default options to create a new Scanner.
This is automatically invoked by :meth:`Dataset.scanner`
and there is no need to use it.
"""
new_options = options.copy()
# at the moment only support filter
requested_filter = options.get("filter")
current_filter = self._scan_options.get("filter")
if requested_filter is not None and current_filter is not None:
new_options["filter"] = current_filter & requested_filter
elif current_filter is not None:
new_options["filter"] = current_filter
return new_options
def scanner(self,
object columns=None,
Expression filter=None,
int batch_size=_DEFAULT_BATCH_SIZE,
int batch_readahead=_DEFAULT_BATCH_READAHEAD,
int fragment_readahead=_DEFAULT_FRAGMENT_READAHEAD,
FragmentScanOptions fragment_scan_options=None,
bint use_threads=True,
MemoryPool memory_pool=None):
"""
Build a scan operation against the dataset.
Data is not loaded immediately. Instead, this produces a Scanner,
which exposes further operations (e.g. loading all data as a
table, counting rows).
See the :meth:`Scanner.from_dataset` method for further information.
Parameters
----------
columns : list of str, default None
The columns to project. This can be a list of column names to
include (order and duplicates will be preserved), or a dictionary
with {new_column_name: expression} values for more advanced
projections.
The list of columns or expressions may use the special fields
`__batch_index` (the index of the batch within the fragment),
`__fragment_index` (the index of the fragment within the dataset),
`__last_in_fragment` (whether the batch is last in fragment), and
`__filename` (the name of the source file or a description of the
source fragment).
The columns will be passed down to Datasets and corresponding data
fragments to avoid loading, copying, and deserializing columns
that will not be required further down the compute chain.
By default all of the available columns are projected. Raises
an exception if any of the referenced column names does not exist
in the dataset's Schema.
filter : Expression, default None
Scan will return only the rows matching the filter.
If possible the predicate will be pushed down to exploit the
partition information or internal metadata found in the data
source, e.g. Parquet statistics. Otherwise filters the loaded
RecordBatches before yielding them.
batch_size : int, default 131_072
The maximum row count for scanned record batches. If scanned
record batches are overflowing memory then this method can be
called to reduce their size.
batch_readahead : int, default 16
The number of batches to read ahead in a file. This might not work
for all file formats. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_readahead : int, default 4
The number of files to read ahead. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_scan_options : FragmentScanOptions, default None
Options specific to a particular scan and fragment type, which
can change between different scans of the same dataset.
use_threads : bool, default True
If enabled, then maximum parallelism will be used determined by
the number of available CPU cores.
memory_pool : MemoryPool, default None
For memory allocations, if required. If not specified, uses the
default pool.
Returns
-------
scanner : Scanner
Examples
--------
>>> import pyarrow as pa
>>> table = pa.table({'year': [2020, 2022, 2021, 2022, 2019, 2021],
... 'n_legs': [2, 2, 4, 4, 5, 100],
... 'animal': ["Flamingo", "Parrot", "Dog", "Horse",
... "Brittle stars", "Centipede"]})
>>>
>>> import pyarrow.parquet as pq
>>> pq.write_table(table, "dataset_scanner.parquet")
>>> import pyarrow.dataset as ds
>>> dataset = ds.dataset("dataset_scanner.parquet")
Selecting a subset of the columns:
>>> dataset.scanner(columns=["year", "n_legs"]).to_table()
pyarrow.Table
year: int64
n_legs: int64
----
year: [[2020,2022,2021,2022,2019,2021]]
n_legs: [[2,2,4,4,5,100]]
Projecting selected columns using an expression:
>>> dataset.scanner(columns={
... "n_legs_uint": ds.field("n_legs").cast("uint8"),
... }).to_table()
pyarrow.Table
n_legs_uint: uint8
----
n_legs_uint: [[2,2,4,4,5,100]]
Filtering rows while scanning:
>>> dataset.scanner(filter=ds.field("year") > 2020).to_table()
pyarrow.Table
year: int64
n_legs: int64
animal: string
----
year: [[2022,2021,2022,2021]]
n_legs: [[2,4,4,100]]
animal: [["Parrot","Dog","Horse","Centipede"]]
"""
return Scanner.from_dataset(
self,
columns=columns,
filter=filter,
batch_size=batch_size,
batch_readahead=batch_readahead,
fragment_readahead=fragment_readahead,
fragment_scan_options=fragment_scan_options,
use_threads=use_threads,
memory_pool=memory_pool
)
def to_batches(self,
object columns=None,
Expression filter=None,
int batch_size=_DEFAULT_BATCH_SIZE,
int batch_readahead=_DEFAULT_BATCH_READAHEAD,
int fragment_readahead=_DEFAULT_FRAGMENT_READAHEAD,
FragmentScanOptions fragment_scan_options=None,
bint use_threads=True,
MemoryPool memory_pool=None):
"""
Read the dataset as materialized record batches.
Parameters
----------
columns : list of str, default None
The columns to project. This can be a list of column names to
include (order and duplicates will be preserved), or a dictionary
with {new_column_name: expression} values for more advanced
projections.
The list of columns or expressions may use the special fields
`__batch_index` (the index of the batch within the fragment),
`__fragment_index` (the index of the fragment within the dataset),
`__last_in_fragment` (whether the batch is last in fragment), and
`__filename` (the name of the source file or a description of the
source fragment).
The columns will be passed down to Datasets and corresponding data
fragments to avoid loading, copying, and deserializing columns
that will not be required further down the compute chain.
By default all of the available columns are projected. Raises
an exception if any of the referenced column names does not exist
in the dataset's Schema.
filter : Expression, default None
Scan will return only the rows matching the filter.
If possible the predicate will be pushed down to exploit the
partition information or internal metadata found in the data
source, e.g. Parquet statistics. Otherwise filters the loaded
RecordBatches before yielding them.
batch_size : int, default 131_072
The maximum row count for scanned record batches. If scanned
record batches are overflowing memory then this method can be
called to reduce their size.
batch_readahead : int, default 16
The number of batches to read ahead in a file. This might not work
for all file formats. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_readahead : int, default 4
The number of files to read ahead. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_scan_options : FragmentScanOptions, default None
Options specific to a particular scan and fragment type, which
can change between different scans of the same dataset.
use_threads : bool, default True
If enabled, then maximum parallelism will be used determined by
the number of available CPU cores.
memory_pool : MemoryPool, default None
For memory allocations, if required. If not specified, uses the
default pool.
Returns
-------
record_batches : iterator of RecordBatch
"""
return self.scanner(
columns=columns,
filter=filter,
batch_size=batch_size,
batch_readahead=batch_readahead,
fragment_readahead=fragment_readahead,
fragment_scan_options=fragment_scan_options,
use_threads=use_threads,
memory_pool=memory_pool
).to_batches()
def to_table(self,
object columns=None,
Expression filter=None,
int batch_size=_DEFAULT_BATCH_SIZE,
int batch_readahead=_DEFAULT_BATCH_READAHEAD,
int fragment_readahead=_DEFAULT_FRAGMENT_READAHEAD,
FragmentScanOptions fragment_scan_options=None,
bint use_threads=True,
MemoryPool memory_pool=None):
"""
Read the dataset to an Arrow table.
Note that this method reads all the selected data from the dataset
into memory.
Parameters
----------
columns : list of str, default None
The columns to project. This can be a list of column names to
include (order and duplicates will be preserved), or a dictionary
with {new_column_name: expression} values for more advanced
projections.
The list of columns or expressions may use the special fields
`__batch_index` (the index of the batch within the fragment),
`__fragment_index` (the index of the fragment within the dataset),
`__last_in_fragment` (whether the batch is last in fragment), and
`__filename` (the name of the source file or a description of the
source fragment).
The columns will be passed down to Datasets and corresponding data
fragments to avoid loading, copying, and deserializing columns
that will not be required further down the compute chain.
By default all of the available columns are projected. Raises
an exception if any of the referenced column names does not exist
in the dataset's Schema.
filter : Expression, default None
Scan will return only the rows matching the filter.
If possible the predicate will be pushed down to exploit the
partition information or internal metadata found in the data
source, e.g. Parquet statistics. Otherwise filters the loaded
RecordBatches before yielding them.
batch_size : int, default 131_072
The maximum row count for scanned record batches. If scanned
record batches are overflowing memory then this method can be
called to reduce their size.
batch_readahead : int, default 16
The number of batches to read ahead in a file. This might not work
for all file formats. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_readahead : int, default 4
The number of files to read ahead. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_scan_options : FragmentScanOptions, default None
Options specific to a particular scan and fragment type, which
can change between different scans of the same dataset.
use_threads : bool, default True
If enabled, then maximum parallelism will be used determined by
the number of available CPU cores.
memory_pool : MemoryPool, default None
For memory allocations, if required. If not specified, uses the
default pool.
Returns
-------
table : Table
"""
return self.scanner(
columns=columns,
filter=filter,
batch_size=batch_size,
batch_readahead=batch_readahead,
fragment_readahead=fragment_readahead,
fragment_scan_options=fragment_scan_options,
use_threads=use_threads,
memory_pool=memory_pool
).to_table()
def take(self,
object indices,
object columns=None,
Expression filter=None,
int batch_size=_DEFAULT_BATCH_SIZE,
int batch_readahead=_DEFAULT_BATCH_READAHEAD,
int fragment_readahead=_DEFAULT_FRAGMENT_READAHEAD,
FragmentScanOptions fragment_scan_options=None,
bint use_threads=True,
MemoryPool memory_pool=None):
"""
Select rows of data by index.
Parameters
----------
indices : Array or array-like
indices of rows to select in the dataset.
columns : list of str, default None
The columns to project. This can be a list of column names to
include (order and duplicates will be preserved), or a dictionary
with {new_column_name: expression} values for more advanced
projections.
The list of columns or expressions may use the special fields
`__batch_index` (the index of the batch within the fragment),
`__fragment_index` (the index of the fragment within the dataset),
`__last_in_fragment` (whether the batch is last in fragment), and
`__filename` (the name of the source file or a description of the
source fragment).
The columns will be passed down to Datasets and corresponding data
fragments to avoid loading, copying, and deserializing columns
that will not be required further down the compute chain.
By default all of the available columns are projected. Raises
an exception if any of the referenced column names does not exist
in the dataset's Schema.
filter : Expression, default None
Scan will return only the rows matching the filter.
If possible the predicate will be pushed down to exploit the
partition information or internal metadata found in the data
source, e.g. Parquet statistics. Otherwise filters the loaded
RecordBatches before yielding them.
batch_size : int, default 131_072
The maximum row count for scanned record batches. If scanned
record batches are overflowing memory then this method can be
called to reduce their size.
batch_readahead : int, default 16
The number of batches to read ahead in a file. This might not work
for all file formats. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_readahead : int, default 4
The number of files to read ahead. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_scan_options : FragmentScanOptions, default None
Options specific to a particular scan and fragment type, which
can change between different scans of the same dataset.
use_threads : bool, default True
If enabled, then maximum parallelism will be used determined by
the number of available CPU cores.
memory_pool : MemoryPool, default None
For memory allocations, if required. If not specified, uses the
default pool.
Returns
-------
table : Table
"""
return self.scanner(
columns=columns,
filter=filter,
batch_size=batch_size,
batch_readahead=batch_readahead,
fragment_readahead=fragment_readahead,
fragment_scan_options=fragment_scan_options,
use_threads=use_threads,
memory_pool=memory_pool
).take(indices)
def head(self,
int num_rows,
object columns=None,
Expression filter=None,
int batch_size=_DEFAULT_BATCH_SIZE,
int batch_readahead=_DEFAULT_BATCH_READAHEAD,
int fragment_readahead=_DEFAULT_FRAGMENT_READAHEAD,
FragmentScanOptions fragment_scan_options=None,
bint use_threads=True,
MemoryPool memory_pool=None):
"""
Load the first N rows of the dataset.
Parameters
----------
num_rows : int
The number of rows to load.
columns : list of str, default None
The columns to project. This can be a list of column names to
include (order and duplicates will be preserved), or a dictionary
with {new_column_name: expression} values for more advanced
projections.
The list of columns or expressions may use the special fields
`__batch_index` (the index of the batch within the fragment),
`__fragment_index` (the index of the fragment within the dataset),
`__last_in_fragment` (whether the batch is last in fragment), and
`__filename` (the name of the source file or a description of the
source fragment).
The columns will be passed down to Datasets and corresponding data
fragments to avoid loading, copying, and deserializing columns
that will not be required further down the compute chain.
By default all of the available columns are projected. Raises
an exception if any of the referenced column names does not exist
in the dataset's Schema.
filter : Expression, default None
Scan will return only the rows matching the filter.
If possible the predicate will be pushed down to exploit the
partition information or internal metadata found in the data
source, e.g. Parquet statistics. Otherwise filters the loaded
RecordBatches before yielding them.
batch_size : int, default 131_072
The maximum row count for scanned record batches. If scanned
record batches are overflowing memory then this method can be
called to reduce their size.
batch_readahead : int, default 16
The number of batches to read ahead in a file. This might not work
for all file formats. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_readahead : int, default 4
The number of files to read ahead. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_scan_options : FragmentScanOptions, default None
Options specific to a particular scan and fragment type, which
can change between different scans of the same dataset.
use_threads : bool, default True
If enabled, then maximum parallelism will be used determined by
the number of available CPU cores.
memory_pool : MemoryPool, default None
For memory allocations, if required. If not specified, uses the
default pool.
Returns
-------
table : Table
"""
return self.scanner(
columns=columns,
filter=filter,
batch_size=batch_size,
batch_readahead=batch_readahead,
fragment_readahead=fragment_readahead,
fragment_scan_options=fragment_scan_options,
use_threads=use_threads,
memory_pool=memory_pool
).head(num_rows)
def count_rows(self,
Expression filter=None,
int batch_size=_DEFAULT_BATCH_SIZE,
int batch_readahead=_DEFAULT_BATCH_READAHEAD,
int fragment_readahead=_DEFAULT_FRAGMENT_READAHEAD,
FragmentScanOptions fragment_scan_options=None,
bint use_threads=True,
MemoryPool memory_pool=None):
"""
Count rows matching the scanner filter.
Parameters
----------
filter : Expression, default None
Scan will return only the rows matching the filter.
If possible the predicate will be pushed down to exploit the
partition information or internal metadata found in the data
source, e.g. Parquet statistics. Otherwise filters the loaded
RecordBatches before yielding them.
batch_size : int, default 131_072
The maximum row count for scanned record batches. If scanned
record batches are overflowing memory then this method can be
called to reduce their size.
batch_readahead : int, default 16
The number of batches to read ahead in a file. This might not work
for all file formats. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_readahead : int, default 4
The number of files to read ahead. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_scan_options : FragmentScanOptions, default None
Options specific to a particular scan and fragment type, which
can change between different scans of the same dataset.
use_threads : bool, default True
If enabled, then maximum parallelism will be used determined by
the number of available CPU cores.
memory_pool : MemoryPool, default None
For memory allocations, if required. If not specified, uses the
default pool.
Returns
-------
count : int
"""
return self.scanner(
filter=filter,
batch_size=batch_size,
batch_readahead=batch_readahead,
fragment_readahead=fragment_readahead,
fragment_scan_options=fragment_scan_options,
use_threads=use_threads,
memory_pool=memory_pool
).count_rows()
@property
def schema(self):
"""The common schema of the full Dataset"""
return pyarrow_wrap_schema(self.dataset.schema())
def filter(self, expression not None):
"""
Apply a row filter to the dataset.
Parameters
----------
expression : Expression
The filter that should be applied to the dataset.
Returns
-------
Dataset
"""
cdef:
Dataset filtered_dataset
new_filter = expression
current_filter = self._scan_options.get("filter")
if current_filter is not None and new_filter is not None:
new_filter = current_filter & new_filter
filtered_dataset = self.__class__.__new__(self.__class__)
filtered_dataset.init(self.wrapped)
filtered_dataset._scan_options = dict(filter=new_filter)
return filtered_dataset
def sort_by(self, sorting, **kwargs):
"""
Sort the Dataset by one or multiple columns.
Parameters
----------
sorting : str or list[tuple(name, order)]
Name of the column to use to sort (ascending), or
a list of multiple sorting conditions where
each entry is a tuple with column name
and sorting order ("ascending" or "descending")
**kwargs : dict, optional
Additional sorting options.
As allowed by :class:`SortOptions`
Returns
-------
InMemoryDataset
A new dataset sorted according to the sort keys.
"""
if isinstance(sorting, str):
sorting = [(sorting, "ascending")]
res = _pac()._sort_source(
self, output_type=InMemoryDataset, sort_keys=sorting, **kwargs
)
return res
def join(self, right_dataset, keys, right_keys=None, join_type="left outer",
left_suffix=None, right_suffix=None, coalesce_keys=True,
use_threads=True):
"""
Perform a join between this dataset and another one.
Result of the join will be a new dataset, where further
operations can be applied.
Parameters
----------
right_dataset : dataset
The dataset to join to the current one, acting as the right dataset
in the join operation.
keys : str or list[str]
The columns from current dataset that should be used as keys
of the join operation left side.
right_keys : str or list[str], default None
The columns from the right_dataset that should be used as keys
on the join operation right side.
When ``None`` use the same key names as the left dataset.
join_type : str, default "left outer"
The kind of join that should be performed, one of
("left semi", "right semi", "left anti", "right anti",
"inner", "left outer", "right outer", "full outer")
left_suffix : str, default None
Which suffix to add to right column names. This prevents confusion
when the columns in left and right datasets have colliding names.
right_suffix : str, default None
Which suffix to add to the left column names. This prevents confusion
when the columns in left and right datasets have colliding names.
coalesce_keys : bool, default True
If the duplicated keys should be omitted from one of the sides
in the join result.
use_threads : bool, default True
Whenever to use multithreading or not.
Returns
-------
InMemoryDataset
"""
if right_keys is None:
right_keys = keys
return _pac()._perform_join(
join_type, self, keys, right_dataset, right_keys,
left_suffix=left_suffix, right_suffix=right_suffix,
use_threads=use_threads, coalesce_keys=coalesce_keys,
output_type=InMemoryDataset
)
def join_asof(self, right_dataset, on, by, tolerance, right_on=None, right_by=None):
"""
Perform an asof join between this dataset and another one.
This is similar to a left-join except that we match on nearest key rather
than equal keys. Both datasets must be sorted by the key. This type of join
is most useful for time series data that are not perfectly aligned.
Optionally match on equivalent keys with "by" before searching with "on".
Result of the join will be a new Dataset, where further
operations can be applied.
Parameters
----------
right_dataset : dataset
The dataset to join to the current one, acting as the right dataset
in the join operation.
on : str
The column from current dataset that should be used as the "on" key
of the join operation left side.
An inexact match is used on the "on" key, i.e. a row is considered a
match if and only if left_on - tolerance <= right_on <= left_on.
The input table must be sorted by the "on" key. Must be a single
field of a common type.
Currently, the "on" key must be an integer, date, or timestamp type.
by : str or list[str]
The columns from current dataset that should be used as the keys
of the join operation left side. The join operation is then done
only for the matches in these columns.
tolerance : int
The tolerance for inexact "on" key matching. A right row is considered
a match with the left row `right.on - left.on <= tolerance`. The
`tolerance` may be:
- negative, in which case a past-as-of-join occurs;
- or positive, in which case a future-as-of-join occurs;
- or zero, in which case an exact-as-of-join occurs.
The tolerance is interpreted in the same units as the "on" key.
right_on : str or list[str], default None
The columns from the right_dataset that should be used as the on key
on the join operation right side.
When ``None`` use the same key name as the left dataset.
right_by : str or list[str], default None
The columns from the right_dataset that should be used as by keys
on the join operation right side.
When ``None`` use the same key names as the left dataset.
Returns
-------
InMemoryDataset
"""
if right_on is None:
right_on = on
if right_by is None:
right_by = by
return _pac()._perform_join_asof(self, on, by,
right_dataset, right_on, right_by,
tolerance, output_type=InMemoryDataset)
cdef class InMemoryDataset(Dataset):
"""
A Dataset wrapping in-memory data.
Parameters
----------
source : RecordBatch, Table, list, tuple
The data for this dataset. Can be a RecordBatch, Table, list of
RecordBatch/Table, iterable of RecordBatch, or a RecordBatchReader
If an iterable is provided, the schema must also be provided.
schema : Schema, optional
Only required if passing an iterable as the source
"""
cdef:
CInMemoryDataset* in_memory_dataset
def __init__(self, source, Schema schema=None):
cdef:
shared_ptr[CInMemoryDataset] in_memory_dataset
if isinstance(source, (pa.RecordBatch, pa.Table)):
source = [source]
if isinstance(source, (list, tuple)):
batches = []
for item in source:
if isinstance(item, pa.RecordBatch):
batches.append(item)
elif isinstance(item, pa.Table):
batches.extend(item.to_batches())
else:
raise TypeError(
'Expected a list of tables or batches. The given list '
'contains a ' + type(item).__name__)
if schema is None:
schema = item.schema
elif not schema.equals(item.schema):
raise ArrowTypeError(
f'Item has schema\n{item.schema}\nwhich does not '
f'match expected schema\n{schema}')
if not batches and schema is None:
raise ValueError('Must provide schema to construct in-memory '
'dataset from an empty list')
table = pa.Table.from_batches(batches, schema=schema)
in_memory_dataset = make_shared[CInMemoryDataset](
pyarrow_unwrap_table(table))
else:
raise TypeError(
'Expected a table, batch, or list of tables/batches '
'instead of the given type: ' +
type(source).__name__
)
self.init(<shared_ptr[CDataset]> in_memory_dataset)
cdef void init(self, const shared_ptr[CDataset]& sp):
Dataset.init(self, sp)
self.in_memory_dataset = <CInMemoryDataset*> sp.get()
cdef class UnionDataset(Dataset):
"""
A Dataset wrapping child datasets.
Children's schemas must agree with the provided schema.
Parameters
----------
schema : Schema
A known schema to conform to.
children : list of Dataset
One or more input children
"""
cdef:
CUnionDataset* union_dataset
def __init__(self, Schema schema not None, children):
cdef:
Dataset child
CDatasetVector c_children
shared_ptr[CUnionDataset] union_dataset
for child in children:
c_children.push_back(child.wrapped)
union_dataset = GetResultValue(CUnionDataset.Make(
pyarrow_unwrap_schema(schema), move(c_children)))
self.init(<shared_ptr[CDataset]> union_dataset)
cdef void init(self, const shared_ptr[CDataset]& sp):
Dataset.init(self, sp)
self.union_dataset = <CUnionDataset*> sp.get()
def __reduce__(self):
return UnionDataset, (self.schema, self.children)
@property
def children(self):
cdef CDatasetVector children = self.union_dataset.children()
return [Dataset.wrap(children[i]) for i in range(children.size())]
cdef class FileSystemDataset(Dataset):
"""
A Dataset of file fragments.
A FileSystemDataset is composed of one or more FileFragment.
Parameters
----------
fragments : list[Fragments]
List of fragments to consume.
schema : Schema
The top-level schema of the Dataset.
format : FileFormat
File format of the fragments, currently only ParquetFileFormat,
IpcFileFormat, CsvFileFormat, and JsonFileFormat are supported.
filesystem : FileSystem
FileSystem of the fragments.
root_partition : Expression, optional
The top-level partition of the DataDataset.
"""
cdef:
CFileSystemDataset* filesystem_dataset
def __init__(self, fragments, Schema schema, FileFormat format,
FileSystem filesystem=None, root_partition=None):
cdef:
FileFragment fragment=None
vector[shared_ptr[CFileFragment]] c_fragments
CResult[shared_ptr[CDataset]] result
shared_ptr[CFileSystem] c_filesystem
if root_partition is None:
root_partition = _true
elif not isinstance(root_partition, Expression):
raise TypeError(
"Argument 'root_partition' has incorrect type (expected "
"Expression, got {0})".format(type(root_partition))
)
for fragment in fragments:
c_fragments.push_back(
static_pointer_cast[CFileFragment, CFragment](
fragment.unwrap()))
if filesystem is None:
filesystem = fragment.filesystem
if filesystem is not None:
c_filesystem = filesystem.unwrap()
result = CFileSystemDataset.Make(
pyarrow_unwrap_schema(schema),
(<Expression> root_partition).unwrap(),
format.unwrap(),
c_filesystem,
c_fragments
)
self.init(GetResultValue(result))
@property
def filesystem(self):
return FileSystem.wrap(self.filesystem_dataset.filesystem())
@property
def partitioning(self):
"""
The partitioning of the Dataset source, if discovered.
If the FileSystemDataset is created using the ``dataset()`` factory
function with a partitioning specified, this will return the
finalized Partitioning object from the dataset discovery. In all
other cases, this returns None.
"""
c_partitioning = self.filesystem_dataset.partitioning()
if c_partitioning.get() == nullptr:
return None
try:
return Partitioning.wrap(c_partitioning)
except TypeError:
# e.g. type_name "default"
return None
cdef void init(self, const shared_ptr[CDataset]& sp):
Dataset.init(self, sp)
self.filesystem_dataset = <CFileSystemDataset*> sp.get()
def __reduce__(self):
return FileSystemDataset, (
list(self.get_fragments()),
self.schema,
self.format,
self.filesystem,
self.partition_expression
)
@classmethod
def from_paths(cls, paths, schema=None, format=None,
filesystem=None, partitions=None, root_partition=None):
"""
A Dataset created from a list of paths on a particular filesystem.
Parameters
----------
paths : list of str
List of file paths to create the fragments from.
schema : Schema
The top-level schema of the DataDataset.
format : FileFormat
File format to create fragments from, currently only
ParquetFileFormat, IpcFileFormat, CsvFileFormat, and JsonFileFormat are supported.
filesystem : FileSystem
The filesystem which files are from.
partitions : list[Expression], optional
Attach additional partition information for the file paths.
root_partition : Expression, optional
The top-level partition of the DataDataset.
"""
if root_partition is None:
root_partition = _true
for arg, class_, name in [
(schema, Schema, 'schema'),
(format, FileFormat, 'format'),
(filesystem, FileSystem, 'filesystem'),
(root_partition, Expression, 'root_partition')
]:
if not isinstance(arg, class_):
raise TypeError(
"Argument '{0}' has incorrect type (expected {1}, "
"got {2})".format(name, class_.__name__, type(arg))
)
partitions = partitions or [_true] * len(paths)
if len(paths) != len(partitions):
raise ValueError(
'The number of files resulting from paths_or_selector '
'must be equal to the number of partitions.'
)
fragments = [
format.make_fragment(path, filesystem, partitions[i])
for i, path in enumerate(paths)
]
return FileSystemDataset(fragments, schema, format,
filesystem, root_partition)
@property
def files(self):
"""List of the files"""
cdef vector[c_string] files = self.filesystem_dataset.files()
return [frombytes(f) for f in files]
@property
def format(self):
"""The FileFormat of this source."""
return FileFormat.wrap(self.filesystem_dataset.format())
cdef class FileWriteOptions(_Weakrefable):
def __init__(self):
_forbid_instantiation(self.__class__)
cdef void init(self, const shared_ptr[CFileWriteOptions]& sp):
self.wrapped = sp
self.c_options = sp.get()
@staticmethod
cdef wrap(const shared_ptr[CFileWriteOptions]& sp):
type_name = frombytes(sp.get().type_name())
classes = {
'csv': CsvFileWriteOptions,
'ipc': IpcFileWriteOptions,
'parquet': _get_parquet_symbol('ParquetFileWriteOptions'),
}
class_ = classes.get(type_name, None)
if class_ is None:
raise TypeError(type_name)
cdef FileWriteOptions self = class_.__new__(class_)
self.init(sp)
return self
@property
def format(self):
return FileFormat.wrap(self.c_options.format())
cdef inline shared_ptr[CFileWriteOptions] unwrap(self):
return self.wrapped
cdef class FileFormat(_Weakrefable):
def __init__(self):
_forbid_instantiation(self.__class__)
cdef void init(self, const shared_ptr[CFileFormat]& sp):
self.wrapped = sp
self.format = sp.get()
@staticmethod
cdef wrap(const shared_ptr[CFileFormat]& sp):
type_name = frombytes(sp.get().type_name())
classes = {
'ipc': IpcFileFormat,
'csv': CsvFileFormat,
'json': JsonFileFormat,
'parquet': _get_parquet_symbol('ParquetFileFormat'),
'orc': _get_orc_fileformat(),
}
class_ = classes.get(type_name, None)
if class_ is None:
raise TypeError(type_name)
cdef FileFormat self = class_.__new__(class_)
self.init(sp)
return self
cdef WrittenFile _finish_write(self, path, base_dir,
CFileWriter* file_writer):
parquet_metadata = None
size = GetResultValue(file_writer.GetBytesWritten())
return WrittenFile(path, parquet_metadata, size)
cdef inline shared_ptr[CFileFormat] unwrap(self):
return self.wrapped
def inspect(self, file, filesystem=None):
"""
Infer the schema of a file.
Parameters
----------
file : file-like object, path-like or str
The file or file path to infer a schema from.
filesystem : Filesystem, optional
If `filesystem` is given, `file` must be a string and specifies
the path of the file to read from the filesystem.
Returns
-------
schema : Schema
The schema inferred from the file
"""
cdef:
CFileSource c_source = _make_file_source(file, filesystem, file_size=None)
CResult[shared_ptr[CSchema]] c_result
with nogil:
c_result = self.format.Inspect(c_source)
c_schema = GetResultValue(c_result)
return pyarrow_wrap_schema(move(c_schema))
def make_fragment(self, file, filesystem=None,
Expression partition_expression=None,
*, file_size=None):
"""
Make a FileFragment from a given file.
Parameters
----------
file : file-like object, path-like or str
The file or file path to make a fragment from.
filesystem : Filesystem, optional
If `filesystem` is given, `file` must be a string and specifies
the path of the file to read from the filesystem.
partition_expression : Expression, optional
An expression that is guaranteed true for all rows in the fragment. Allows
fragment to be potentially skipped while scanning with a filter.
file_size : int, optional
The size of the file in bytes. Can improve performance with high-latency filesystems
when file size needs to be known before reading.
Returns
-------
fragment : Fragment
The file fragment
"""
if partition_expression is None:
partition_expression = _true
c_source = _make_file_source(file, filesystem, file_size)
c_fragment = <shared_ptr[CFragment]> GetResultValue(
self.format.MakeFragment(move(c_source),
partition_expression.unwrap(),
<shared_ptr[CSchema]>nullptr))
return Fragment.wrap(move(c_fragment))
def make_write_options(self):
sp_write_options = self.format.DefaultWriteOptions()
if sp_write_options.get() == nullptr:
# DefaultWriteOptions() may return `nullptr` which means that
# the format does not yet support writing datasets.
raise NotImplementedError(
"Writing datasets not yet implemented for this file format."
)
return FileWriteOptions.wrap(sp_write_options)
@property
def default_extname(self):
return frombytes(self.format.type_name())
@property
def default_fragment_scan_options(self):
dfso = FragmentScanOptions.wrap(
self.wrapped.get().default_fragment_scan_options)
# CsvFileFormat stores a Python-specific encoding field that needs
# to be restored because it does not exist in the C++ struct
if isinstance(self, CsvFileFormat):
if self._read_options_py is not None:
dfso.read_options = self._read_options_py
return dfso
@default_fragment_scan_options.setter
def default_fragment_scan_options(self, FragmentScanOptions options):
if options is None:
self.wrapped.get().default_fragment_scan_options =\
<shared_ptr[CFragmentScanOptions]>nullptr
else:
self._set_default_fragment_scan_options(options)
cdef _set_default_fragment_scan_options(self, FragmentScanOptions options):
raise ValueError(f"Cannot set fragment scan options for "
f"'{options.type_name}' on {self.__class__.__name__}")
def __eq__(self, other):
try:
return self.equals(other)
except TypeError:
return False
cdef class Fragment(_Weakrefable):
"""Fragment of data from a Dataset."""
def __init__(self):
_forbid_instantiation(self.__class__)
cdef void init(self, const shared_ptr[CFragment]& sp):
self.wrapped = sp
self.fragment = sp.get()
@staticmethod
cdef wrap(const shared_ptr[CFragment]& sp):
type_name = frombytes(sp.get().type_name())
classes = {
# IpcFileFormat, CsvFileFormat, JsonFileFormat and OrcFileFormat do not have
# corresponding subclasses of FileFragment
'ipc': FileFragment,
'csv': FileFragment,
'json': FileFragment,
'orc': FileFragment,
'parquet': _get_parquet_symbol('ParquetFileFragment'),
}
class_ = classes.get(type_name, None)
if class_ is None:
class_ = Fragment
cdef Fragment self = class_.__new__(class_)
self.init(sp)
return self
cdef inline shared_ptr[CFragment] unwrap(self):
return self.wrapped
@property
def physical_schema(self):
"""Return the physical schema of this Fragment. This schema can be
different from the dataset read schema."""
cdef:
CResult[shared_ptr[CSchema]] maybe_schema
with nogil:
maybe_schema = self.fragment.ReadPhysicalSchema()
return pyarrow_wrap_schema(GetResultValue(maybe_schema))
@property
def partition_expression(self):
"""An Expression which evaluates to true for all data viewed by this
Fragment.
"""
return Expression.wrap(self.fragment.partition_expression())
def scanner(self,
Schema schema=None,
object columns=None,
Expression filter=None,
int batch_size=_DEFAULT_BATCH_SIZE,
int batch_readahead=_DEFAULT_BATCH_READAHEAD,
int fragment_readahead=_DEFAULT_FRAGMENT_READAHEAD,
FragmentScanOptions fragment_scan_options=None,
bint use_threads=True,
MemoryPool memory_pool=None):
"""
Build a scan operation against the fragment.
Data is not loaded immediately. Instead, this produces a Scanner,
which exposes further operations (e.g. loading all data as a
table, counting rows).
Parameters
----------
schema : Schema
Schema to use for scanning. This is used to unify a Fragment to
its Dataset's schema. If not specified this will use the
Fragment's physical schema which might differ for each Fragment.
columns : list of str, default None
The columns to project. This can be a list of column names to
include (order and duplicates will be preserved), or a dictionary
with {new_column_name: expression} values for more advanced
projections.
The list of columns or expressions may use the special fields
`__batch_index` (the index of the batch within the fragment),
`__fragment_index` (the index of the fragment within the dataset),
`__last_in_fragment` (whether the batch is last in fragment), and
`__filename` (the name of the source file or a description of the
source fragment).
The columns will be passed down to Datasets and corresponding data
fragments to avoid loading, copying, and deserializing columns
that will not be required further down the compute chain.
By default all of the available columns are projected. Raises
an exception if any of the referenced column names does not exist
in the dataset's Schema.
filter : Expression, default None
Scan will return only the rows matching the filter.
If possible the predicate will be pushed down to exploit the
partition information or internal metadata found in the data
source, e.g. Parquet statistics. Otherwise filters the loaded
RecordBatches before yielding them.
batch_size : int, default 131_072
The maximum row count for scanned record batches. If scanned
record batches are overflowing memory then this method can be
called to reduce their size.
batch_readahead : int, default 16
The number of batches to read ahead in a file. This might not work
for all file formats. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_readahead : int, default 4
The number of files to read ahead. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_scan_options : FragmentScanOptions, default None
Options specific to a particular scan and fragment type, which
can change between different scans of the same dataset.
use_threads : bool, default True
If enabled, then maximum parallelism will be used determined by
the number of available CPU cores.
memory_pool : MemoryPool, default None
For memory allocations, if required. If not specified, uses the
default pool.
Returns
-------
scanner : Scanner
"""
return Scanner.from_fragment(
self,
schema=schema,
columns=columns,
filter=filter,
batch_size=batch_size,
batch_readahead=batch_readahead,
fragment_readahead=fragment_readahead,
fragment_scan_options=fragment_scan_options,
use_threads=use_threads,
memory_pool=memory_pool
)
def to_batches(self,
Schema schema=None,
object columns=None,
Expression filter=None,
int batch_size=_DEFAULT_BATCH_SIZE,
int batch_readahead=_DEFAULT_BATCH_READAHEAD,
int fragment_readahead=_DEFAULT_FRAGMENT_READAHEAD,
FragmentScanOptions fragment_scan_options=None,
bint use_threads=True,
MemoryPool memory_pool=None):
"""
Read the fragment as materialized record batches.
Parameters
----------
schema : Schema, optional
Concrete schema to use for scanning.
columns : list of str, default None
The columns to project. This can be a list of column names to
include (order and duplicates will be preserved), or a dictionary
with {new_column_name: expression} values for more advanced
projections.
The list of columns or expressions may use the special fields
`__batch_index` (the index of the batch within the fragment),
`__fragment_index` (the index of the fragment within the dataset),
`__last_in_fragment` (whether the batch is last in fragment), and
`__filename` (the name of the source file or a description of the
source fragment).
The columns will be passed down to Datasets and corresponding data
fragments to avoid loading, copying, and deserializing columns
that will not be required further down the compute chain.
By default all of the available columns are projected. Raises
an exception if any of the referenced column names does not exist
in the dataset's Schema.
filter : Expression, default None
Scan will return only the rows matching the filter.
If possible the predicate will be pushed down to exploit the
partition information or internal metadata found in the data
source, e.g. Parquet statistics. Otherwise filters the loaded
RecordBatches before yielding them.
batch_size : int, default 131_072
The maximum row count for scanned record batches. If scanned
record batches are overflowing memory then this method can be
called to reduce their size.
batch_readahead : int, default 16
The number of batches to read ahead in a file. This might not work
for all file formats. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_readahead : int, default 4
The number of files to read ahead. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_scan_options : FragmentScanOptions, default None
Options specific to a particular scan and fragment type, which
can change between different scans of the same dataset.
use_threads : bool, default True
If enabled, then maximum parallelism will be used determined by
the number of available CPU cores.
memory_pool : MemoryPool, default None
For memory allocations, if required. If not specified, uses the
default pool.
Returns
-------
record_batches : iterator of RecordBatch
"""
return Scanner.from_fragment(
self,
schema=schema,
columns=columns,
filter=filter,
batch_size=batch_size,
batch_readahead=batch_readahead,
fragment_readahead=fragment_readahead,
fragment_scan_options=fragment_scan_options,
use_threads=use_threads,
memory_pool=memory_pool
).to_batches()
def to_table(self,
Schema schema=None,
object columns=None,
Expression filter=None,
int batch_size=_DEFAULT_BATCH_SIZE,
int batch_readahead=_DEFAULT_BATCH_READAHEAD,
int fragment_readahead=_DEFAULT_FRAGMENT_READAHEAD,
FragmentScanOptions fragment_scan_options=None,
bint use_threads=True,
MemoryPool memory_pool=None):
"""
Convert this Fragment into a Table.
Use this convenience utility with care. This will serially materialize
the Scan result in memory before creating the Table.
Parameters
----------
schema : Schema, optional
Concrete schema to use for scanning.
columns : list of str, default None
The columns to project. This can be a list of column names to
include (order and duplicates will be preserved), or a dictionary
with {new_column_name: expression} values for more advanced
projections.
The list of columns or expressions may use the special fields
`__batch_index` (the index of the batch within the fragment),
`__fragment_index` (the index of the fragment within the dataset),
`__last_in_fragment` (whether the batch is last in fragment), and
`__filename` (the name of the source file or a description of the
source fragment).
The columns will be passed down to Datasets and corresponding data
fragments to avoid loading, copying, and deserializing columns
that will not be required further down the compute chain.
By default all of the available columns are projected. Raises
an exception if any of the referenced column names does not exist
in the dataset's Schema.
filter : Expression, default None
Scan will return only the rows matching the filter.
If possible the predicate will be pushed down to exploit the
partition information or internal metadata found in the data
source, e.g. Parquet statistics. Otherwise filters the loaded
RecordBatches before yielding them.
batch_size : int, default 131_072
The maximum row count for scanned record batches. If scanned
record batches are overflowing memory then this method can be
called to reduce their size.
batch_readahead : int, default 16
The number of batches to read ahead in a file. This might not work
for all file formats. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_readahead : int, default 4
The number of files to read ahead. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_scan_options : FragmentScanOptions, default None
Options specific to a particular scan and fragment type, which
can change between different scans of the same dataset.
use_threads : bool, default True
If enabled, then maximum parallelism will be used determined by
the number of available CPU cores.
memory_pool : MemoryPool, default None
For memory allocations, if required. If not specified, uses the
default pool.
Returns
-------
table : Table
"""
return self.scanner(
schema=schema,
columns=columns,
filter=filter,
batch_size=batch_size,
batch_readahead=batch_readahead,
fragment_readahead=fragment_readahead,
fragment_scan_options=fragment_scan_options,
use_threads=use_threads,
memory_pool=memory_pool
).to_table()
def take(self,
object indices,
object columns=None,
Expression filter=None,
int batch_size=_DEFAULT_BATCH_SIZE,
int batch_readahead=_DEFAULT_BATCH_READAHEAD,
int fragment_readahead=_DEFAULT_FRAGMENT_READAHEAD,
FragmentScanOptions fragment_scan_options=None,
bint use_threads=True,
MemoryPool memory_pool=None):
"""
Select rows of data by index.
Parameters
----------
indices : Array or array-like
The indices of row to select in the dataset.
columns : list of str, default None
The columns to project. This can be a list of column names to
include (order and duplicates will be preserved), or a dictionary
with {new_column_name: expression} values for more advanced
projections.
The list of columns or expressions may use the special fields
`__batch_index` (the index of the batch within the fragment),
`__fragment_index` (the index of the fragment within the dataset),
`__last_in_fragment` (whether the batch is last in fragment), and
`__filename` (the name of the source file or a description of the
source fragment).
The columns will be passed down to Datasets and corresponding data
fragments to avoid loading, copying, and deserializing columns
that will not be required further down the compute chain.
By default all of the available columns are projected. Raises
an exception if any of the referenced column names does not exist
in the dataset's Schema.
filter : Expression, default None
Scan will return only the rows matching the filter.
If possible the predicate will be pushed down to exploit the
partition information or internal metadata found in the data
source, e.g. Parquet statistics. Otherwise filters the loaded
RecordBatches before yielding them.
batch_size : int, default 131_072
The maximum row count for scanned record batches. If scanned
record batches are overflowing memory then this method can be
called to reduce their size.
batch_readahead : int, default 16
The number of batches to read ahead in a file. This might not work
for all file formats. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_readahead : int, default 4
The number of files to read ahead. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_scan_options : FragmentScanOptions, default None
Options specific to a particular scan and fragment type, which
can change between different scans of the same dataset.
use_threads : bool, default True
If enabled, then maximum parallelism will be used determined by
the number of available CPU cores.
memory_pool : MemoryPool, default None
For memory allocations, if required. If not specified, uses the
default pool.
Returns
-------
Table
"""
return self.scanner(
columns=columns,
filter=filter,
batch_size=batch_size,
batch_readahead=batch_readahead,
fragment_readahead=fragment_readahead,
fragment_scan_options=fragment_scan_options,
use_threads=use_threads,
memory_pool=memory_pool
).take(indices)
def head(self,
int num_rows,
object columns=None,
Expression filter=None,
int batch_size=_DEFAULT_BATCH_SIZE,
int batch_readahead=_DEFAULT_BATCH_READAHEAD,
int fragment_readahead=_DEFAULT_FRAGMENT_READAHEAD,
FragmentScanOptions fragment_scan_options=None,
bint use_threads=True,
MemoryPool memory_pool=None):
"""
Load the first N rows of the fragment.
Parameters
----------
num_rows : int
The number of rows to load.
columns : list of str, default None
The columns to project. This can be a list of column names to
include (order and duplicates will be preserved), or a dictionary
with {new_column_name: expression} values for more advanced
projections.
The list of columns or expressions may use the special fields
`__batch_index` (the index of the batch within the fragment),
`__fragment_index` (the index of the fragment within the dataset),
`__last_in_fragment` (whether the batch is last in fragment), and
`__filename` (the name of the source file or a description of the
source fragment).
The columns will be passed down to Datasets and corresponding data
fragments to avoid loading, copying, and deserializing columns
that will not be required further down the compute chain.
By default all of the available columns are projected. Raises
an exception if any of the referenced column names does not exist
in the dataset's Schema.
filter : Expression, default None
Scan will return only the rows matching the filter.
If possible the predicate will be pushed down to exploit the
partition information or internal metadata found in the data
source, e.g. Parquet statistics. Otherwise filters the loaded
RecordBatches before yielding them.
batch_size : int, default 131_072
The maximum row count for scanned record batches. If scanned
record batches are overflowing memory then this method can be
called to reduce their size.
batch_readahead : int, default 16
The number of batches to read ahead in a file. This might not work
for all file formats. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_readahead : int, default 4
The number of files to read ahead. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_scan_options : FragmentScanOptions, default None
Options specific to a particular scan and fragment type, which
can change between different scans of the same dataset.
use_threads : bool, default True
If enabled, then maximum parallelism will be used determined by
the number of available CPU cores.
memory_pool : MemoryPool, default None
For memory allocations, if required. If not specified, uses the
default pool.
Returns
-------
Table
"""
return self.scanner(
columns=columns,
filter=filter,
batch_size=batch_size,
batch_readahead=batch_readahead,
fragment_readahead=fragment_readahead,
fragment_scan_options=fragment_scan_options,
use_threads=use_threads,
memory_pool=memory_pool
).head(num_rows)
def count_rows(self,
Expression filter=None,
int batch_size=_DEFAULT_BATCH_SIZE,
int batch_readahead=_DEFAULT_BATCH_READAHEAD,
int fragment_readahead=_DEFAULT_FRAGMENT_READAHEAD,
FragmentScanOptions fragment_scan_options=None,
bint use_threads=True,
MemoryPool memory_pool=None):
"""
Count rows matching the scanner filter.
Parameters
----------
filter : Expression, default None
Scan will return only the rows matching the filter.
If possible the predicate will be pushed down to exploit the
partition information or internal metadata found in the data
source, e.g. Parquet statistics. Otherwise filters the loaded
RecordBatches before yielding them.
batch_size : int, default 131_072
The maximum row count for scanned record batches. If scanned
record batches are overflowing memory then this method can be
called to reduce their size.
batch_readahead : int, default 16
The number of batches to read ahead in a file. This might not work
for all file formats. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_readahead : int, default 4
The number of files to read ahead. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_scan_options : FragmentScanOptions, default None
Options specific to a particular scan and fragment type, which
can change between different scans of the same dataset.
use_threads : bool, default True
If enabled, then maximum parallelism will be used determined by
the number of available CPU cores.
memory_pool : MemoryPool, default None
For memory allocations, if required. If not specified, uses the
default pool.
Returns
-------
count : int
"""
return self.scanner(
filter=filter,
batch_size=batch_size,
batch_readahead=batch_readahead,
fragment_readahead=fragment_readahead,
fragment_scan_options=fragment_scan_options,
use_threads=use_threads,
memory_pool=memory_pool
).count_rows()
cdef class FileFragment(Fragment):
"""A Fragment representing a data file."""
cdef void init(self, const shared_ptr[CFragment]& sp):
Fragment.init(self, sp)
self.file_fragment = <CFileFragment*> sp.get()
def __repr__(self):
type_name = frombytes(self.fragment.type_name())
if type_name != "parquet":
typ = f" type={type_name}"
else:
# parquet has a subclass -> type embedded in class name
typ = ""
partition_dict = get_partition_keys(self.partition_expression)
partition = ", ".join(
[f"{key}={val}" for key, val in partition_dict.items()]
)
if partition:
partition = f" partition=[{partition}]"
return "<pyarrow.dataset.{0}{1} path={2}{3}>".format(
self.__class__.__name__, typ, self.path, partition
)
def __reduce__(self):
buffer = self.buffer
return self.format.make_fragment, (
self.path if buffer is None else buffer,
self.filesystem,
self.partition_expression
)
def open(self):
"""
Open a NativeFile of the buffer or file viewed by this fragment.
"""
cdef:
shared_ptr[CFileSystem] c_filesystem
shared_ptr[CRandomAccessFile] opened
c_string c_path
NativeFile out = NativeFile()
if self.buffer is not None:
return pa.BufferReader(self.buffer)
c_path = tobytes(self.file_fragment.source().path())
with nogil:
c_filesystem = self.file_fragment.source().filesystem()
opened = GetResultValue(c_filesystem.get().OpenInputFile(c_path))
out.set_random_access_file(opened)
out.is_readable = True
return out
@property
def path(self):
"""
The path of the data file viewed by this fragment, if it views a
file. If instead it views a buffer, this will be "<Buffer>".
"""
return frombytes(self.file_fragment.source().path())
@property
def filesystem(self):
"""
The FileSystem containing the data file viewed by this fragment, if
it views a file. If instead it views a buffer, this will be None.
"""
cdef:
shared_ptr[CFileSystem] c_fs
c_fs = self.file_fragment.source().filesystem()
if c_fs.get() == nullptr:
return None
return FileSystem.wrap(c_fs)
@property
def buffer(self):
"""
The buffer viewed by this fragment, if it views a buffer. If
instead it views a file, this will be None.
"""
cdef:
shared_ptr[CBuffer] c_buffer
c_buffer = self.file_fragment.source().buffer()
if c_buffer.get() == nullptr:
return None
return pyarrow_wrap_buffer(c_buffer)
@property
def format(self):
"""
The format of the data file viewed by this fragment.
"""
return FileFormat.wrap(self.file_fragment.format())
cdef class FragmentScanOptions(_Weakrefable):
"""Scan options specific to a particular fragment and scan operation."""
def __init__(self):
_forbid_instantiation(self.__class__)
cdef void init(self, const shared_ptr[CFragmentScanOptions]& sp):
self.wrapped = sp
@staticmethod
cdef wrap(const shared_ptr[CFragmentScanOptions]& sp):
if not sp:
return None
type_name = frombytes(sp.get().type_name())
classes = {
'csv': CsvFragmentScanOptions,
'json': JsonFragmentScanOptions,
'parquet': _get_parquet_symbol('ParquetFragmentScanOptions'),
}
class_ = classes.get(type_name, None)
if class_ is None:
raise TypeError(type_name)
cdef FragmentScanOptions self = class_.__new__(class_)
self.init(sp)
return self
@property
def type_name(self):
return frombytes(self.wrapped.get().type_name())
def __eq__(self, other):
try:
return self.equals(other)
except TypeError:
return False
cdef class IpcFileWriteOptions(FileWriteOptions):
cdef:
CIpcFileWriteOptions* ipc_options
def __init__(self):
_forbid_instantiation(self.__class__)
@property
def write_options(self):
out = IpcWriteOptions()
out.c_options = CIpcWriteOptions(deref(self.ipc_options.options))
return out
@write_options.setter
def write_options(self, IpcWriteOptions write_options not None):
self.ipc_options.options.reset(
new CIpcWriteOptions(write_options.c_options))
cdef void init(self, const shared_ptr[CFileWriteOptions]& sp):
FileWriteOptions.init(self, sp)
self.ipc_options = <CIpcFileWriteOptions*> sp.get()
cdef class IpcFileFormat(FileFormat):
def __init__(self):
self.init(shared_ptr[CFileFormat](new CIpcFileFormat()))
def equals(self, IpcFileFormat other):
"""
Parameters
----------
other : pyarrow.dataset.IpcFileFormat
Returns
-------
True
"""
return True
def make_write_options(self, **kwargs):
"""
Parameters
----------
**kwargs : dict
Returns
-------
pyarrow.ipc.IpcWriteOptions
"""
cdef IpcFileWriteOptions opts = \
<IpcFileWriteOptions> FileFormat.make_write_options(self)
opts.write_options = IpcWriteOptions(**kwargs)
return opts
@property
def default_extname(self):
return "arrow"
def __reduce__(self):
return IpcFileFormat, tuple()
cdef class FeatherFileFormat(IpcFileFormat):
@property
def default_extname(self):
return "feather"
cdef class CsvFileFormat(FileFormat):
"""
FileFormat for CSV files.
Parameters
----------
parse_options : pyarrow.csv.ParseOptions
Options regarding CSV parsing.
default_fragment_scan_options : CsvFragmentScanOptions
Default options for fragments scan.
convert_options : pyarrow.csv.ConvertOptions
Options regarding value conversion.
read_options : pyarrow.csv.ReadOptions
General read options.
"""
cdef:
CCsvFileFormat* csv_format
# The encoding field in ReadOptions does not exist in the C++ struct.
# We need to store it here and override it when reading
# default_fragment_scan_options.read_options
public ReadOptions _read_options_py
# Avoid mistakingly creating attributes
__slots__ = ()
def __init__(self, ParseOptions parse_options=None,
default_fragment_scan_options=None,
ConvertOptions convert_options=None,
ReadOptions read_options=None):
self.init(shared_ptr[CFileFormat](new CCsvFileFormat()))
if parse_options is not None:
self.parse_options = parse_options
if convert_options is not None or read_options is not None:
if default_fragment_scan_options:
raise ValueError('If `default_fragment_scan_options` is '
'given, cannot specify convert_options '
'or read_options')
self.default_fragment_scan_options = CsvFragmentScanOptions(
convert_options=convert_options, read_options=read_options)
elif isinstance(default_fragment_scan_options, dict):
self.default_fragment_scan_options = CsvFragmentScanOptions(
**default_fragment_scan_options)
elif isinstance(default_fragment_scan_options, CsvFragmentScanOptions):
self.default_fragment_scan_options = default_fragment_scan_options
elif default_fragment_scan_options is not None:
raise TypeError('`default_fragment_scan_options` must be either '
'a dictionary or an instance of '
'CsvFragmentScanOptions')
if read_options is not None:
self._read_options_py = read_options
cdef void init(self, const shared_ptr[CFileFormat]& sp):
FileFormat.init(self, sp)
self.csv_format = <CCsvFileFormat*> sp.get()
def make_write_options(self, **kwargs):
"""
Parameters
----------
**kwargs : dict
Returns
-------
pyarrow.csv.WriteOptions
"""
cdef CsvFileWriteOptions opts = \
<CsvFileWriteOptions> FileFormat.make_write_options(self)
opts.write_options = WriteOptions(**kwargs)
return opts
@property
def parse_options(self):
return ParseOptions.wrap(self.csv_format.parse_options)
@parse_options.setter
def parse_options(self, ParseOptions parse_options not None):
self.csv_format.parse_options = deref(parse_options.options)
cdef _set_default_fragment_scan_options(self, FragmentScanOptions options):
if options.type_name == 'csv':
self.csv_format.default_fragment_scan_options = options.wrapped
self.default_fragment_scan_options.read_options = options.read_options
self._read_options_py = options.read_options
else:
super()._set_default_fragment_scan_options(options)
def equals(self, CsvFileFormat other):
"""
Parameters
----------
other : pyarrow.dataset.CsvFileFormat
Returns
-------
bool
"""
return (
self.parse_options.equals(other.parse_options) and
self.default_fragment_scan_options ==
other.default_fragment_scan_options)
def __reduce__(self):
return CsvFileFormat, (self.parse_options,
self.default_fragment_scan_options)
def __repr__(self):
return f"<CsvFileFormat parse_options={self.parse_options}>"
cdef class CsvFragmentScanOptions(FragmentScanOptions):
"""
Scan-specific options for CSV fragments.
Parameters
----------
convert_options : pyarrow.csv.ConvertOptions
Options regarding value conversion.
read_options : pyarrow.csv.ReadOptions
General read options.
"""
cdef:
CCsvFragmentScanOptions* csv_options
# The encoding field in ReadOptions does not exist in the C++ struct.
# We need to store it here and override it when reading read_options
ReadOptions _read_options_py
# Avoid mistakingly creating attributes
__slots__ = ()
def __init__(self, ConvertOptions convert_options=None,
ReadOptions read_options=None):
self.init(shared_ptr[CFragmentScanOptions](
new CCsvFragmentScanOptions()))
if convert_options is not None:
self.convert_options = convert_options
if read_options is not None:
self.read_options = read_options
self._read_options_py = read_options
cdef void init(self, const shared_ptr[CFragmentScanOptions]& sp):
FragmentScanOptions.init(self, sp)
self.csv_options = <CCsvFragmentScanOptions*> sp.get()
@property
def convert_options(self):
return ConvertOptions.wrap(self.csv_options.convert_options)
@convert_options.setter
def convert_options(self, ConvertOptions convert_options not None):
self.csv_options.convert_options = deref(convert_options.options)
@property
def read_options(self):
read_options = ReadOptions.wrap(self.csv_options.read_options)
if self._read_options_py is not None:
read_options.encoding = self._read_options_py.encoding
return read_options
@read_options.setter
def read_options(self, ReadOptions read_options not None):
self.csv_options.read_options = deref(read_options.options)
self._read_options_py = read_options
if codecs.lookup(read_options.encoding).name != 'utf-8':
self.csv_options.stream_transform_func = deref(
make_streamwrap_func(read_options.encoding, 'utf-8'))
def equals(self, CsvFragmentScanOptions other):
"""
Parameters
----------
other : pyarrow.dataset.CsvFragmentScanOptions
Returns
-------
bool
"""
return (
other and
self.convert_options.equals(other.convert_options) and
self.read_options.equals(other.read_options))
def __reduce__(self):
return CsvFragmentScanOptions, (self.convert_options,
self.read_options)
cdef class CsvFileWriteOptions(FileWriteOptions):
cdef:
CCsvFileWriteOptions* csv_options
object _properties
def __init__(self):
_forbid_instantiation(self.__class__)
@property
def write_options(self):
return WriteOptions.wrap(deref(self.csv_options.write_options))
@write_options.setter
def write_options(self, WriteOptions write_options not None):
self.csv_options.write_options.reset(
new CCSVWriteOptions(deref(write_options.options)))
cdef void init(self, const shared_ptr[CFileWriteOptions]& sp):
FileWriteOptions.init(self, sp)
self.csv_options = <CCsvFileWriteOptions*> sp.get()
cdef class JsonFileFormat(FileFormat):
"""
FileFormat for JSON files.
Parameters
----------
default_fragment_scan_options : JsonFragmentScanOptions
Default options for fragments scan.
parse_options : pyarrow.json.ParseOptions
Options regarding json parsing.
read_options : pyarrow.json.ReadOptions
General read options.
"""
cdef:
CJsonFileFormat* json_format
# Avoid mistakingly creating attributes
__slots__ = ()
def __init__(self, default_fragment_scan_options=None,
JsonParseOptions parse_options=None,
JsonReadOptions read_options=None):
self.init(shared_ptr[CFileFormat](new CJsonFileFormat()))
if parse_options is not None or read_options is not None:
if default_fragment_scan_options is not None:
raise ValueError('If `default_fragment_scan_options` is '
'given, cannot specify read_options')
self.default_fragment_scan_options = JsonFragmentScanOptions(
parse_options=parse_options,
read_options=read_options)
elif isinstance(default_fragment_scan_options, dict):
self.default_fragment_scan_options = JsonFragmentScanOptions(
**default_fragment_scan_options)
elif isinstance(default_fragment_scan_options, JsonFragmentScanOptions):
self.default_fragment_scan_options = default_fragment_scan_options
elif default_fragment_scan_options is not None:
raise TypeError('`default_fragment_scan_options` must be either '
'a dictionary or an instance of '
'JsonFragmentScanOptions')
cdef void init(self, const shared_ptr[CFileFormat]& sp):
FileFormat.init(self, sp)
self.json_format = <CJsonFileFormat*> sp.get()
cdef _set_default_fragment_scan_options(self, FragmentScanOptions options):
if options.type_name == 'json':
self.json_format.default_fragment_scan_options = options.wrapped
self.default_fragment_scan_options.read_options = options.read_options
self.default_fragment_scan_options.parse_options = options.parse_options
else:
super()._set_default_fragment_scan_options(options)
def equals(self, JsonFileFormat other):
"""
Parameters
----------
other : pyarrow.dataset.JsonFileFormat
Returns
-------
bool
"""
return (other and
self.default_fragment_scan_options ==
other.default_fragment_scan_options)
def __reduce__(self):
return JsonFileFormat, (self.default_fragment_scan_options,)
def __repr__(self):
return "<JsonFileFormat>"
cdef class JsonFragmentScanOptions(FragmentScanOptions):
"""
Scan-specific options for JSON fragments.
Parameters
----------
parse_options : pyarrow.json.ParseOptions
Options regarding JSON parsing.
read_options : pyarrow.json.ReadOptions
General read options.
"""
cdef:
CJsonFragmentScanOptions* json_options
# Avoid mistakingly creating attributes
__slots__ = ()
def __init__(self, JsonParseOptions parse_options=None,
JsonReadOptions read_options=None):
self.init(shared_ptr[CFragmentScanOptions](
new CJsonFragmentScanOptions()))
if parse_options is not None:
self.parse_options = parse_options
if read_options is not None:
self.read_options = read_options
cdef void init(self, const shared_ptr[CFragmentScanOptions]& sp):
FragmentScanOptions.init(self, sp)
self.json_options = <CJsonFragmentScanOptions*> sp.get()
@property
def parse_options(self):
return JsonParseOptions.wrap(self.json_options.parse_options)
@parse_options.setter
def parse_options(self, JsonParseOptions parse_options not None):
self.json_options.parse_options = parse_options.options
@property
def read_options(self):
return JsonReadOptions.wrap(self.json_options.read_options)
@read_options.setter
def read_options(self, JsonReadOptions read_options not None):
self.json_options.read_options = read_options.options
def equals(self, JsonFragmentScanOptions other):
"""
Parameters
----------
other : pyarrow.dataset.JsonFragmentScanOptions
Returns
-------
bool
"""
return (
other and
self.read_options.equals(other.read_options) and
self.parse_options.equals(other.parse_options))
def __reduce__(self):
return JsonFragmentScanOptions, (self.parse_options, self.read_options)
cdef class Partitioning(_Weakrefable):
def __init__(self):
_forbid_instantiation(self.__class__)
cdef init(self, const shared_ptr[CPartitioning]& sp):
self.wrapped = sp
self.partitioning = sp.get()
@staticmethod
cdef wrap(const shared_ptr[CPartitioning]& sp):
type_name = frombytes(sp.get().type_name())
classes = {
'directory': DirectoryPartitioning,
'hive': HivePartitioning,
'filename': FilenamePartitioning,
}
class_ = classes.get(type_name, None)
if class_ is None:
raise TypeError(type_name)
cdef Partitioning self = class_.__new__(class_)
self.init(sp)
return self
cdef inline shared_ptr[CPartitioning] unwrap(self):
return self.wrapped
def __eq__(self, other):
if isinstance(other, Partitioning):
return self.partitioning.Equals(deref((<Partitioning>other).unwrap()))
return False
def parse(self, path):
"""
Parse a path into a partition expression.
Parameters
----------
path : str
Returns
-------
pyarrow.dataset.Expression
"""
cdef CResult[CExpression] result
result = self.partitioning.Parse(tobytes(path))
return Expression.wrap(GetResultValue(result))
@property
def schema(self):
"""The arrow Schema attached to the partitioning."""
return pyarrow_wrap_schema(self.partitioning.schema())
cdef class PartitioningFactory(_Weakrefable):
def __init__(self):
_forbid_instantiation(self.__class__)
cdef init(self, const shared_ptr[CPartitioningFactory]& sp):
self.wrapped = sp
self.factory = sp.get()
@staticmethod
cdef wrap(const shared_ptr[CPartitioningFactory]& sp,
object constructor, object options):
cdef PartitioningFactory self = PartitioningFactory.__new__(
PartitioningFactory
)
self.init(sp)
self.constructor = constructor
self.options = options
return self
cdef inline shared_ptr[CPartitioningFactory] unwrap(self):
return self.wrapped
def __reduce__(self):
return self.constructor, self.options
@property
def type_name(self):
return frombytes(self.factory.type_name())
cdef vector[shared_ptr[CArray]] _partitioning_dictionaries(
Schema schema, dictionaries) except *:
cdef:
vector[shared_ptr[CArray]] c_dictionaries
dictionaries = dictionaries or {}
for field in schema:
dictionary = dictionaries.get(field.name)
if (isinstance(field.type, pa.DictionaryType) and
dictionary is not None):
c_dictionaries.push_back(pyarrow_unwrap_array(dictionary))
else:
c_dictionaries.push_back(<shared_ptr[CArray]> nullptr)
return c_dictionaries
cdef class KeyValuePartitioning(Partitioning):
cdef:
CKeyValuePartitioning* keyvalue_partitioning
def __init__(self):
_forbid_instantiation(self.__class__)
cdef init(self, const shared_ptr[CPartitioning]& sp):
Partitioning.init(self, sp)
self.keyvalue_partitioning = <CKeyValuePartitioning*> sp.get()
self.wrapped = sp
self.partitioning = sp.get()
def __reduce__(self):
dictionaries = self.dictionaries
if dictionaries:
dictionaries = dict(zip(self.schema.names, dictionaries))
segment_encoding = _wrap_segment_encoding(
deref(self.keyvalue_partitioning).segment_encoding()
)
return self.__class__, (self.schema, dictionaries, segment_encoding)
@property
def dictionaries(self):
"""
The unique values for each partition field, if available.
Those values are only available if the Partitioning object was
created through dataset discovery from a PartitioningFactory, or
if the dictionaries were manually specified in the constructor.
If no dictionary field is available, this returns an empty list.
"""
cdef vector[shared_ptr[CArray]] c_arrays
c_arrays = self.keyvalue_partitioning.dictionaries()
res = []
for arr in c_arrays:
if arr.get() == nullptr:
# Partitioning object has not been created through
# inspected Factory
res.append(None)
else:
res.append(pyarrow_wrap_array(arr))
return res
def _constructor_directory_partitioning_factory(*args):
return DirectoryPartitioning.discover(*args)
cdef class DirectoryPartitioning(KeyValuePartitioning):
"""
A Partitioning based on a specified Schema.
The DirectoryPartitioning expects one segment in the file path for each
field in the schema (all fields are required to be present).
For example given schema<year:int16, month:int8> the path "/2009/11" would
be parsed to ("year"_ == 2009 and "month"_ == 11).
Parameters
----------
schema : Schema
The schema that describes the partitions present in the file path.
dictionaries : dict[str, Array]
If the type of any field of `schema` is a dictionary type, the
corresponding entry of `dictionaries` must be an array containing
every value which may be taken by the corresponding column or an
error will be raised in parsing.
segment_encoding : str, default "uri"
After splitting paths into segments, decode the segments. Valid
values are "uri" (URI-decode segments) and "none" (leave as-is).
Returns
-------
DirectoryPartitioning
Examples
--------
>>> from pyarrow.dataset import DirectoryPartitioning
>>> partitioning = DirectoryPartitioning(
... pa.schema([("year", pa.int16()), ("month", pa.int8())]))
>>> print(partitioning.parse("/2009/11/"))
((year == 2009) and (month == 11))
"""
cdef:
CDirectoryPartitioning* directory_partitioning
def __init__(self, Schema schema not None, dictionaries=None,
segment_encoding="uri"):
cdef:
shared_ptr[CDirectoryPartitioning] c_partitioning
CKeyValuePartitioningOptions c_options
c_options.segment_encoding = _get_segment_encoding(segment_encoding)
c_partitioning = make_shared[CDirectoryPartitioning](
pyarrow_unwrap_schema(schema),
_partitioning_dictionaries(schema, dictionaries),
c_options,
)
self.init(<shared_ptr[CPartitioning]> c_partitioning)
cdef init(self, const shared_ptr[CPartitioning]& sp):
KeyValuePartitioning.init(self, sp)
self.directory_partitioning = <CDirectoryPartitioning*> sp.get()
@staticmethod
def discover(field_names=None, infer_dictionary=False,
max_partition_dictionary_size=0,
schema=None, segment_encoding="uri"):
"""
Discover a DirectoryPartitioning.
Parameters
----------
field_names : list of str
The names to associate with the values from the subdirectory names.
If schema is given, will be populated from the schema.
infer_dictionary : bool, default False
When inferring a schema for partition fields, yield dictionary
encoded types instead of plain types. This can be more efficient
when materializing virtual columns, and Expressions parsed by the
finished Partitioning will include dictionaries of all unique
inspected values for each field.
max_partition_dictionary_size : int, default 0
Synonymous with infer_dictionary for backwards compatibility with
1.0: setting this to -1 or None is equivalent to passing
infer_dictionary=True.
schema : Schema, default None
Use this schema instead of inferring a schema from partition
values. Partition values will be validated against this schema
before accumulation into the Partitioning's dictionary.
segment_encoding : str, default "uri"
After splitting paths into segments, decode the segments. Valid
values are "uri" (URI-decode segments) and "none" (leave as-is).
Returns
-------
PartitioningFactory
To be used in the FileSystemFactoryOptions.
"""
cdef:
CPartitioningFactoryOptions c_options
vector[c_string] c_field_names
if max_partition_dictionary_size in {-1, None}:
infer_dictionary = True
elif max_partition_dictionary_size != 0:
raise NotImplementedError("max_partition_dictionary_size must be "
"0, -1, or None")
if infer_dictionary:
c_options.infer_dictionary = True
if schema:
c_options.schema = pyarrow_unwrap_schema(schema)
c_field_names = [tobytes(f.name) for f in schema]
elif not field_names:
raise ValueError(
"Neither field_names nor schema was passed; "
"cannot infer field_names")
else:
c_field_names = [tobytes(s) for s in field_names]
c_options.segment_encoding = _get_segment_encoding(segment_encoding)
return PartitioningFactory.wrap(
CDirectoryPartitioning.MakeFactory(c_field_names, c_options),
_constructor_directory_partitioning_factory,
(field_names, infer_dictionary, max_partition_dictionary_size,
schema, segment_encoding)
)
def _constructor_hive_partitioning_factory(*args):
return HivePartitioning.discover(*args)
cdef class HivePartitioning(KeyValuePartitioning):
"""
A Partitioning for "/$key=$value/" nested directories as found in
Apache Hive.
Multi-level, directory based partitioning scheme originating from
Apache Hive with all data files stored in the leaf directories. Data is
partitioned by static values of a particular column in the schema.
Partition keys are represented in the form $key=$value in directory names.
Field order is ignored, as are missing or unrecognized field names.
For example, given schema<year:int16, month:int8, day:int8>, a possible
path would be "/year=2009/month=11/day=15".
Parameters
----------
schema : Schema
The schema that describes the partitions present in the file path.
dictionaries : dict[str, Array]
If the type of any field of `schema` is a dictionary type, the
corresponding entry of `dictionaries` must be an array containing
every value which may be taken by the corresponding column or an
error will be raised in parsing.
null_fallback : str, default "__HIVE_DEFAULT_PARTITION__"
If any field is None then this fallback will be used as a label
segment_encoding : str, default "uri"
After splitting paths into segments, decode the segments. Valid
values are "uri" (URI-decode segments) and "none" (leave as-is).
Returns
-------
HivePartitioning
Examples
--------
>>> from pyarrow.dataset import HivePartitioning
>>> partitioning = HivePartitioning(
... pa.schema([("year", pa.int16()), ("month", pa.int8())]))
>>> print(partitioning.parse("/year=2009/month=11/"))
((year == 2009) and (month == 11))
"""
cdef:
CHivePartitioning* hive_partitioning
def __init__(self,
Schema schema not None,
dictionaries=None,
null_fallback="__HIVE_DEFAULT_PARTITION__",
segment_encoding="uri"):
cdef:
shared_ptr[CHivePartitioning] c_partitioning
CHivePartitioningOptions c_options
c_options.null_fallback = tobytes(null_fallback)
c_options.segment_encoding = _get_segment_encoding(segment_encoding)
c_partitioning = make_shared[CHivePartitioning](
pyarrow_unwrap_schema(schema),
_partitioning_dictionaries(schema, dictionaries),
c_options,
)
self.init(<shared_ptr[CPartitioning]> c_partitioning)
cdef init(self, const shared_ptr[CPartitioning]& sp):
KeyValuePartitioning.init(self, sp)
self.hive_partitioning = <CHivePartitioning*> sp.get()
def __reduce__(self):
dictionaries = self.dictionaries
if dictionaries:
dictionaries = dict(zip(self.schema.names, dictionaries))
segment_encoding = _wrap_segment_encoding(
deref(self.keyvalue_partitioning).segment_encoding()
)
null_fallback = frombytes(deref(self.hive_partitioning).null_fallback())
return HivePartitioning, (
self.schema, dictionaries, null_fallback, segment_encoding
)
@staticmethod
def discover(infer_dictionary=False,
max_partition_dictionary_size=0,
null_fallback="__HIVE_DEFAULT_PARTITION__",
schema=None,
segment_encoding="uri"):
"""
Discover a HivePartitioning.
Parameters
----------
infer_dictionary : bool, default False
When inferring a schema for partition fields, yield dictionary
encoded types instead of plain. This can be more efficient when
materializing virtual columns, and Expressions parsed by the
finished Partitioning will include dictionaries of all unique
inspected values for each field.
max_partition_dictionary_size : int, default 0
Synonymous with infer_dictionary for backwards compatibility with
1.0: setting this to -1 or None is equivalent to passing
infer_dictionary=True.
null_fallback : str, default "__HIVE_DEFAULT_PARTITION__"
When inferring a schema for partition fields this value will be
replaced by null. The default is set to __HIVE_DEFAULT_PARTITION__
for compatibility with Spark
schema : Schema, default None
Use this schema instead of inferring a schema from partition
values. Partition values will be validated against this schema
before accumulation into the Partitioning's dictionary.
segment_encoding : str, default "uri"
After splitting paths into segments, decode the segments. Valid
values are "uri" (URI-decode segments) and "none" (leave as-is).
Returns
-------
PartitioningFactory
To be used in the FileSystemFactoryOptions.
"""
cdef:
CHivePartitioningFactoryOptions c_options
if max_partition_dictionary_size in {-1, None}:
infer_dictionary = True
elif max_partition_dictionary_size != 0:
raise NotImplementedError("max_partition_dictionary_size must be "
"0, -1, or None")
if infer_dictionary:
c_options.infer_dictionary = True
c_options.null_fallback = tobytes(null_fallback)
if schema:
c_options.schema = pyarrow_unwrap_schema(schema)
c_options.segment_encoding = _get_segment_encoding(segment_encoding)
return PartitioningFactory.wrap(
CHivePartitioning.MakeFactory(c_options),
_constructor_hive_partitioning_factory,
(infer_dictionary, max_partition_dictionary_size, null_fallback,
schema, segment_encoding),
)
def _constructor_filename_partitioning_factory(*args):
return FilenamePartitioning.discover(*args)
cdef class FilenamePartitioning(KeyValuePartitioning):
"""
A Partitioning based on a specified Schema.
The FilenamePartitioning expects one segment in the file name for each
field in the schema (all fields are required to be present) separated
by '_'. For example given schema<year:int16, month:int8> the name
``"2009_11_"`` would be parsed to ("year" == 2009 and "month" == 11).
Parameters
----------
schema : Schema
The schema that describes the partitions present in the file path.
dictionaries : dict[str, Array]
If the type of any field of `schema` is a dictionary type, the
corresponding entry of `dictionaries` must be an array containing
every value which may be taken by the corresponding column or an
error will be raised in parsing.
segment_encoding : str, default "uri"
After splitting paths into segments, decode the segments. Valid
values are "uri" (URI-decode segments) and "none" (leave as-is).
Returns
-------
FilenamePartitioning
Examples
--------
>>> from pyarrow.dataset import FilenamePartitioning
>>> partitioning = FilenamePartitioning(
... pa.schema([("year", pa.int16()), ("month", pa.int8())]))
>>> print(partitioning.parse("2009_11_data.parquet"))
((year == 2009) and (month == 11))
"""
cdef:
CFilenamePartitioning* filename_partitioning
def __init__(self, Schema schema not None, dictionaries=None,
segment_encoding="uri"):
cdef:
shared_ptr[CFilenamePartitioning] c_partitioning
CKeyValuePartitioningOptions c_options
c_options.segment_encoding = _get_segment_encoding(segment_encoding)
c_partitioning = make_shared[CFilenamePartitioning](
pyarrow_unwrap_schema(schema),
_partitioning_dictionaries(schema, dictionaries),
c_options,
)
self.init(<shared_ptr[CPartitioning]> c_partitioning)
cdef init(self, const shared_ptr[CPartitioning]& sp):
KeyValuePartitioning.init(self, sp)
self.filename_partitioning = <CFilenamePartitioning*> sp.get()
@staticmethod
def discover(field_names=None, infer_dictionary=False,
schema=None, segment_encoding="uri"):
"""
Discover a FilenamePartitioning.
Parameters
----------
field_names : list of str
The names to associate with the values from the subdirectory names.
If schema is given, will be populated from the schema.
infer_dictionary : bool, default False
When inferring a schema for partition fields, yield dictionary
encoded types instead of plain types. This can be more efficient
when materializing virtual columns, and Expressions parsed by the
finished Partitioning will include dictionaries of all unique
inspected values for each field.
schema : Schema, default None
Use this schema instead of inferring a schema from partition
values. Partition values will be validated against this schema
before accumulation into the Partitioning's dictionary.
segment_encoding : str, default "uri"
After splitting paths into segments, decode the segments. Valid
values are "uri" (URI-decode segments) and "none" (leave as-is).
Returns
-------
PartitioningFactory
To be used in the FileSystemFactoryOptions.
"""
cdef:
CPartitioningFactoryOptions c_options
vector[c_string] c_field_names
if infer_dictionary:
c_options.infer_dictionary = True
if schema:
c_options.schema = pyarrow_unwrap_schema(schema)
c_field_names = [tobytes(f.name) for f in schema]
elif not field_names:
raise TypeError(
"Neither field_names nor schema was passed; "
"cannot infer field_names")
else:
c_field_names = [tobytes(s) for s in field_names]
c_options.segment_encoding = _get_segment_encoding(segment_encoding)
return PartitioningFactory.wrap(
CFilenamePartitioning.MakeFactory(c_field_names, c_options),
_constructor_filename_partitioning_factory,
(field_names, infer_dictionary, schema, segment_encoding)
)
cdef class DatasetFactory(_Weakrefable):
"""
DatasetFactory is used to create a Dataset, inspect the Schema
of the fragments contained in it, and declare a partitioning.
"""
def __init__(self):
_forbid_instantiation(self.__class__)
cdef init(self, const shared_ptr[CDatasetFactory]& sp):
self.wrapped = sp
self.factory = sp.get()
@staticmethod
cdef wrap(const shared_ptr[CDatasetFactory]& sp):
cdef DatasetFactory self = \
DatasetFactory.__new__(DatasetFactory)
self.init(sp)
return self
cdef inline shared_ptr[CDatasetFactory] unwrap(self) nogil:
return self.wrapped
@property
def root_partition(self):
return Expression.wrap(self.factory.root_partition())
@root_partition.setter
def root_partition(self, Expression expr):
check_status(self.factory.SetRootPartition(expr.unwrap()))
def inspect_schemas(self):
cdef CResult[vector[shared_ptr[CSchema]]] result
cdef CInspectOptions options
with nogil:
result = self.factory.InspectSchemas(options)
schemas = []
for s in GetResultValue(result):
schemas.append(pyarrow_wrap_schema(s))
return schemas
def inspect(self):
"""
Inspect all data fragments and return a common Schema.
Returns
-------
Schema
"""
cdef:
CInspectOptions options
CResult[shared_ptr[CSchema]] result
with nogil:
result = self.factory.Inspect(options)
return pyarrow_wrap_schema(GetResultValue(result))
def finish(self, Schema schema=None):
"""
Create a Dataset using the inspected schema or an explicit schema
(if given).
Parameters
----------
schema : Schema, default None
The schema to conform the source to. If None, the inspected
schema is used.
Returns
-------
Dataset
"""
cdef:
shared_ptr[CSchema] sp_schema
CResult[shared_ptr[CDataset]] result
if schema is not None:
sp_schema = pyarrow_unwrap_schema(schema)
with nogil:
result = self.factory.FinishWithSchema(sp_schema)
else:
with nogil:
result = self.factory.Finish()
return Dataset.wrap(GetResultValue(result))
cdef class FileSystemFactoryOptions(_Weakrefable):
"""
Influences the discovery of filesystem paths.
Parameters
----------
partition_base_dir : str, optional
For the purposes of applying the partitioning, paths will be
stripped of the partition_base_dir. Files not matching the
partition_base_dir prefix will be skipped for partitioning discovery.
The ignored files will still be part of the Dataset, but will not
have partition information.
partitioning : Partitioning/PartitioningFactory, optional
Apply the Partitioning to every discovered Fragment. See Partitioning or
PartitioningFactory documentation.
exclude_invalid_files : bool, optional (default True)
If True, invalid files will be excluded (file format specific check).
This will incur IO for each files in a serial and single threaded
fashion. Disabling this feature will skip the IO, but unsupported
files may be present in the Dataset (resulting in an error at scan
time).
selector_ignore_prefixes : list, optional
When discovering from a Selector (and not from an explicit file list),
ignore files and directories matching any of these prefixes.
By default this is ['.', '_'].
"""
cdef:
CFileSystemFactoryOptions options
__slots__ = () # avoid mistakingly creating attributes
def __init__(self, partition_base_dir=None, partitioning=None,
exclude_invalid_files=None,
list selector_ignore_prefixes=None):
if isinstance(partitioning, PartitioningFactory):
self.partitioning_factory = partitioning
elif isinstance(partitioning, Partitioning):
self.partitioning = partitioning
if partition_base_dir is not None:
self.partition_base_dir = partition_base_dir
if exclude_invalid_files is not None:
self.exclude_invalid_files = exclude_invalid_files
if selector_ignore_prefixes is not None:
self.selector_ignore_prefixes = selector_ignore_prefixes
cdef inline CFileSystemFactoryOptions unwrap(self):
return self.options
@property
def partitioning(self):
"""Partitioning to apply to discovered files.
NOTE: setting this property will overwrite partitioning_factory.
"""
c_partitioning = self.options.partitioning.partitioning()
if c_partitioning.get() == nullptr:
return None
return Partitioning.wrap(c_partitioning)
@partitioning.setter
def partitioning(self, Partitioning value):
self.options.partitioning = (<Partitioning> value).unwrap()
@property
def partitioning_factory(self):
"""PartitioningFactory to apply to discovered files and
discover a Partitioning.
NOTE: setting this property will overwrite partitioning.
"""
c_factory = self.options.partitioning.factory()
if c_factory.get() == nullptr:
return None
return PartitioningFactory.wrap(c_factory, None, None)
@partitioning_factory.setter
def partitioning_factory(self, PartitioningFactory value):
self.options.partitioning = (<PartitioningFactory> value).unwrap()
@property
def partition_base_dir(self):
"""
Base directory to strip paths before applying the partitioning.
"""
return frombytes(self.options.partition_base_dir)
@partition_base_dir.setter
def partition_base_dir(self, value):
self.options.partition_base_dir = tobytes(value)
@property
def exclude_invalid_files(self):
"""Whether to exclude invalid files."""
return self.options.exclude_invalid_files
@exclude_invalid_files.setter
def exclude_invalid_files(self, bint value):
self.options.exclude_invalid_files = value
@property
def selector_ignore_prefixes(self):
"""
List of prefixes. Files matching one of those prefixes will be
ignored by the discovery process.
"""
return [frombytes(p) for p in self.options.selector_ignore_prefixes]
@selector_ignore_prefixes.setter
def selector_ignore_prefixes(self, values):
self.options.selector_ignore_prefixes = [tobytes(v) for v in values]
cdef vector[CFileInfo] unwrap_finfos(finfos):
cdef vector[CFileInfo] o_vect
for fi in finfos:
o_vect.push_back((<FileInfo> fi).unwrap())
return o_vect
cdef class FileSystemDatasetFactory(DatasetFactory):
"""
Create a DatasetFactory from a list of paths with schema inspection.
Parameters
----------
filesystem : pyarrow.fs.FileSystem
Filesystem to discover.
paths_or_selector : pyarrow.fs.FileSelector or list of path-likes
Either a Selector object or a list of path-like objects.
format : FileFormat
Currently only ParquetFileFormat and IpcFileFormat are supported.
options : FileSystemFactoryOptions, optional
Various flags influencing the discovery of filesystem paths.
"""
cdef:
CFileSystemDatasetFactory* filesystem_factory
def __init__(self, FileSystem filesystem not None, paths_or_selector,
FileFormat format not None,
FileSystemFactoryOptions options=None):
cdef:
vector[c_string] paths
vector[CFileInfo] finfos
CFileSelector c_selector
CResult[shared_ptr[CDatasetFactory]] result
shared_ptr[CFileSystem] c_filesystem
shared_ptr[CFileFormat] c_format
CFileSystemFactoryOptions c_options
options = options or FileSystemFactoryOptions()
c_options = options.unwrap()
c_filesystem = filesystem.unwrap()
c_format = format.unwrap()
if isinstance(paths_or_selector, FileSelector):
with nogil:
c_selector = (<FileSelector> paths_or_selector).selector
result = CFileSystemDatasetFactory.MakeFromSelector(
c_filesystem,
c_selector,
c_format,
c_options
)
elif isinstance(paths_or_selector, (list, tuple)):
if len(paths_or_selector) > 0 and isinstance(paths_or_selector[0], FileInfo):
finfos = unwrap_finfos(paths_or_selector)
with nogil:
result = CFileSystemDatasetFactory.MakeFromFileInfos(
c_filesystem,
finfos,
c_format,
c_options
)
else:
paths = [tobytes(s) for s in paths_or_selector]
with nogil:
result = CFileSystemDatasetFactory.MakeFromPaths(
c_filesystem,
paths,
c_format,
c_options
)
else:
raise TypeError('Must pass either paths or a FileSelector, but '
'passed {}'.format(type(paths_or_selector)))
self.init(GetResultValue(result))
cdef init(self, shared_ptr[CDatasetFactory]& sp):
DatasetFactory.init(self, sp)
self.filesystem_factory = <CFileSystemDatasetFactory*> sp.get()
cdef class UnionDatasetFactory(DatasetFactory):
"""
Provides a way to inspect/discover a Dataset's expected schema before
materialization.
Parameters
----------
factories : list of DatasetFactory
"""
cdef:
CUnionDatasetFactory* union_factory
def __init__(self, list factories):
cdef:
DatasetFactory factory
vector[shared_ptr[CDatasetFactory]] c_factories
for factory in factories:
c_factories.push_back(factory.unwrap())
self.init(GetResultValue(CUnionDatasetFactory.Make(c_factories)))
cdef init(self, const shared_ptr[CDatasetFactory]& sp):
DatasetFactory.init(self, sp)
self.union_factory = <CUnionDatasetFactory*> sp.get()
cdef class RecordBatchIterator(_Weakrefable):
"""An iterator over a sequence of record batches."""
cdef:
# An object that must be kept alive with the iterator.
object iterator_owner
# Iterator is a non-POD type and Cython uses offsetof, leading
# to a compiler warning unless wrapped like so
SharedPtrNoGIL[CRecordBatchIterator] iterator
def __init__(self):
_forbid_instantiation(self.__class__, subclasses_instead=False)
@staticmethod
cdef wrap(object owner, CRecordBatchIterator iterator):
cdef RecordBatchIterator self = \
RecordBatchIterator.__new__(RecordBatchIterator)
self.iterator_owner = owner
self.iterator = make_shared[CRecordBatchIterator](move(iterator))
return self
cdef inline shared_ptr[CRecordBatchIterator] unwrap(self) nogil:
return self.iterator
def __iter__(self):
return self
def __next__(self):
cdef shared_ptr[CRecordBatch] record_batch
with nogil:
record_batch = GetResultValue(move(self.iterator.get().Next()))
if record_batch == NULL:
raise StopIteration
return pyarrow_wrap_batch(record_batch)
class TaggedRecordBatch(collections.namedtuple(
"TaggedRecordBatch", ["record_batch", "fragment"])):
"""
A combination of a record batch and the fragment it came from.
Parameters
----------
record_batch : RecordBatch
The record batch.
fragment : Fragment
Fragment of the record batch.
"""
cdef class TaggedRecordBatchIterator(_Weakrefable):
"""An iterator over a sequence of record batches with fragments."""
cdef:
object iterator_owner
SharedPtrNoGIL[CTaggedRecordBatchIterator] iterator
def __init__(self):
_forbid_instantiation(self.__class__, subclasses_instead=False)
@staticmethod
cdef wrap(object owner, CTaggedRecordBatchIterator iterator):
cdef TaggedRecordBatchIterator self = \
TaggedRecordBatchIterator.__new__(TaggedRecordBatchIterator)
self.iterator_owner = owner
self.iterator = make_shared[CTaggedRecordBatchIterator](
move(iterator))
return self
def __iter__(self):
return self
def __next__(self):
cdef CTaggedRecordBatch batch
with nogil:
batch = GetResultValue(move(self.iterator.get().Next()))
if batch.record_batch == NULL:
raise StopIteration
return TaggedRecordBatch(
record_batch=pyarrow_wrap_batch(batch.record_batch),
fragment=Fragment.wrap(batch.fragment))
cdef void _populate_builder(const shared_ptr[CScannerBuilder]& ptr,
object columns=None, Expression filter=None,
int batch_size=_DEFAULT_BATCH_SIZE,
int batch_readahead=_DEFAULT_BATCH_READAHEAD,
int fragment_readahead=_DEFAULT_FRAGMENT_READAHEAD,
bint use_threads=True, MemoryPool memory_pool=None,
FragmentScanOptions fragment_scan_options=None)\
except *:
cdef:
CScannerBuilder *builder
vector[CExpression] c_exprs
builder = ptr.get()
check_status(builder.Filter(_bind(
filter, pyarrow_wrap_schema(builder.schema()))))
if columns is not None:
if isinstance(columns, dict):
for expr in columns.values():
if not isinstance(expr, Expression):
raise TypeError(
"Expected an Expression for a 'column' dictionary "
"value, got {} instead".format(type(expr))
)
c_exprs.push_back((<Expression> expr).unwrap())
check_status(
builder.Project(c_exprs, [tobytes(c) for c in columns.keys()])
)
elif isinstance(columns, list):
check_status(builder.ProjectColumns([tobytes(c) for c in columns]))
else:
raise ValueError(
"Expected a list or a dict for 'columns', "
"got {} instead.".format(type(columns))
)
check_status(builder.BatchSize(batch_size))
check_status(builder.BatchReadahead(batch_readahead))
check_status(builder.FragmentReadahead(fragment_readahead))
check_status(builder.UseThreads(use_threads))
check_status(builder.Pool(maybe_unbox_memory_pool(memory_pool)))
if fragment_scan_options:
check_status(
builder.FragmentScanOptions(fragment_scan_options.wrapped))
cdef class Scanner(_Weakrefable):
"""A materialized scan operation with context and options bound.
A scanner is the class that glues the scan tasks, data fragments and data
sources together.
"""
def __init__(self):
_forbid_instantiation(self.__class__)
cdef void init(self, const shared_ptr[CScanner]& sp):
self.wrapped = sp
self.scanner = sp.get()
@staticmethod
cdef wrap(const shared_ptr[CScanner]& sp):
cdef Scanner self = Scanner.__new__(Scanner)
self.init(sp)
return self
cdef inline shared_ptr[CScanner] unwrap(self):
return self.wrapped
@staticmethod
cdef shared_ptr[CScanOptions] _make_scan_options(Dataset dataset, dict py_scanoptions) except *:
cdef:
shared_ptr[CScannerBuilder] builder = make_shared[CScannerBuilder](dataset.unwrap())
py_scanoptions = dataset._scanner_options(py_scanoptions)
# Need to explicitly expand the arguments as Cython doesn't support
# keyword expansion in cdef functions.
_populate_builder(
builder,
columns=py_scanoptions.get("columns"),
filter=py_scanoptions.get("filter"),
batch_size=py_scanoptions.get("batch_size", _DEFAULT_BATCH_SIZE),
batch_readahead=py_scanoptions.get(
"batch_readahead", _DEFAULT_BATCH_READAHEAD),
fragment_readahead=py_scanoptions.get(
"fragment_readahead", _DEFAULT_FRAGMENT_READAHEAD),
use_threads=py_scanoptions.get("use_threads", True),
memory_pool=py_scanoptions.get("memory_pool"),
fragment_scan_options=py_scanoptions.get("fragment_scan_options"))
return GetResultValue(deref(builder).GetScanOptions())
@staticmethod
def from_dataset(Dataset dataset not None, *,
object columns=None,
Expression filter=None,
int batch_size=_DEFAULT_BATCH_SIZE,
int batch_readahead=_DEFAULT_BATCH_READAHEAD,
int fragment_readahead=_DEFAULT_FRAGMENT_READAHEAD,
FragmentScanOptions fragment_scan_options=None,
bint use_threads=True, MemoryPool memory_pool=None):
"""
Create Scanner from Dataset,
Parameters
----------
dataset : Dataset
Dataset to scan.
columns : list[str] or dict[str, Expression], default None
The columns to project. This can be a list of column names to
include (order and duplicates will be preserved), or a dictionary
with {new_column_name: expression} values for more advanced
projections.
The list of columns or expressions may use the special fields
`__batch_index` (the index of the batch within the fragment),
`__fragment_index` (the index of the fragment within the dataset),
`__last_in_fragment` (whether the batch is last in fragment), and
`__filename` (the name of the source file or a description of the
source fragment).
The columns will be passed down to Datasets and corresponding data
fragments to avoid loading, copying, and deserializing columns
that will not be required further down the compute chain.
By default all of the available columns are projected. Raises
an exception if any of the referenced column names does not exist
in the dataset's Schema.
filter : Expression, default None
Scan will return only the rows matching the filter.
If possible the predicate will be pushed down to exploit the
partition information or internal metadata found in the data
source, e.g. Parquet statistics. Otherwise filters the loaded
RecordBatches before yielding them.
batch_size : int, default 131_072
The maximum row count for scanned record batches. If scanned
record batches are overflowing memory then this method can be
called to reduce their size.
batch_readahead : int, default 16
The number of batches to read ahead in a file. This might not work
for all file formats. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_readahead : int, default 4
The number of files to read ahead. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_scan_options : FragmentScanOptions, default None
Options specific to a particular scan and fragment type, which
can change between different scans of the same dataset.
use_threads : bool, default True
If enabled, then maximum parallelism will be used determined by
the number of available CPU cores.
memory_pool : MemoryPool, default None
For memory allocations, if required. If not specified, uses the
default pool.
"""
cdef:
shared_ptr[CScanOptions] options
shared_ptr[CScannerBuilder] builder
shared_ptr[CScanner] scanner
options = Scanner._make_scan_options(
dataset,
dict(columns=columns, filter=filter, batch_size=batch_size,
batch_readahead=batch_readahead,
fragment_readahead=fragment_readahead, use_threads=use_threads,
memory_pool=memory_pool, fragment_scan_options=fragment_scan_options)
)
builder = make_shared[CScannerBuilder](dataset.unwrap(), options)
scanner = GetResultValue(builder.get().Finish())
return Scanner.wrap(scanner)
@staticmethod
def from_fragment(Fragment fragment not None, *, Schema schema=None,
object columns=None, Expression filter=None,
int batch_size=_DEFAULT_BATCH_SIZE,
int batch_readahead=_DEFAULT_BATCH_READAHEAD,
int fragment_readahead=_DEFAULT_FRAGMENT_READAHEAD,
FragmentScanOptions fragment_scan_options=None,
bint use_threads=True, MemoryPool memory_pool=None):
"""
Create Scanner from Fragment,
Parameters
----------
fragment : Fragment
fragment to scan.
schema : Schema, optional
The schema of the fragment.
columns : list[str] or dict[str, Expression], default None
The columns to project. This can be a list of column names to
include (order and duplicates will be preserved), or a dictionary
with {new_column_name: expression} values for more advanced
projections.
The list of columns or expressions may use the special fields
`__batch_index` (the index of the batch within the fragment),
`__fragment_index` (the index of the fragment within the dataset),
`__last_in_fragment` (whether the batch is last in fragment), and
`__filename` (the name of the source file or a description of the
source fragment).
The columns will be passed down to Datasets and corresponding data
fragments to avoid loading, copying, and deserializing columns
that will not be required further down the compute chain.
By default all of the available columns are projected. Raises
an exception if any of the referenced column names does not exist
in the dataset's Schema.
filter : Expression, default None
Scan will return only the rows matching the filter.
If possible the predicate will be pushed down to exploit the
partition information or internal metadata found in the data
source, e.g. Parquet statistics. Otherwise filters the loaded
RecordBatches before yielding them.
batch_size : int, default 131_072
The maximum row count for scanned record batches. If scanned
record batches are overflowing memory then this method can be
called to reduce their size.
batch_readahead : int, default 16
The number of batches to read ahead in a file. This might not work
for all file formats. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_readahead : int, default 4
The number of files to read ahead. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_scan_options : FragmentScanOptions, default None
Options specific to a particular scan and fragment type, which
can change between different scans of the same dataset.
use_threads : bool, default True
If enabled, then maximum parallelism will be used determined by
the number of available CPU cores.
memory_pool : MemoryPool, default None
For memory allocations, if required. If not specified, uses the
default pool.
"""
cdef:
shared_ptr[CScanOptions] options = make_shared[CScanOptions]()
shared_ptr[CScannerBuilder] builder
shared_ptr[CScanner] scanner
schema = schema or fragment.physical_schema
builder = make_shared[CScannerBuilder](pyarrow_unwrap_schema(schema),
fragment.unwrap(), options)
_populate_builder(builder, columns=columns, filter=filter,
batch_size=batch_size, batch_readahead=batch_readahead,
fragment_readahead=fragment_readahead,
use_threads=use_threads,
memory_pool=memory_pool,
fragment_scan_options=fragment_scan_options)
scanner = GetResultValue(builder.get().Finish())
return Scanner.wrap(scanner)
@staticmethod
def from_batches(source, *, Schema schema=None, object columns=None,
Expression filter=None, int batch_size=_DEFAULT_BATCH_SIZE,
int batch_readahead=_DEFAULT_BATCH_READAHEAD,
int fragment_readahead=_DEFAULT_FRAGMENT_READAHEAD,
FragmentScanOptions fragment_scan_options=None,
bint use_threads=True, MemoryPool memory_pool=None):
"""
Create a Scanner from an iterator of batches.
This creates a scanner which can be used only once. It is
intended to support writing a dataset (which takes a scanner)
from a source which can be read only once (e.g. a
RecordBatchReader or generator).
Parameters
----------
source : Iterator
The iterator of Batches.
schema : Schema
The schema of the batches.
columns : list[str] or dict[str, Expression], default None
The columns to project. This can be a list of column names to
include (order and duplicates will be preserved), or a dictionary
with {new_column_name: expression} values for more advanced
projections.
The list of columns or expressions may use the special fields
`__batch_index` (the index of the batch within the fragment),
`__fragment_index` (the index of the fragment within the dataset),
`__last_in_fragment` (whether the batch is last in fragment), and
`__filename` (the name of the source file or a description of the
source fragment).
The columns will be passed down to Datasets and corresponding data
fragments to avoid loading, copying, and deserializing columns
that will not be required further down the compute chain.
By default all of the available columns are projected. Raises
an exception if any of the referenced column names does not exist
in the dataset's Schema.
filter : Expression, default None
Scan will return only the rows matching the filter.
If possible the predicate will be pushed down to exploit the
partition information or internal metadata found in the data
source, e.g. Parquet statistics. Otherwise filters the loaded
RecordBatches before yielding them.
batch_size : int, default 131_072
The maximum row count for scanned record batches. If scanned
record batches are overflowing memory then this method can be
called to reduce their size.
batch_readahead : int, default 16
The number of batches to read ahead in a file. This might not work
for all file formats. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_readahead : int, default 4
The number of files to read ahead. Increasing this number will increase
RAM usage but could also improve IO utilization.
fragment_scan_options : FragmentScanOptions, default None
Options specific to a particular scan and fragment type, which
can change between different scans of the same dataset.
use_threads : bool, default True
If enabled, then maximum parallelism will be used determined by
the number of available CPU cores.
memory_pool : MemoryPool, default None
For memory allocations, if required. If not specified, uses the
default pool.
"""
cdef:
shared_ptr[CScannerBuilder] builder
shared_ptr[CScanner] scanner
RecordBatchReader reader
if isinstance(source, pa.ipc.RecordBatchReader):
if schema:
raise ValueError('Cannot specify a schema when providing '
'a RecordBatchReader')
reader = source
elif _is_iterable(source):
if schema is None:
raise ValueError('Must provide schema to construct scanner '
'from an iterable')
reader = pa.ipc.RecordBatchReader.from_batches(schema, source)
else:
raise TypeError('Expected a RecordBatchReader or an iterable of '
'batches instead of the given type: ' +
type(source).__name__)
builder = CScannerBuilder.FromRecordBatchReader(reader.reader)
_populate_builder(builder, columns=columns, filter=filter,
batch_size=batch_size, batch_readahead=batch_readahead,
fragment_readahead=fragment_readahead, use_threads=use_threads,
memory_pool=memory_pool,
fragment_scan_options=fragment_scan_options)
scanner = GetResultValue(builder.get().Finish())
return Scanner.wrap(scanner)
@property
def dataset_schema(self):
"""The schema with which batches will be read from fragments."""
return pyarrow_wrap_schema(
self.scanner.options().get().dataset_schema)
@property
def projected_schema(self):
"""
The materialized schema of the data, accounting for projections.
This is the schema of any data returned from the scanner.
"""
return pyarrow_wrap_schema(
self.scanner.options().get().projected_schema)
def to_batches(self):
"""
Consume a Scanner in record batches.
Returns
-------
record_batches : iterator of RecordBatch
"""
def _iterator(batch_iter):
for batch in batch_iter:
yield batch.record_batch
# Don't make ourselves a generator so errors are raised immediately
return _iterator(self.scan_batches())
def scan_batches(self):
"""
Consume a Scanner in record batches with corresponding fragments.
Returns
-------
record_batches : iterator of TaggedRecordBatch
"""
cdef CTaggedRecordBatchIterator iterator
with nogil:
iterator = move(GetResultValue(self.scanner.ScanBatches()))
# Don't make ourselves a generator so errors are raised immediately
return TaggedRecordBatchIterator.wrap(self, move(iterator))
def to_table(self):
"""
Convert a Scanner into a Table.
Use this convenience utility with care. This will serially materialize
the Scan result in memory before creating the Table.
Returns
-------
Table
"""
cdef CResult[shared_ptr[CTable]] result
with nogil:
result = self.scanner.ToTable()
return pyarrow_wrap_table(GetResultValue(result))
def take(self, object indices):
"""
Select rows of data by index.
Will only consume as many batches of the underlying dataset as
needed. Otherwise, this is equivalent to
``to_table().take(indices)``.
Parameters
----------
indices : Array or array-like
indices of rows to select in the dataset.
Returns
-------
Table
"""
cdef CResult[shared_ptr[CTable]] result
cdef shared_ptr[CArray] c_indices
if not isinstance(indices, pa.Array):
indices = pa.array(indices)
c_indices = pyarrow_unwrap_array(indices)
with nogil:
result = self.scanner.TakeRows(deref(c_indices))
return pyarrow_wrap_table(GetResultValue(result))
def head(self, int num_rows):
"""
Load the first N rows of the dataset.
Parameters
----------
num_rows : int
The number of rows to load.
Returns
-------
Table
"""
cdef CResult[shared_ptr[CTable]] result
with nogil:
result = self.scanner.Head(num_rows)
return pyarrow_wrap_table(GetResultValue(result))
def count_rows(self):
"""
Count rows matching the scanner filter.
Returns
-------
count : int
"""
cdef CResult[int64_t] result
with nogil:
result = self.scanner.CountRows()
return GetResultValue(result)
def to_reader(self):
"""Consume this scanner as a RecordBatchReader.
Returns
-------
RecordBatchReader
"""
cdef RecordBatchReader reader
reader = RecordBatchReader.__new__(RecordBatchReader)
reader.reader = GetResultValue(self.scanner.ToRecordBatchReader())
return reader
def get_partition_keys(Expression partition_expression):
"""
Extract partition keys (equality constraints between a field and a scalar)
from an expression as a dict mapping the field's name to its value.
NB: All expressions yielded by a HivePartitioning or DirectoryPartitioning
will be conjunctions of equality conditions and are accessible through this
function. Other subexpressions will be ignored.
Parameters
----------
partition_expression : pyarrow.dataset.Expression
Returns
-------
dict
Examples
--------
For example, an expression of
<pyarrow.dataset.Expression ((part == A:string) and (year == 2016:int32))>
is converted to {'part': 'A', 'year': 2016}
"""
cdef:
CExpression expr = partition_expression.unwrap()
pair[CFieldRef, CDatum] ref_val
out = {}
for ref_val in GetResultValue(CExtractKnownFieldValues(expr)).map:
assert ref_val.first.name() != nullptr
assert ref_val.second.kind() == DatumType_SCALAR
val = pyarrow_wrap_scalar(ref_val.second.scalar())
out[frombytes(deref(ref_val.first.name()))] = val.as_py()
return out
cdef class WrittenFile(_Weakrefable):
"""
Metadata information about files written as
part of a dataset write operation
Parameters
----------
path : str
Path to the file.
metadata : pyarrow.parquet.FileMetaData, optional
For Parquet files, the Parquet file metadata.
size : int
The size of the file in bytes.
"""
def __init__(self, path, metadata, size):
self.path = path
self.metadata = metadata
self.size = size
cdef void _filesystemdataset_write_visitor(
dict visit_args,
CFileWriter* file_writer):
cdef:
str path
str base_dir
WrittenFile written_file
FileFormat file_format
path = frombytes(deref(file_writer).destination().path)
base_dir = frombytes(visit_args['base_dir'])
file_format = FileFormat.wrap(file_writer.format())
written_file = file_format._finish_write(path, base_dir, file_writer)
visit_args['file_visitor'](written_file)
def _filesystemdataset_write(
Scanner data not None,
object base_dir not None,
str basename_template not None,
FileSystem filesystem not None,
Partitioning partitioning not None,
FileWriteOptions file_options not None,
int max_partitions,
object file_visitor,
str existing_data_behavior not None,
int max_open_files,
int max_rows_per_file,
int min_rows_per_group,
int max_rows_per_group,
bool create_dir
):
"""
CFileSystemDataset.Write wrapper
"""
cdef:
CFileSystemDatasetWriteOptions c_options
shared_ptr[CScanner] c_scanner
dict visit_args
c_options.file_write_options = file_options.unwrap()
c_options.filesystem = filesystem.unwrap()
c_options.base_dir = tobytes(_stringify_path(base_dir))
c_options.partitioning = partitioning.unwrap()
c_options.max_partitions = max_partitions
c_options.max_open_files = max_open_files
c_options.max_rows_per_file = max_rows_per_file
c_options.max_rows_per_group = max_rows_per_group
c_options.min_rows_per_group = min_rows_per_group
c_options.basename_template = tobytes(basename_template)
if existing_data_behavior == 'error':
c_options.existing_data_behavior = ExistingDataBehavior_ERROR
elif existing_data_behavior == 'overwrite_or_ignore':
c_options.existing_data_behavior =\
ExistingDataBehavior_OVERWRITE_OR_IGNORE
elif existing_data_behavior == 'delete_matching':
c_options.existing_data_behavior = ExistingDataBehavior_DELETE_MATCHING
else:
raise ValueError(
("existing_data_behavior must be one of 'error', ",
"'overwrite_or_ignore' or 'delete_matching'")
)
c_options.create_dir = create_dir
if file_visitor is not None:
visit_args = {'base_dir': c_options.base_dir,
'file_visitor': file_visitor}
# Need to use post_finish because parquet metadata is not available
# until after Finish has been called
c_options.writer_post_finish = BindFunction[cb_writer_finish_internal](
&_filesystemdataset_write_visitor, visit_args)
c_scanner = data.unwrap()
with nogil:
check_status(CFileSystemDataset.Write(c_options, c_scanner))
cdef class _ScanNodeOptions(ExecNodeOptions):
def _set_options(self, Dataset dataset, dict scan_options):
cdef:
shared_ptr[CScanOptions] c_scan_options
c_scan_options = Scanner._make_scan_options(dataset, scan_options)
self.wrapped.reset(
new CScanNodeOptions(dataset.unwrap(), c_scan_options)
)
class ScanNodeOptions(_ScanNodeOptions):
"""
A Source node which yields batches from a Dataset scan.
This is the option class for the "scan" node factory.
This node is capable of applying pushdown projections or filters
to the file readers which reduce the amount of data that needs to
be read (if supported by the file format). But note that this does not
construct associated filter or project nodes to perform the final
filtering or projection. Rather, you may supply the same filter
expression or projection to the scan node that you also supply
to the filter or project node.
Yielded batches will be augmented with fragment/batch indices to
enable stable ordering for simple ExecPlans.
Parameters
----------
dataset : pyarrow.dataset.Dataset
The table which acts as the data source.
**kwargs : dict, optional
Scan options. See `Scanner.from_dataset` for possible arguments.
"""
def __init__(self, Dataset dataset, **kwargs):
self._set_options(dataset, kwargs)
|