File size: 72,349 Bytes
fa6fb51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# cython: profile=False
# distutils: language = c++
from collections.abc import Sequence
from textwrap import indent
import warnings
from cython.operator cimport dereference as deref
from pyarrow.includes.common cimport *
from pyarrow.includes.libarrow cimport *
from pyarrow.includes.libarrow_python cimport *
from pyarrow.lib cimport (_Weakrefable, Buffer, Schema,
check_status,
MemoryPool, maybe_unbox_memory_pool,
Table, NativeFile,
pyarrow_wrap_chunked_array,
pyarrow_wrap_schema,
pyarrow_unwrap_schema,
pyarrow_wrap_table,
pyarrow_wrap_batch,
pyarrow_wrap_scalar,
NativeFile, get_reader, get_writer,
string_to_timeunit)
from pyarrow.lib import (ArrowException, NativeFile, BufferOutputStream,
_stringify_path,
tobytes, frombytes)
cimport cpython as cp
_DEFAULT_ROW_GROUP_SIZE = 1024*1024
_MAX_ROW_GROUP_SIZE = 64*1024*1024
cdef class Statistics(_Weakrefable):
"""Statistics for a single column in a single row group."""
def __cinit__(self):
pass
def __repr__(self):
return """{}
has_min_max: {}
min: {}
max: {}
null_count: {}
distinct_count: {}
num_values: {}
physical_type: {}
logical_type: {}
converted_type (legacy): {}""".format(object.__repr__(self),
self.has_min_max,
self.min,
self.max,
self.null_count,
self.distinct_count,
self.num_values,
self.physical_type,
str(self.logical_type),
self.converted_type)
def to_dict(self):
"""
Get dictionary representation of statistics.
Returns
-------
dict
Dictionary with a key for each attribute of this class.
"""
d = dict(
has_min_max=self.has_min_max,
min=self.min,
max=self.max,
null_count=self.null_count,
distinct_count=self.distinct_count,
num_values=self.num_values,
physical_type=self.physical_type
)
return d
def __eq__(self, other):
try:
return self.equals(other)
except TypeError:
return NotImplemented
def equals(self, Statistics other):
"""
Return whether the two column statistics objects are equal.
Parameters
----------
other : Statistics
Statistics to compare against.
Returns
-------
are_equal : bool
"""
return self.statistics.get().Equals(deref(other.statistics.get()))
@property
def has_min_max(self):
"""Whether min and max are present (bool)."""
return self.statistics.get().HasMinMax()
@property
def has_null_count(self):
"""Whether null count is present (bool)."""
return self.statistics.get().HasNullCount()
@property
def has_distinct_count(self):
"""Whether distinct count is preset (bool)."""
return self.statistics.get().HasDistinctCount()
@property
def min_raw(self):
"""Min value as physical type (bool, int, float, or bytes)."""
if self.has_min_max:
return _cast_statistic_raw_min(self.statistics.get())
else:
return None
@property
def max_raw(self):
"""Max value as physical type (bool, int, float, or bytes)."""
if self.has_min_max:
return _cast_statistic_raw_max(self.statistics.get())
else:
return None
@property
def min(self):
"""
Min value as logical type.
Returned as the Python equivalent of logical type, such as datetime.date
for dates and decimal.Decimal for decimals.
"""
if self.has_min_max:
min_scalar, _ = _cast_statistics(self.statistics.get())
return min_scalar.as_py()
else:
return None
@property
def max(self):
"""
Max value as logical type.
Returned as the Python equivalent of logical type, such as datetime.date
for dates and decimal.Decimal for decimals.
"""
if self.has_min_max:
_, max_scalar = _cast_statistics(self.statistics.get())
return max_scalar.as_py()
else:
return None
@property
def null_count(self):
"""Number of null values in chunk (int)."""
if self.has_null_count:
return self.statistics.get().null_count()
else:
return None
@property
def distinct_count(self):
"""Distinct number of values in chunk (int)."""
if self.has_distinct_count:
return self.statistics.get().distinct_count()
else:
return None
@property
def num_values(self):
"""Number of non-null values (int)."""
return self.statistics.get().num_values()
@property
def physical_type(self):
"""Physical type of column (str)."""
raw_physical_type = self.statistics.get().physical_type()
return physical_type_name_from_enum(raw_physical_type)
@property
def logical_type(self):
"""Logical type of column (:class:`ParquetLogicalType`)."""
return wrap_logical_type(self.statistics.get().descr().logical_type())
@property
def converted_type(self):
"""Legacy converted type (str or None)."""
raw_converted_type = self.statistics.get().descr().converted_type()
return converted_type_name_from_enum(raw_converted_type)
cdef class ParquetLogicalType(_Weakrefable):
"""Logical type of parquet type."""
cdef:
shared_ptr[const CParquetLogicalType] type
def __cinit__(self):
pass
cdef init(self, const shared_ptr[const CParquetLogicalType]& type):
self.type = type
def __repr__(self):
return "{}\n {}".format(object.__repr__(self), str(self))
def __str__(self):
return frombytes(self.type.get().ToString(), safe=True)
def to_json(self):
"""
Get a JSON string containing type and type parameters.
Returns
-------
json : str
JSON representation of type, with at least a field called 'Type'
which contains the type name. If the type is parameterized, such
as a decimal with scale and precision, will contain those as fields
as well.
"""
return frombytes(self.type.get().ToJSON())
@property
def type(self):
"""Name of the logical type (str)."""
return logical_type_name_from_enum(self.type.get().type())
cdef wrap_logical_type(const shared_ptr[const CParquetLogicalType]& type):
cdef ParquetLogicalType out = ParquetLogicalType()
out.init(type)
return out
cdef _cast_statistic_raw_min(CStatistics* statistics):
cdef ParquetType physical_type = statistics.physical_type()
cdef uint32_t type_length = statistics.descr().type_length()
if physical_type == ParquetType_BOOLEAN:
return (<CBoolStatistics*> statistics).min()
elif physical_type == ParquetType_INT32:
return (<CInt32Statistics*> statistics).min()
elif physical_type == ParquetType_INT64:
return (<CInt64Statistics*> statistics).min()
elif physical_type == ParquetType_FLOAT:
return (<CFloatStatistics*> statistics).min()
elif physical_type == ParquetType_DOUBLE:
return (<CDoubleStatistics*> statistics).min()
elif physical_type == ParquetType_BYTE_ARRAY:
return _box_byte_array((<CByteArrayStatistics*> statistics).min())
elif physical_type == ParquetType_FIXED_LEN_BYTE_ARRAY:
return _box_flba((<CFLBAStatistics*> statistics).min(), type_length)
cdef _cast_statistic_raw_max(CStatistics* statistics):
cdef ParquetType physical_type = statistics.physical_type()
cdef uint32_t type_length = statistics.descr().type_length()
if physical_type == ParquetType_BOOLEAN:
return (<CBoolStatistics*> statistics).max()
elif physical_type == ParquetType_INT32:
return (<CInt32Statistics*> statistics).max()
elif physical_type == ParquetType_INT64:
return (<CInt64Statistics*> statistics).max()
elif physical_type == ParquetType_FLOAT:
return (<CFloatStatistics*> statistics).max()
elif physical_type == ParquetType_DOUBLE:
return (<CDoubleStatistics*> statistics).max()
elif physical_type == ParquetType_BYTE_ARRAY:
return _box_byte_array((<CByteArrayStatistics*> statistics).max())
elif physical_type == ParquetType_FIXED_LEN_BYTE_ARRAY:
return _box_flba((<CFLBAStatistics*> statistics).max(), type_length)
cdef _cast_statistics(CStatistics* statistics):
cdef:
shared_ptr[CScalar] c_min
shared_ptr[CScalar] c_max
check_status(StatisticsAsScalars(statistics[0], &c_min, &c_max))
return (pyarrow_wrap_scalar(c_min), pyarrow_wrap_scalar(c_max))
cdef _box_byte_array(ParquetByteArray val):
return cp.PyBytes_FromStringAndSize(<char*> val.ptr, <Py_ssize_t> val.len)
cdef _box_flba(ParquetFLBA val, uint32_t len):
return cp.PyBytes_FromStringAndSize(<char*> val.ptr, <Py_ssize_t> len)
cdef class ColumnChunkMetaData(_Weakrefable):
"""Column metadata for a single row group."""
def __cinit__(self):
pass
def __repr__(self):
statistics = indent(repr(self.statistics), 4 * ' ')
return """{0}
file_offset: {1}
file_path: {2}
physical_type: {3}
num_values: {4}
path_in_schema: {5}
is_stats_set: {6}
statistics:
{7}
compression: {8}
encodings: {9}
has_dictionary_page: {10}
dictionary_page_offset: {11}
data_page_offset: {12}
total_compressed_size: {13}
total_uncompressed_size: {14}""".format(object.__repr__(self),
self.file_offset,
self.file_path,
self.physical_type,
self.num_values,
self.path_in_schema,
self.is_stats_set,
statistics,
self.compression,
self.encodings,
self.has_dictionary_page,
self.dictionary_page_offset,
self.data_page_offset,
self.total_compressed_size,
self.total_uncompressed_size)
def to_dict(self):
"""
Get dictionary representation of the column chunk metadata.
Returns
-------
dict
Dictionary with a key for each attribute of this class.
"""
statistics = self.statistics.to_dict() if self.is_stats_set else None
d = dict(
file_offset=self.file_offset,
file_path=self.file_path,
physical_type=self.physical_type,
num_values=self.num_values,
path_in_schema=self.path_in_schema,
is_stats_set=self.is_stats_set,
statistics=statistics,
compression=self.compression,
encodings=self.encodings,
has_dictionary_page=self.has_dictionary_page,
dictionary_page_offset=self.dictionary_page_offset,
data_page_offset=self.data_page_offset,
total_compressed_size=self.total_compressed_size,
total_uncompressed_size=self.total_uncompressed_size
)
return d
def __eq__(self, other):
try:
return self.equals(other)
except TypeError:
return NotImplemented
def equals(self, ColumnChunkMetaData other):
"""
Return whether the two column chunk metadata objects are equal.
Parameters
----------
other : ColumnChunkMetaData
Metadata to compare against.
Returns
-------
are_equal : bool
"""
return self.metadata.Equals(deref(other.metadata))
@property
def file_offset(self):
"""Offset into file where column chunk is located (int)."""
return self.metadata.file_offset()
@property
def file_path(self):
"""Optional file path if set (str or None)."""
return frombytes(self.metadata.file_path())
@property
def physical_type(self):
"""Physical type of column (str)."""
return physical_type_name_from_enum(self.metadata.type())
@property
def num_values(self):
"""Total number of values (int)."""
return self.metadata.num_values()
@property
def path_in_schema(self):
"""Nested path to field, separated by periods (str)."""
path = self.metadata.path_in_schema().get().ToDotString()
return frombytes(path)
@property
def is_stats_set(self):
"""Whether or not statistics are present in metadata (bool)."""
return self.metadata.is_stats_set()
@property
def statistics(self):
"""Statistics for column chunk (:class:`Statistics`)."""
if not self.metadata.is_stats_set():
return None
statistics = Statistics()
statistics.init(self.metadata.statistics(), self)
return statistics
@property
def compression(self):
"""
Type of compression used for column (str).
One of 'UNCOMPRESSED', 'SNAPPY', 'GZIP', 'LZO', 'BROTLI', 'LZ4', 'ZSTD',
or 'UNKNOWN'.
"""
return compression_name_from_enum(self.metadata.compression())
@property
def encodings(self):
"""
Encodings used for column (tuple of str).
One of 'PLAIN', 'BIT_PACKED', 'RLE', 'BYTE_STREAM_SPLIT', 'DELTA_BINARY_PACKED',
'DELTA_LENGTH_BYTE_ARRAY', 'DELTA_BYTE_ARRAY'.
"""
return tuple(map(encoding_name_from_enum, self.metadata.encodings()))
@property
def has_dictionary_page(self):
"""Whether there is dictionary data present in the column chunk (bool)."""
return bool(self.metadata.has_dictionary_page())
@property
def dictionary_page_offset(self):
"""Offset of dictionary page relative to column chunk offset (int)."""
if self.has_dictionary_page:
return self.metadata.dictionary_page_offset()
else:
return None
@property
def data_page_offset(self):
"""Offset of data page relative to column chunk offset (int)."""
return self.metadata.data_page_offset()
@property
def has_index_page(self):
"""Not yet supported."""
raise NotImplementedError('not supported in parquet-cpp')
@property
def index_page_offset(self):
"""Not yet supported."""
raise NotImplementedError("parquet-cpp doesn't return valid values")
@property
def total_compressed_size(self):
"""Compressed size in bytes (int)."""
return self.metadata.total_compressed_size()
@property
def total_uncompressed_size(self):
"""Uncompressed size in bytes (int)."""
return self.metadata.total_uncompressed_size()
@property
def has_offset_index(self):
"""Whether the column chunk has an offset index"""
return self.metadata.GetOffsetIndexLocation().has_value()
@property
def has_column_index(self):
"""Whether the column chunk has a column index"""
return self.metadata.GetColumnIndexLocation().has_value()
cdef class SortingColumn:
"""
Sorting specification for a single column.
Returned by :meth:`RowGroupMetaData.sorting_columns` and used in
:class:`ParquetWriter` to specify the sort order of the data.
Parameters
----------
column_index : int
Index of column that data is sorted by.
descending : bool, default False
Whether column is sorted in descending order.
nulls_first : bool, default False
Whether null values appear before valid values.
Notes
-----
Column indices are zero-based, refer only to leaf fields, and are in
depth-first order. This may make the column indices for nested schemas
different from what you expect. In most cases, it will be easier to
specify the sort order using column names instead of column indices
and converting using the ``from_ordering`` method.
Examples
--------
In other APIs, sort order is specified by names, such as:
>>> sort_order = [('id', 'ascending'), ('timestamp', 'descending')]
For Parquet, the column index must be used instead:
>>> import pyarrow.parquet as pq
>>> [pq.SortingColumn(0), pq.SortingColumn(1, descending=True)]
[SortingColumn(column_index=0, descending=False, nulls_first=False), SortingColumn(column_index=1, descending=True, nulls_first=False)]
Convert the sort_order into the list of sorting columns with
``from_ordering`` (note that the schema must be provided as well):
>>> import pyarrow as pa
>>> schema = pa.schema([('id', pa.int64()), ('timestamp', pa.timestamp('ms'))])
>>> sorting_columns = pq.SortingColumn.from_ordering(schema, sort_order)
>>> sorting_columns
(SortingColumn(column_index=0, descending=False, nulls_first=False), SortingColumn(column_index=1, descending=True, nulls_first=False))
Convert back to the sort order with ``to_ordering``:
>>> pq.SortingColumn.to_ordering(schema, sorting_columns)
((('id', 'ascending'), ('timestamp', 'descending')), 'at_end')
See Also
--------
RowGroupMetaData.sorting_columns
"""
cdef int column_index
cdef c_bool descending
cdef c_bool nulls_first
def __init__(self, int column_index, c_bool descending=False, c_bool nulls_first=False):
self.column_index = column_index
self.descending = descending
self.nulls_first = nulls_first
@classmethod
def from_ordering(cls, Schema schema, sort_keys, null_placement='at_end'):
"""
Create a tuple of SortingColumn objects from the same arguments as
:class:`pyarrow.compute.SortOptions`.
Parameters
----------
schema : Schema
Schema of the input data.
sort_keys : Sequence of (name, order) tuples
Names of field/column keys (str) to sort the input on,
along with the order each field/column is sorted in.
Accepted values for `order` are "ascending", "descending".
null_placement : {'at_start', 'at_end'}, default 'at_end'
Where null values should appear in the sort order.
Returns
-------
sorting_columns : tuple of SortingColumn
"""
if null_placement == 'at_start':
nulls_first = True
elif null_placement == 'at_end':
nulls_first = False
else:
raise ValueError('null_placement must be "at_start" or "at_end"')
col_map = _name_to_index_map(schema)
sorting_columns = []
for sort_key in sort_keys:
if isinstance(sort_key, str):
name = sort_key
descending = False
elif (isinstance(sort_key, tuple) and len(sort_key) == 2 and
isinstance(sort_key[0], str) and
isinstance(sort_key[1], str)):
name, descending = sort_key
if descending == "descending":
descending = True
elif descending == "ascending":
descending = False
else:
raise ValueError("Invalid sort key direction: {0}"
.format(descending))
else:
raise ValueError("Invalid sort key: {0}".format(sort_key))
try:
column_index = col_map[name]
except KeyError:
raise ValueError("Sort key name '{0}' not found in schema:\n{1}"
.format(name, schema))
sorting_columns.append(
cls(column_index, descending=descending, nulls_first=nulls_first)
)
return tuple(sorting_columns)
@staticmethod
def to_ordering(Schema schema, sorting_columns):
"""
Convert a tuple of SortingColumn objects to the same format as
:class:`pyarrow.compute.SortOptions`.
Parameters
----------
schema : Schema
Schema of the input data.
sorting_columns : tuple of SortingColumn
Columns to sort the input on.
Returns
-------
sort_keys : tuple of (name, order) tuples
null_placement : {'at_start', 'at_end'}
"""
col_map = {i: name for name, i in _name_to_index_map(schema).items()}
sort_keys = []
nulls_first = None
for sorting_column in sorting_columns:
name = col_map[sorting_column.column_index]
if sorting_column.descending:
order = "descending"
else:
order = "ascending"
sort_keys.append((name, order))
if nulls_first is None:
nulls_first = sorting_column.nulls_first
elif nulls_first != sorting_column.nulls_first:
raise ValueError("Sorting columns have inconsistent null placement")
if nulls_first:
null_placement = "at_start"
else:
null_placement = "at_end"
return tuple(sort_keys), null_placement
def __repr__(self):
return """{}(column_index={}, descending={}, nulls_first={})""".format(
self.__class__.__name__,
self.column_index, self.descending, self.nulls_first)
def __eq__(self, SortingColumn other):
return (self.column_index == other.column_index and
self.descending == other.descending and
self.nulls_first == other.nulls_first)
def __hash__(self):
return hash((self.column_index, self.descending, self.nulls_first))
@property
def column_index(self):
""""Index of column data is sorted by (int)."""
return self.column_index
@property
def descending(self):
"""Whether column is sorted in descending order (bool)."""
return self.descending
@property
def nulls_first(self):
"""Whether null values appear before valid values (bool)."""
return self.nulls_first
cdef class RowGroupMetaData(_Weakrefable):
"""Metadata for a single row group."""
def __cinit__(self, FileMetaData parent, int index):
if index < 0 or index >= parent.num_row_groups:
raise IndexError('{0} out of bounds'.format(index))
self.up_metadata = parent._metadata.RowGroup(index)
self.metadata = self.up_metadata.get()
self.parent = parent
self.index = index
def __reduce__(self):
return RowGroupMetaData, (self.parent, self.index)
def __eq__(self, other):
try:
return self.equals(other)
except TypeError:
return NotImplemented
def equals(self, RowGroupMetaData other):
"""
Return whether the two row group metadata objects are equal.
Parameters
----------
other : RowGroupMetaData
Metadata to compare against.
Returns
-------
are_equal : bool
"""
return self.metadata.Equals(deref(other.metadata))
def column(self, int i):
"""
Get column metadata at given index.
Parameters
----------
i : int
Index of column to get metadata for.
Returns
-------
ColumnChunkMetaData
Metadata for column within this chunk.
"""
if i < 0 or i >= self.num_columns:
raise IndexError('{0} out of bounds'.format(i))
chunk = ColumnChunkMetaData()
chunk.init(self, i)
return chunk
def __repr__(self):
return """{0}
num_columns: {1}
num_rows: {2}
total_byte_size: {3}
sorting_columns: {4}""".format(object.__repr__(self),
self.num_columns,
self.num_rows,
self.total_byte_size,
self.sorting_columns)
def to_dict(self):
"""
Get dictionary representation of the row group metadata.
Returns
-------
dict
Dictionary with a key for each attribute of this class.
"""
columns = []
d = dict(
num_columns=self.num_columns,
num_rows=self.num_rows,
total_byte_size=self.total_byte_size,
columns=columns,
sorting_columns=[col.to_dict() for col in self.sorting_columns]
)
for i in range(self.num_columns):
columns.append(self.column(i).to_dict())
return d
@property
def num_columns(self):
"""Number of columns in this row group (int)."""
return self.metadata.num_columns()
@property
def num_rows(self):
"""Number of rows in this row group (int)."""
return self.metadata.num_rows()
@property
def total_byte_size(self):
"""Total byte size of all the uncompressed column data in this row group (int)."""
return self.metadata.total_byte_size()
@property
def sorting_columns(self):
"""Columns the row group is sorted by (tuple of :class:`SortingColumn`))."""
out = []
cdef vector[CSortingColumn] sorting_columns = self.metadata.sorting_columns()
for sorting_col in sorting_columns:
out.append(SortingColumn(
sorting_col.column_idx,
sorting_col.descending,
sorting_col.nulls_first
))
return tuple(out)
def _reconstruct_filemetadata(Buffer serialized):
cdef:
FileMetaData metadata = FileMetaData.__new__(FileMetaData)
CBuffer *buffer = serialized.buffer.get()
uint32_t metadata_len = <uint32_t>buffer.size()
metadata.init(CFileMetaData_Make(buffer.data(), &metadata_len))
return metadata
cdef class FileMetaData(_Weakrefable):
"""Parquet metadata for a single file."""
def __cinit__(self):
pass
def __reduce__(self):
cdef:
NativeFile sink = BufferOutputStream()
COutputStream* c_sink = sink.get_output_stream().get()
with nogil:
self._metadata.WriteTo(c_sink)
cdef Buffer buffer = sink.getvalue()
return _reconstruct_filemetadata, (buffer,)
def __hash__(self):
return hash((self.schema,
self.num_rows,
self.num_row_groups,
self.format_version,
self.serialized_size))
def __repr__(self):
return """{0}
created_by: {1}
num_columns: {2}
num_rows: {3}
num_row_groups: {4}
format_version: {5}
serialized_size: {6}""".format(object.__repr__(self),
self.created_by, self.num_columns,
self.num_rows, self.num_row_groups,
self.format_version,
self.serialized_size)
def to_dict(self):
"""
Get dictionary representation of the file metadata.
Returns
-------
dict
Dictionary with a key for each attribute of this class.
"""
row_groups = []
d = dict(
created_by=self.created_by,
num_columns=self.num_columns,
num_rows=self.num_rows,
num_row_groups=self.num_row_groups,
row_groups=row_groups,
format_version=self.format_version,
serialized_size=self.serialized_size
)
for i in range(self.num_row_groups):
row_groups.append(self.row_group(i).to_dict())
return d
def __eq__(self, other):
try:
return self.equals(other)
except TypeError:
return NotImplemented
def equals(self, FileMetaData other not None):
"""
Return whether the two file metadata objects are equal.
Parameters
----------
other : FileMetaData
Metadata to compare against.
Returns
-------
are_equal : bool
"""
return self._metadata.Equals(deref(other._metadata))
@property
def schema(self):
"""Schema of the file (:class:`ParquetSchema`)."""
if self._schema is None:
self._schema = ParquetSchema(self)
return self._schema
@property
def serialized_size(self):
"""Size of the original thrift encoded metadata footer (int)."""
return self._metadata.size()
@property
def num_columns(self):
"""Number of columns in file (int)."""
return self._metadata.num_columns()
@property
def num_rows(self):
"""Total number of rows in file (int)."""
return self._metadata.num_rows()
@property
def num_row_groups(self):
"""Number of row groups in file (int)."""
return self._metadata.num_row_groups()
@property
def format_version(self):
"""
Parquet format version used in file (str, such as '1.0', '2.4').
If version is missing or unparsable, will default to assuming '2.6'.
"""
cdef ParquetVersion version = self._metadata.version()
if version == ParquetVersion_V1:
return '1.0'
elif version == ParquetVersion_V2_0:
return 'pseudo-2.0'
elif version == ParquetVersion_V2_4:
return '2.4'
elif version == ParquetVersion_V2_6:
return '2.6'
else:
warnings.warn('Unrecognized file version, assuming 2.6: {}'
.format(version))
return '2.6'
@property
def created_by(self):
"""
String describing source of the parquet file (str).
This typically includes library name and version number. For example, Arrow 7.0's
writer returns 'parquet-cpp-arrow version 7.0.0'.
"""
return frombytes(self._metadata.created_by())
@property
def metadata(self):
"""Additional metadata as key value pairs (dict[bytes, bytes])."""
cdef:
unordered_map[c_string, c_string] metadata
const CKeyValueMetadata* underlying_metadata
underlying_metadata = self._metadata.key_value_metadata().get()
if underlying_metadata != NULL:
underlying_metadata.ToUnorderedMap(&metadata)
return metadata
else:
return None
def row_group(self, int i):
"""
Get metadata for row group at index i.
Parameters
----------
i : int
Row group index to get.
Returns
-------
row_group_metadata : RowGroupMetaData
"""
return RowGroupMetaData(self, i)
def set_file_path(self, path):
"""
Set ColumnChunk file paths to the given value.
This method modifies the ``file_path`` field of each ColumnChunk
in the FileMetaData to be a particular value.
Parameters
----------
path : str
The file path to set on all ColumnChunks.
"""
cdef:
c_string c_path = tobytes(path)
self._metadata.set_file_path(c_path)
def append_row_groups(self, FileMetaData other):
"""
Append row groups from other FileMetaData object.
Parameters
----------
other : FileMetaData
Other metadata to append row groups from.
"""
cdef shared_ptr[CFileMetaData] c_metadata
c_metadata = other.sp_metadata
self._metadata.AppendRowGroups(deref(c_metadata))
def write_metadata_file(self, where):
"""
Write the metadata to a metadata-only Parquet file.
Parameters
----------
where : path or file-like object
Where to write the metadata. Should be a writable path on
the local filesystem, or a writable file-like object.
"""
cdef:
shared_ptr[COutputStream] sink
c_string c_where
try:
where = _stringify_path(where)
except TypeError:
get_writer(where, &sink)
else:
c_where = tobytes(where)
with nogil:
sink = GetResultValue(FileOutputStream.Open(c_where))
with nogil:
check_status(
WriteMetaDataFile(deref(self._metadata), sink.get()))
cdef class ParquetSchema(_Weakrefable):
"""A Parquet schema."""
def __cinit__(self, FileMetaData container):
self.parent = container
self.schema = container._metadata.schema()
def __repr__(self):
return "{0}\n{1}".format(
object.__repr__(self),
frombytes(self.schema.ToString(), safe=True))
def __reduce__(self):
return ParquetSchema, (self.parent,)
def __len__(self):
return self.schema.num_columns()
def __getitem__(self, i):
return self.column(i)
def __hash__(self):
return hash(self.schema.ToString())
@property
def names(self):
"""Name of each field (list of str)."""
return [self[i].name for i in range(len(self))]
def to_arrow_schema(self):
"""
Convert Parquet schema to effective Arrow schema.
Returns
-------
schema : Schema
"""
cdef shared_ptr[CSchema] sp_arrow_schema
with nogil:
check_status(FromParquetSchema(
self.schema, default_arrow_reader_properties(),
self.parent._metadata.key_value_metadata(),
&sp_arrow_schema))
return pyarrow_wrap_schema(sp_arrow_schema)
def __eq__(self, other):
try:
return self.equals(other)
except TypeError:
return NotImplemented
def equals(self, ParquetSchema other):
"""
Return whether the two schemas are equal.
Parameters
----------
other : ParquetSchema
Schema to compare against.
Returns
-------
are_equal : bool
"""
return self.schema.Equals(deref(other.schema))
def column(self, i):
"""
Return the schema for a single column.
Parameters
----------
i : int
Index of column in schema.
Returns
-------
column_schema : ColumnSchema
"""
if i < 0 or i >= len(self):
raise IndexError('{0} out of bounds'.format(i))
return ColumnSchema(self, i)
cdef class ColumnSchema(_Weakrefable):
"""Schema for a single column."""
cdef:
int index
ParquetSchema parent
const ColumnDescriptor* descr
def __cinit__(self, ParquetSchema schema, int index):
self.parent = schema
self.index = index # for pickling support
self.descr = schema.schema.Column(index)
def __eq__(self, other):
try:
return self.equals(other)
except TypeError:
return NotImplemented
def __reduce__(self):
return ColumnSchema, (self.parent, self.index)
def equals(self, ColumnSchema other):
"""
Return whether the two column schemas are equal.
Parameters
----------
other : ColumnSchema
Schema to compare against.
Returns
-------
are_equal : bool
"""
return self.descr.Equals(deref(other.descr))
def __repr__(self):
physical_type = self.physical_type
converted_type = self.converted_type
if converted_type == 'DECIMAL':
converted_type = 'DECIMAL({0}, {1})'.format(self.precision,
self.scale)
elif physical_type == 'FIXED_LEN_BYTE_ARRAY':
converted_type = ('FIXED_LEN_BYTE_ARRAY(length={0})'
.format(self.length))
return """<ParquetColumnSchema>
name: {0}
path: {1}
max_definition_level: {2}
max_repetition_level: {3}
physical_type: {4}
logical_type: {5}
converted_type (legacy): {6}""".format(self.name, self.path,
self.max_definition_level,
self.max_repetition_level,
physical_type,
str(self.logical_type),
converted_type)
@property
def name(self):
"""Name of field (str)."""
return frombytes(self.descr.name())
@property
def path(self):
"""Nested path to field, separated by periods (str)."""
return frombytes(self.descr.path().get().ToDotString())
@property
def max_definition_level(self):
"""Maximum definition level (int)."""
return self.descr.max_definition_level()
@property
def max_repetition_level(self):
"""Maximum repetition level (int)."""
return self.descr.max_repetition_level()
@property
def physical_type(self):
"""Name of physical type (str)."""
return physical_type_name_from_enum(self.descr.physical_type())
@property
def logical_type(self):
"""Logical type of column (:class:`ParquetLogicalType`)."""
return wrap_logical_type(self.descr.logical_type())
@property
def converted_type(self):
"""Legacy converted type (str or None)."""
return converted_type_name_from_enum(self.descr.converted_type())
# FIXED_LEN_BYTE_ARRAY attribute
@property
def length(self):
"""Array length if fixed length byte array type, None otherwise (int or None)."""
return self.descr.type_length()
# Decimal attributes
@property
def precision(self):
"""Precision if decimal type, None otherwise (int or None)."""
return self.descr.type_precision()
@property
def scale(self):
"""Scale if decimal type, None otherwise (int or None)."""
return self.descr.type_scale()
cdef physical_type_name_from_enum(ParquetType type_):
return {
ParquetType_BOOLEAN: 'BOOLEAN',
ParquetType_INT32: 'INT32',
ParquetType_INT64: 'INT64',
ParquetType_INT96: 'INT96',
ParquetType_FLOAT: 'FLOAT',
ParquetType_DOUBLE: 'DOUBLE',
ParquetType_BYTE_ARRAY: 'BYTE_ARRAY',
ParquetType_FIXED_LEN_BYTE_ARRAY: 'FIXED_LEN_BYTE_ARRAY',
}.get(type_, 'UNKNOWN')
cdef logical_type_name_from_enum(ParquetLogicalTypeId type_):
return {
ParquetLogicalType_UNDEFINED: 'UNDEFINED',
ParquetLogicalType_STRING: 'STRING',
ParquetLogicalType_MAP: 'MAP',
ParquetLogicalType_LIST: 'LIST',
ParquetLogicalType_ENUM: 'ENUM',
ParquetLogicalType_DECIMAL: 'DECIMAL',
ParquetLogicalType_DATE: 'DATE',
ParquetLogicalType_TIME: 'TIME',
ParquetLogicalType_TIMESTAMP: 'TIMESTAMP',
ParquetLogicalType_INT: 'INT',
ParquetLogicalType_JSON: 'JSON',
ParquetLogicalType_BSON: 'BSON',
ParquetLogicalType_UUID: 'UUID',
ParquetLogicalType_NONE: 'NONE',
}.get(type_, 'UNKNOWN')
cdef converted_type_name_from_enum(ParquetConvertedType type_):
return {
ParquetConvertedType_NONE: 'NONE',
ParquetConvertedType_UTF8: 'UTF8',
ParquetConvertedType_MAP: 'MAP',
ParquetConvertedType_MAP_KEY_VALUE: 'MAP_KEY_VALUE',
ParquetConvertedType_LIST: 'LIST',
ParquetConvertedType_ENUM: 'ENUM',
ParquetConvertedType_DECIMAL: 'DECIMAL',
ParquetConvertedType_DATE: 'DATE',
ParquetConvertedType_TIME_MILLIS: 'TIME_MILLIS',
ParquetConvertedType_TIME_MICROS: 'TIME_MICROS',
ParquetConvertedType_TIMESTAMP_MILLIS: 'TIMESTAMP_MILLIS',
ParquetConvertedType_TIMESTAMP_MICROS: 'TIMESTAMP_MICROS',
ParquetConvertedType_UINT_8: 'UINT_8',
ParquetConvertedType_UINT_16: 'UINT_16',
ParquetConvertedType_UINT_32: 'UINT_32',
ParquetConvertedType_UINT_64: 'UINT_64',
ParquetConvertedType_INT_8: 'INT_8',
ParquetConvertedType_INT_16: 'INT_16',
ParquetConvertedType_INT_32: 'INT_32',
ParquetConvertedType_INT_64: 'INT_64',
ParquetConvertedType_JSON: 'JSON',
ParquetConvertedType_BSON: 'BSON',
ParquetConvertedType_INTERVAL: 'INTERVAL',
}.get(type_, 'UNKNOWN')
cdef encoding_name_from_enum(ParquetEncoding encoding_):
return {
ParquetEncoding_PLAIN: 'PLAIN',
ParquetEncoding_PLAIN_DICTIONARY: 'PLAIN_DICTIONARY',
ParquetEncoding_RLE: 'RLE',
ParquetEncoding_BIT_PACKED: 'BIT_PACKED',
ParquetEncoding_DELTA_BINARY_PACKED: 'DELTA_BINARY_PACKED',
ParquetEncoding_DELTA_LENGTH_BYTE_ARRAY: 'DELTA_LENGTH_BYTE_ARRAY',
ParquetEncoding_DELTA_BYTE_ARRAY: 'DELTA_BYTE_ARRAY',
ParquetEncoding_RLE_DICTIONARY: 'RLE_DICTIONARY',
ParquetEncoding_BYTE_STREAM_SPLIT: 'BYTE_STREAM_SPLIT',
}.get(encoding_, 'UNKNOWN')
cdef encoding_enum_from_name(str encoding_name):
enc = {
'PLAIN': ParquetEncoding_PLAIN,
'BIT_PACKED': ParquetEncoding_BIT_PACKED,
'RLE': ParquetEncoding_RLE,
'BYTE_STREAM_SPLIT': ParquetEncoding_BYTE_STREAM_SPLIT,
'DELTA_BINARY_PACKED': ParquetEncoding_DELTA_BINARY_PACKED,
'DELTA_LENGTH_BYTE_ARRAY': ParquetEncoding_DELTA_LENGTH_BYTE_ARRAY,
'DELTA_BYTE_ARRAY': ParquetEncoding_DELTA_BYTE_ARRAY,
'RLE_DICTIONARY': 'dict',
'PLAIN_DICTIONARY': 'dict',
}.get(encoding_name, None)
if enc is None:
raise ValueError(f"Unsupported column encoding: {encoding_name!r}")
elif enc == 'dict':
raise ValueError(f"{encoding_name!r} is already used by default.")
else:
return enc
cdef compression_name_from_enum(ParquetCompression compression_):
return {
ParquetCompression_UNCOMPRESSED: 'UNCOMPRESSED',
ParquetCompression_SNAPPY: 'SNAPPY',
ParquetCompression_GZIP: 'GZIP',
ParquetCompression_LZO: 'LZO',
ParquetCompression_BROTLI: 'BROTLI',
ParquetCompression_LZ4: 'LZ4',
ParquetCompression_ZSTD: 'ZSTD',
}.get(compression_, 'UNKNOWN')
cdef int check_compression_name(name) except -1:
if name.upper() not in {'NONE', 'SNAPPY', 'GZIP', 'LZO', 'BROTLI', 'LZ4',
'ZSTD'}:
raise ArrowException("Unsupported compression: " + name)
return 0
cdef ParquetCompression compression_from_name(name):
name = name.upper()
if name == 'SNAPPY':
return ParquetCompression_SNAPPY
elif name == 'GZIP':
return ParquetCompression_GZIP
elif name == 'LZO':
return ParquetCompression_LZO
elif name == 'BROTLI':
return ParquetCompression_BROTLI
elif name == 'LZ4':
return ParquetCompression_LZ4
elif name == 'ZSTD':
return ParquetCompression_ZSTD
else:
return ParquetCompression_UNCOMPRESSED
cdef class ParquetReader(_Weakrefable):
cdef:
object source
CMemoryPool* pool
UniquePtrNoGIL[FileReader] reader
FileMetaData _metadata
shared_ptr[CRandomAccessFile] rd_handle
cdef public:
_column_idx_map
def __cinit__(self, MemoryPool memory_pool=None):
self.pool = maybe_unbox_memory_pool(memory_pool)
self._metadata = None
def open(self, object source not None, *, bint use_memory_map=False,
read_dictionary=None, FileMetaData metadata=None,
int buffer_size=0, bint pre_buffer=False,
coerce_int96_timestamp_unit=None,
FileDecryptionProperties decryption_properties=None,
thrift_string_size_limit=None,
thrift_container_size_limit=None,
page_checksum_verification=False):
"""
Open a parquet file for reading.
Parameters
----------
source : str, pathlib.Path, pyarrow.NativeFile, or file-like object
use_memory_map : bool, default False
read_dictionary : iterable[int or str], optional
metadata : FileMetaData, optional
buffer_size : int, default 0
pre_buffer : bool, default False
coerce_int96_timestamp_unit : str, optional
decryption_properties : FileDecryptionProperties, optional
thrift_string_size_limit : int, optional
thrift_container_size_limit : int, optional
page_checksum_verification : bool, default False
"""
cdef:
shared_ptr[CFileMetaData] c_metadata
CReaderProperties properties = default_reader_properties()
ArrowReaderProperties arrow_props = (
default_arrow_reader_properties())
FileReaderBuilder builder
if metadata is not None:
c_metadata = metadata.sp_metadata
if buffer_size > 0:
properties.enable_buffered_stream()
properties.set_buffer_size(buffer_size)
elif buffer_size == 0:
properties.disable_buffered_stream()
else:
raise ValueError('Buffer size must be larger than zero')
if thrift_string_size_limit is not None:
if thrift_string_size_limit <= 0:
raise ValueError("thrift_string_size_limit "
"must be larger than zero")
properties.set_thrift_string_size_limit(thrift_string_size_limit)
if thrift_container_size_limit is not None:
if thrift_container_size_limit <= 0:
raise ValueError("thrift_container_size_limit "
"must be larger than zero")
properties.set_thrift_container_size_limit(
thrift_container_size_limit)
if decryption_properties is not None:
properties.file_decryption_properties(
decryption_properties.unwrap())
arrow_props.set_pre_buffer(pre_buffer)
properties.set_page_checksum_verification(page_checksum_verification)
if coerce_int96_timestamp_unit is None:
# use the default defined in default_arrow_reader_properties()
pass
else:
arrow_props.set_coerce_int96_timestamp_unit(
string_to_timeunit(coerce_int96_timestamp_unit))
self.source = source
get_reader(source, use_memory_map, &self.rd_handle)
with nogil:
check_status(builder.Open(self.rd_handle, properties, c_metadata))
# Set up metadata
with nogil:
c_metadata = builder.raw_reader().metadata()
self._metadata = result = FileMetaData()
result.init(c_metadata)
if read_dictionary is not None:
self._set_read_dictionary(read_dictionary, &arrow_props)
with nogil:
check_status(builder.memory_pool(self.pool)
.properties(arrow_props)
.Build(&self.reader))
cdef _set_read_dictionary(self, read_dictionary,
ArrowReaderProperties* props):
for column in read_dictionary:
if not isinstance(column, int):
column = self.column_name_idx(column)
props.set_read_dictionary(column, True)
@property
def column_paths(self):
cdef:
FileMetaData container = self.metadata
const CFileMetaData* metadata = container._metadata
vector[c_string] path
int i = 0
paths = []
for i in range(0, metadata.num_columns()):
path = (metadata.schema().Column(i)
.path().get().ToDotVector())
paths.append([frombytes(x) for x in path])
return paths
@property
def metadata(self):
return self._metadata
@property
def schema_arrow(self):
cdef shared_ptr[CSchema] out
with nogil:
check_status(self.reader.get().GetSchema(&out))
return pyarrow_wrap_schema(out)
@property
def num_row_groups(self):
return self.reader.get().num_row_groups()
def set_use_threads(self, bint use_threads):
"""
Parameters
----------
use_threads : bool
"""
self.reader.get().set_use_threads(use_threads)
def set_batch_size(self, int64_t batch_size):
"""
Parameters
----------
batch_size : int64
"""
self.reader.get().set_batch_size(batch_size)
def iter_batches(self, int64_t batch_size, row_groups, column_indices=None,
bint use_threads=True):
"""
Parameters
----------
batch_size : int64
row_groups : list[int]
column_indices : list[int], optional
use_threads : bool, default True
Yields
------
next : RecordBatch
"""
cdef:
vector[int] c_row_groups
vector[int] c_column_indices
shared_ptr[CRecordBatch] record_batch
UniquePtrNoGIL[CRecordBatchReader] recordbatchreader
self.set_batch_size(batch_size)
if use_threads:
self.set_use_threads(use_threads)
for row_group in row_groups:
c_row_groups.push_back(row_group)
if column_indices is not None:
for index in column_indices:
c_column_indices.push_back(index)
with nogil:
check_status(
self.reader.get().GetRecordBatchReader(
c_row_groups, c_column_indices, &recordbatchreader
)
)
else:
with nogil:
check_status(
self.reader.get().GetRecordBatchReader(
c_row_groups, &recordbatchreader
)
)
while True:
with nogil:
check_status(
recordbatchreader.get().ReadNext(&record_batch)
)
if record_batch.get() == NULL:
break
yield pyarrow_wrap_batch(record_batch)
def read_row_group(self, int i, column_indices=None,
bint use_threads=True):
"""
Parameters
----------
i : int
column_indices : list[int], optional
use_threads : bool, default True
Returns
-------
table : pyarrow.Table
"""
return self.read_row_groups([i], column_indices, use_threads)
def read_row_groups(self, row_groups not None, column_indices=None,
bint use_threads=True):
"""
Parameters
----------
row_groups : list[int]
column_indices : list[int], optional
use_threads : bool, default True
Returns
-------
table : pyarrow.Table
"""
cdef:
shared_ptr[CTable] ctable
vector[int] c_row_groups
vector[int] c_column_indices
self.set_use_threads(use_threads)
for row_group in row_groups:
c_row_groups.push_back(row_group)
if column_indices is not None:
for index in column_indices:
c_column_indices.push_back(index)
with nogil:
check_status(self.reader.get()
.ReadRowGroups(c_row_groups, c_column_indices,
&ctable))
else:
# Read all columns
with nogil:
check_status(self.reader.get()
.ReadRowGroups(c_row_groups, &ctable))
return pyarrow_wrap_table(ctable)
def read_all(self, column_indices=None, bint use_threads=True):
"""
Parameters
----------
column_indices : list[int], optional
use_threads : bool, default True
Returns
-------
table : pyarrow.Table
"""
cdef:
shared_ptr[CTable] ctable
vector[int] c_column_indices
self.set_use_threads(use_threads)
if column_indices is not None:
for index in column_indices:
c_column_indices.push_back(index)
with nogil:
check_status(self.reader.get()
.ReadTable(c_column_indices, &ctable))
else:
# Read all columns
with nogil:
check_status(self.reader.get()
.ReadTable(&ctable))
return pyarrow_wrap_table(ctable)
def scan_contents(self, column_indices=None, batch_size=65536):
"""
Parameters
----------
column_indices : list[int], optional
batch_size : int32, default 65536
Returns
-------
num_rows : int64
"""
cdef:
vector[int] c_column_indices
int32_t c_batch_size
int64_t c_num_rows
if column_indices is not None:
for index in column_indices:
c_column_indices.push_back(index)
c_batch_size = batch_size
with nogil:
check_status(self.reader.get()
.ScanContents(c_column_indices, c_batch_size,
&c_num_rows))
return c_num_rows
def column_name_idx(self, column_name):
"""
Find the index of a column by its name.
Parameters
----------
column_name : str
Name of the column; separation of nesting levels is done via ".".
Returns
-------
column_idx : int
Integer index of the column in the schema.
"""
cdef:
FileMetaData container = self.metadata
const CFileMetaData* metadata = container._metadata
int i = 0
if self._column_idx_map is None:
self._column_idx_map = {}
for i in range(0, metadata.num_columns()):
col_bytes = tobytes(metadata.schema().Column(i)
.path().get().ToDotString())
self._column_idx_map[col_bytes] = i
return self._column_idx_map[tobytes(column_name)]
def read_column(self, int column_index):
"""
Read the column at the specified index.
Parameters
----------
column_index : int
Index of the column.
Returns
-------
column : pyarrow.ChunkedArray
"""
cdef shared_ptr[CChunkedArray] out
with nogil:
check_status(self.reader.get()
.ReadColumn(column_index, &out))
return pyarrow_wrap_chunked_array(out)
def close(self):
if not self.closed:
with nogil:
check_status(self.rd_handle.get().Close())
@property
def closed(self):
if self.rd_handle == NULL:
return True
with nogil:
closed = self.rd_handle.get().closed()
return closed
cdef CSortingColumn _convert_sorting_column(SortingColumn sorting_column):
cdef CSortingColumn c_sorting_column
c_sorting_column.column_idx = sorting_column.column_index
c_sorting_column.descending = sorting_column.descending
c_sorting_column.nulls_first = sorting_column.nulls_first
return c_sorting_column
cdef vector[CSortingColumn] _convert_sorting_columns(sorting_columns) except *:
if not (isinstance(sorting_columns, Sequence)
and all(isinstance(col, SortingColumn) for col in sorting_columns)):
raise ValueError(
"'sorting_columns' must be a list of `SortingColumn`")
cdef vector[CSortingColumn] c_sorting_columns = [_convert_sorting_column(col)
for col in sorting_columns]
return c_sorting_columns
cdef shared_ptr[WriterProperties] _create_writer_properties(
use_dictionary=None,
compression=None,
version=None,
write_statistics=None,
data_page_size=None,
compression_level=None,
use_byte_stream_split=False,
column_encoding=None,
data_page_version=None,
FileEncryptionProperties encryption_properties=None,
write_batch_size=None,
dictionary_pagesize_limit=None,
write_page_index=False,
write_page_checksum=False,
sorting_columns=None) except *:
"""General writer properties"""
cdef:
shared_ptr[WriterProperties] properties
WriterProperties.Builder props
# data_page_version
if data_page_version is not None:
if data_page_version == "1.0":
props.data_page_version(ParquetDataPageVersion_V1)
elif data_page_version == "2.0":
props.data_page_version(ParquetDataPageVersion_V2)
else:
raise ValueError("Unsupported Parquet data page version: {0}"
.format(data_page_version))
# version
if version is not None:
if version == "1.0":
props.version(ParquetVersion_V1)
elif version in ("2.0", "pseudo-2.0"):
warnings.warn(
"Parquet format '2.0' pseudo version is deprecated, use "
"'2.4' or '2.6' for fine-grained feature selection",
FutureWarning, stacklevel=2)
props.version(ParquetVersion_V2_0)
elif version == "2.4":
props.version(ParquetVersion_V2_4)
elif version == "2.6":
props.version(ParquetVersion_V2_6)
else:
raise ValueError("Unsupported Parquet format version: {0}"
.format(version))
# compression
if isinstance(compression, basestring):
check_compression_name(compression)
props.compression(compression_from_name(compression))
elif compression is not None:
for column, codec in compression.iteritems():
check_compression_name(codec)
props.compression(tobytes(column), compression_from_name(codec))
if isinstance(compression_level, int):
props.compression_level(compression_level)
elif compression_level is not None:
for column, level in compression_level.iteritems():
props.compression_level(tobytes(column), level)
# use_dictionary
if isinstance(use_dictionary, bool):
if use_dictionary:
props.enable_dictionary()
if column_encoding is not None:
raise ValueError(
"To use 'column_encoding' set 'use_dictionary' to False")
else:
props.disable_dictionary()
elif use_dictionary is not None:
# Deactivate dictionary encoding by default
props.disable_dictionary()
for column in use_dictionary:
props.enable_dictionary(tobytes(column))
if (column_encoding is not None and
column_encoding.get(column) is not None):
raise ValueError(
"To use 'column_encoding' set 'use_dictionary' to False")
# write_statistics
if isinstance(write_statistics, bool):
if write_statistics:
props.enable_statistics()
else:
props.disable_statistics()
elif write_statistics is not None:
# Deactivate statistics by default and enable for specified columns
props.disable_statistics()
for column in write_statistics:
props.enable_statistics(tobytes(column))
# sorting_columns
if sorting_columns is not None:
props.set_sorting_columns(_convert_sorting_columns(sorting_columns))
# use_byte_stream_split
if isinstance(use_byte_stream_split, bool):
if use_byte_stream_split:
if column_encoding is not None:
raise ValueError(
"'use_byte_stream_split' cannot be passed"
"together with 'column_encoding'")
else:
props.encoding(ParquetEncoding_BYTE_STREAM_SPLIT)
elif use_byte_stream_split is not None:
for column in use_byte_stream_split:
if column_encoding is None:
column_encoding = {column: 'BYTE_STREAM_SPLIT'}
elif column_encoding.get(column, None) is None:
column_encoding[column] = 'BYTE_STREAM_SPLIT'
else:
raise ValueError(
"'use_byte_stream_split' cannot be passed"
"together with 'column_encoding'")
# column_encoding
# encoding map - encode individual columns
if column_encoding is not None:
if isinstance(column_encoding, dict):
for column, _encoding in column_encoding.items():
props.encoding(tobytes(column),
encoding_enum_from_name(_encoding))
elif isinstance(column_encoding, str):
props.encoding(encoding_enum_from_name(column_encoding))
else:
raise TypeError(
"'column_encoding' should be a dictionary or a string")
if data_page_size is not None:
props.data_pagesize(data_page_size)
if write_batch_size is not None:
props.write_batch_size(write_batch_size)
if dictionary_pagesize_limit is not None:
props.dictionary_pagesize_limit(dictionary_pagesize_limit)
# encryption
if encryption_properties is not None:
props.encryption(
(<FileEncryptionProperties>encryption_properties).unwrap())
# For backwards compatibility reasons we cap the maximum row group size
# at 64Mi rows. This could be changed in the future, though it would be
# a breaking change.
#
# The user can always specify a smaller row group size (and the default
# is smaller) when calling write_table. If the call to write_table uses
# a size larger than this then it will be latched to this value.
props.max_row_group_length(_MAX_ROW_GROUP_SIZE)
# checksum
if write_page_checksum:
props.enable_page_checksum()
else:
props.disable_page_checksum()
# page index
if write_page_index:
props.enable_write_page_index()
else:
props.disable_write_page_index()
properties = props.build()
return properties
cdef shared_ptr[ArrowWriterProperties] _create_arrow_writer_properties(
use_deprecated_int96_timestamps=False,
coerce_timestamps=None,
allow_truncated_timestamps=False,
writer_engine_version=None,
use_compliant_nested_type=True,
store_schema=True) except *:
"""Arrow writer properties"""
cdef:
shared_ptr[ArrowWriterProperties] arrow_properties
ArrowWriterProperties.Builder arrow_props
# Store the original Arrow schema so things like dictionary types can
# be automatically reconstructed
if store_schema:
arrow_props.store_schema()
# int96 support
if use_deprecated_int96_timestamps:
arrow_props.enable_deprecated_int96_timestamps()
else:
arrow_props.disable_deprecated_int96_timestamps()
# coerce_timestamps
if coerce_timestamps == 'ms':
arrow_props.coerce_timestamps(TimeUnit_MILLI)
elif coerce_timestamps == 'us':
arrow_props.coerce_timestamps(TimeUnit_MICRO)
elif coerce_timestamps is not None:
raise ValueError('Invalid value for coerce_timestamps: {0}'
.format(coerce_timestamps))
# allow_truncated_timestamps
if allow_truncated_timestamps:
arrow_props.allow_truncated_timestamps()
else:
arrow_props.disallow_truncated_timestamps()
# use_compliant_nested_type
if use_compliant_nested_type:
arrow_props.enable_compliant_nested_types()
else:
arrow_props.disable_compliant_nested_types()
# writer_engine_version
if writer_engine_version == "V1":
warnings.warn("V1 parquet writer engine is a no-op. Use V2.")
arrow_props.set_engine_version(ArrowWriterEngineVersion.V1)
elif writer_engine_version != "V2":
raise ValueError("Unsupported Writer Engine Version: {0}"
.format(writer_engine_version))
arrow_properties = arrow_props.build()
return arrow_properties
cdef _name_to_index_map(Schema arrow_schema):
cdef:
shared_ptr[CSchema] sp_arrow_schema
shared_ptr[SchemaDescriptor] sp_parquet_schema
shared_ptr[WriterProperties] props = _create_writer_properties()
shared_ptr[ArrowWriterProperties] arrow_props = _create_arrow_writer_properties(
use_deprecated_int96_timestamps=False,
coerce_timestamps=None,
allow_truncated_timestamps=False,
writer_engine_version="V2"
)
sp_arrow_schema = pyarrow_unwrap_schema(arrow_schema)
with nogil:
check_status(ToParquetSchema(
sp_arrow_schema.get(), deref(props.get()), deref(arrow_props.get()), &sp_parquet_schema))
out = dict()
cdef SchemaDescriptor* parquet_schema = sp_parquet_schema.get()
for i in range(parquet_schema.num_columns()):
name = frombytes(parquet_schema.Column(i).path().get().ToDotString())
out[name] = i
return out
cdef class ParquetWriter(_Weakrefable):
cdef:
unique_ptr[FileWriter] writer
shared_ptr[COutputStream] sink
bint own_sink
cdef readonly:
object use_dictionary
object use_deprecated_int96_timestamps
object use_byte_stream_split
object column_encoding
object coerce_timestamps
object allow_truncated_timestamps
object compression
object compression_level
object data_page_version
object use_compliant_nested_type
object version
object write_statistics
object writer_engine_version
int row_group_size
int64_t data_page_size
FileEncryptionProperties encryption_properties
int64_t write_batch_size
int64_t dictionary_pagesize_limit
object store_schema
def __cinit__(self, where, Schema schema not None, use_dictionary=None,
compression=None, version=None,
write_statistics=None,
MemoryPool memory_pool=None,
use_deprecated_int96_timestamps=False,
coerce_timestamps=None,
data_page_size=None,
allow_truncated_timestamps=False,
compression_level=None,
use_byte_stream_split=False,
column_encoding=None,
writer_engine_version=None,
data_page_version=None,
use_compliant_nested_type=True,
encryption_properties=None,
write_batch_size=None,
dictionary_pagesize_limit=None,
store_schema=True,
write_page_index=False,
write_page_checksum=False,
sorting_columns=None):
cdef:
shared_ptr[WriterProperties] properties
shared_ptr[ArrowWriterProperties] arrow_properties
c_string c_where
CMemoryPool* pool
try:
where = _stringify_path(where)
except TypeError:
get_writer(where, &self.sink)
self.own_sink = False
else:
c_where = tobytes(where)
with nogil:
self.sink = GetResultValue(FileOutputStream.Open(c_where))
self.own_sink = True
properties = _create_writer_properties(
use_dictionary=use_dictionary,
compression=compression,
version=version,
write_statistics=write_statistics,
data_page_size=data_page_size,
compression_level=compression_level,
use_byte_stream_split=use_byte_stream_split,
column_encoding=column_encoding,
data_page_version=data_page_version,
encryption_properties=encryption_properties,
write_batch_size=write_batch_size,
dictionary_pagesize_limit=dictionary_pagesize_limit,
write_page_index=write_page_index,
write_page_checksum=write_page_checksum,
sorting_columns=sorting_columns,
)
arrow_properties = _create_arrow_writer_properties(
use_deprecated_int96_timestamps=use_deprecated_int96_timestamps,
coerce_timestamps=coerce_timestamps,
allow_truncated_timestamps=allow_truncated_timestamps,
writer_engine_version=writer_engine_version,
use_compliant_nested_type=use_compliant_nested_type,
store_schema=store_schema,
)
pool = maybe_unbox_memory_pool(memory_pool)
with nogil:
self.writer = move(GetResultValue(
FileWriter.Open(deref(schema.schema), pool,
self.sink, properties, arrow_properties)))
def close(self):
with nogil:
check_status(self.writer.get().Close())
if self.own_sink:
check_status(self.sink.get().Close())
def write_table(self, Table table, row_group_size=None):
cdef:
CTable* ctable = table.table
int64_t c_row_group_size
if row_group_size is None or row_group_size == -1:
c_row_group_size = min(ctable.num_rows(), _DEFAULT_ROW_GROUP_SIZE)
elif row_group_size == 0:
raise ValueError('Row group size cannot be 0')
else:
c_row_group_size = row_group_size
with nogil:
check_status(self.writer.get()
.WriteTable(deref(ctable), c_row_group_size))
@property
def metadata(self):
cdef:
shared_ptr[CFileMetaData] metadata
FileMetaData result
with nogil:
metadata = self.writer.get().metadata()
if metadata:
result = FileMetaData()
result.init(metadata)
return result
raise RuntimeError(
'file metadata is only available after writer close')
|