File size: 14,879 Bytes
fa6fb51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

# ---------------------------------------------------------------------
# Implement Internal ExecPlan bindings

# cython: profile=False
# distutils: language = c++
# cython: language_level = 3

from pyarrow.lib import Table
from pyarrow.compute import Expression, field

try:
    from pyarrow._acero import (  # noqa
        Declaration,
        ExecNodeOptions,
        TableSourceNodeOptions,
        FilterNodeOptions,
        ProjectNodeOptions,
        AggregateNodeOptions,
        OrderByNodeOptions,
        HashJoinNodeOptions,
        AsofJoinNodeOptions,
    )
except ImportError as exc:
    raise ImportError(
        f"The pyarrow installation is not built with support for 'acero' ({str(exc)})"
    ) from None


try:
    import pyarrow.dataset as ds
    from pyarrow._dataset import ScanNodeOptions
except ImportError:
    class DatasetModuleStub:
        class Dataset:
            pass

        class InMemoryDataset:
            pass
    ds = DatasetModuleStub


def _dataset_to_decl(dataset, use_threads=True):
    decl = Declaration("scan", ScanNodeOptions(dataset, use_threads=use_threads))

    # Get rid of special dataset columns
    # "__fragment_index", "__batch_index", "__last_in_fragment", "__filename"
    projections = [field(f) for f in dataset.schema.names]
    decl = Declaration.from_sequence(
        [decl, Declaration("project", ProjectNodeOptions(projections))]
    )

    filter_expr = dataset._scan_options.get("filter")
    if filter_expr is not None:
        # Filters applied in CScanNodeOptions are "best effort" for the scan node itself
        # so we always need to inject an additional Filter node to apply them for real.
        decl = Declaration.from_sequence(
            [decl, Declaration("filter", FilterNodeOptions(filter_expr))]
        )

    return decl


def _perform_join(join_type, left_operand, left_keys,
                  right_operand, right_keys,
                  left_suffix=None, right_suffix=None,
                  use_threads=True, coalesce_keys=False,
                  output_type=Table):
    """
    Perform join of two tables or datasets.

    The result will be an output table with the result of the join operation

    Parameters
    ----------
    join_type : str
        One of supported join types.
    left_operand : Table or Dataset
        The left operand for the join operation.
    left_keys : str or list[str]
        The left key (or keys) on which the join operation should be performed.
    right_operand : Table or Dataset
        The right operand for the join operation.
    right_keys : str or list[str]
        The right key (or keys) on which the join operation should be performed.
    left_suffix : str, default None
        Which suffix to add to left column names. This prevents confusion
        when the columns in left and right operands have colliding names.
    right_suffix : str, default None
        Which suffix to add to the right column names. This prevents confusion
        when the columns in left and right operands have colliding names.
    use_threads : bool, default True
        Whether to use multithreading or not.
    coalesce_keys : bool, default False
        If the duplicated keys should be omitted from one of the sides
        in the join result.
    output_type: Table or InMemoryDataset
        The output type for the exec plan result.

    Returns
    -------
    result_table : Table or InMemoryDataset
    """
    if not isinstance(left_operand, (Table, ds.Dataset)):
        raise TypeError(f"Expected Table or Dataset, got {type(left_operand)}")
    if not isinstance(right_operand, (Table, ds.Dataset)):
        raise TypeError(f"Expected Table or Dataset, got {type(right_operand)}")

    # Prepare left and right tables Keys to send them to the C++ function
    left_keys_order = {}
    if not isinstance(left_keys, (tuple, list)):
        left_keys = [left_keys]
    for idx, key in enumerate(left_keys):
        left_keys_order[key] = idx

    right_keys_order = {}
    if not isinstance(right_keys, (list, tuple)):
        right_keys = [right_keys]
    for idx, key in enumerate(right_keys):
        right_keys_order[key] = idx

    # By default expose all columns on both left and right table
    left_columns = left_operand.schema.names
    right_columns = right_operand.schema.names

    # Pick the join type
    if join_type == "left semi" or join_type == "left anti":
        right_columns = []
    elif join_type == "right semi" or join_type == "right anti":
        left_columns = []
    elif join_type == "inner" or join_type == "left outer":
        right_columns = [
            col for col in right_columns if col not in right_keys_order
        ]
    elif join_type == "right outer":
        left_columns = [
            col for col in left_columns if col not in left_keys_order
        ]

    # Turn the columns to vectors of FieldRefs
    # and set aside indices of keys.
    left_column_keys_indices = {}
    for idx, colname in enumerate(left_columns):
        if colname in left_keys:
            left_column_keys_indices[colname] = idx
    right_column_keys_indices = {}
    for idx, colname in enumerate(right_columns):
        if colname in right_keys:
            right_column_keys_indices[colname] = idx

    # Add the join node to the execplan
    if isinstance(left_operand, ds.Dataset):
        left_source = _dataset_to_decl(left_operand, use_threads=use_threads)
    else:
        left_source = Declaration("table_source", TableSourceNodeOptions(left_operand))
    if isinstance(right_operand, ds.Dataset):
        right_source = _dataset_to_decl(right_operand, use_threads=use_threads)
    else:
        right_source = Declaration(
            "table_source", TableSourceNodeOptions(right_operand)
        )

    if coalesce_keys:
        join_opts = HashJoinNodeOptions(
            join_type, left_keys, right_keys, left_columns, right_columns,
            output_suffix_for_left=left_suffix or "",
            output_suffix_for_right=right_suffix or "",
        )
    else:
        join_opts = HashJoinNodeOptions(
            join_type, left_keys, right_keys,
            output_suffix_for_left=left_suffix or "",
            output_suffix_for_right=right_suffix or "",
        )
    decl = Declaration(
        "hashjoin", options=join_opts, inputs=[left_source, right_source]
    )

    if coalesce_keys and join_type == "full outer":
        # In case of full outer joins, the join operation will output all columns
        # so that we can coalesce the keys and exclude duplicates in a subsequent
        # projection.
        left_columns_set = set(left_columns)
        right_columns_set = set(right_columns)
        # Where the right table columns start.
        right_operand_index = len(left_columns)
        projected_col_names = []
        projections = []
        for idx, col in enumerate(left_columns + right_columns):
            if idx < len(left_columns) and col in left_column_keys_indices:
                # Include keys only once and coalesce left+right table keys.
                projected_col_names.append(col)
                # Get the index of the right key that is being paired
                # with this left key. We do so by retrieving the name
                # of the right key that is in the same position in the provided keys
                # and then looking up the index for that name in the right table.
                right_key_index = right_column_keys_indices[
                    right_keys[left_keys_order[col]]]
                projections.append(
                    Expression._call("coalesce", [
                        Expression._field(idx), Expression._field(
                            right_operand_index+right_key_index)
                    ])
                )
            elif idx >= right_operand_index and col in right_column_keys_indices:
                # Do not include right table keys. As they would lead to duplicated keys
                continue
            else:
                # For all the other columns include them as they are.
                # Just recompute the suffixes that the join produced as the projection
                # would lose them otherwise.
                if (
                    left_suffix and idx < right_operand_index
                    and col in right_columns_set
                ):
                    col += left_suffix
                if (
                    right_suffix and idx >= right_operand_index
                    and col in left_columns_set
                ):
                    col += right_suffix
                projected_col_names.append(col)
                projections.append(
                    Expression._field(idx)
                )
        projection = Declaration(
            "project", ProjectNodeOptions(projections, projected_col_names)
        )
        decl = Declaration.from_sequence([decl, projection])

    result_table = decl.to_table(use_threads=use_threads)

    if output_type == Table:
        return result_table
    elif output_type == ds.InMemoryDataset:
        return ds.InMemoryDataset(result_table)
    else:
        raise TypeError("Unsupported output type")


def _perform_join_asof(left_operand, left_on, left_by,
                       right_operand, right_on, right_by,
                       tolerance, use_threads=True,
                       output_type=Table):
    """
    Perform asof join of two tables or datasets.

    The result will be an output table with the result of the join operation

    Parameters
    ----------
    left_operand : Table or Dataset
        The left operand for the join operation.
    left_on : str
        The left key (or keys) on which the join operation should be performed.
    left_by: str or list[str]
        The left key (or keys) on which the join operation should be performed.
    right_operand : Table or Dataset
        The right operand for the join operation.
    right_on : str or list[str]
        The right key (or keys) on which the join operation should be performed.
    right_by: str or list[str]
        The right key (or keys) on which the join operation should be performed.
    tolerance : int
        The tolerance to use for the asof join. The tolerance is interpreted in
        the same units as the "on" key.
    output_type: Table or InMemoryDataset
        The output type for the exec plan result.

    Returns
    -------
    result_table : Table or InMemoryDataset
    """
    if not isinstance(left_operand, (Table, ds.Dataset)):
        raise TypeError(f"Expected Table or Dataset, got {type(left_operand)}")
    if not isinstance(right_operand, (Table, ds.Dataset)):
        raise TypeError(f"Expected Table or Dataset, got {type(right_operand)}")

    if not isinstance(left_by, (tuple, list)):
        left_by = [left_by]
    if not isinstance(right_by, (tuple, list)):
        right_by = [right_by]

    # AsofJoin does not return on or by columns for right_operand.
    right_columns = [
        col for col in right_operand.schema.names
        if col not in [right_on] + right_by
    ]
    columns_collisions = set(left_operand.schema.names) & set(right_columns)
    if columns_collisions:
        raise ValueError(
            "Columns {} present in both tables. AsofJoin does not support "
            "column collisions.".format(columns_collisions),
        )

    # Add the join node to the execplan
    if isinstance(left_operand, ds.Dataset):
        left_source = _dataset_to_decl(left_operand, use_threads=use_threads)
    else:
        left_source = Declaration(
            "table_source", TableSourceNodeOptions(left_operand),
        )
    if isinstance(right_operand, ds.Dataset):
        right_source = _dataset_to_decl(right_operand, use_threads=use_threads)
    else:
        right_source = Declaration(
            "table_source", TableSourceNodeOptions(right_operand)
        )

    join_opts = AsofJoinNodeOptions(
        left_on, left_by, right_on, right_by, tolerance
    )
    decl = Declaration(
        "asofjoin", options=join_opts, inputs=[left_source, right_source]
    )

    result_table = decl.to_table(use_threads=use_threads)

    if output_type == Table:
        return result_table
    elif output_type == ds.InMemoryDataset:
        return ds.InMemoryDataset(result_table)
    else:
        raise TypeError("Unsupported output type")


def _filter_table(table, expression):
    """Filter rows of a table based on the provided expression.

    The result will be an output table with only the rows matching
    the provided expression.

    Parameters
    ----------
    table : Table or Dataset
        Table or Dataset that should be filtered.
    expression : Expression
        The expression on which rows should be filtered.

    Returns
    -------
    Table
    """
    decl = Declaration.from_sequence([
        Declaration("table_source", options=TableSourceNodeOptions(table)),
        Declaration("filter", options=FilterNodeOptions(expression))
    ])
    return decl.to_table(use_threads=True)


def _sort_source(table_or_dataset, sort_keys, output_type=Table, **kwargs):

    if isinstance(table_or_dataset, ds.Dataset):
        data_source = _dataset_to_decl(table_or_dataset, use_threads=True)
    else:
        data_source = Declaration(
            "table_source", TableSourceNodeOptions(table_or_dataset)
        )

    order_by = Declaration("order_by", OrderByNodeOptions(sort_keys, **kwargs))

    decl = Declaration.from_sequence([data_source, order_by])
    result_table = decl.to_table(use_threads=True)

    if output_type == Table:
        return result_table
    elif output_type == ds.InMemoryDataset:
        return ds.InMemoryDataset(result_table)
    else:
        raise TypeError("Unsupported output type")


def _group_by(table, aggregates, keys, use_threads=True):

    decl = Declaration.from_sequence([
        Declaration("table_source", TableSourceNodeOptions(table)),
        Declaration("aggregate", AggregateNodeOptions(aggregates, keys=keys))
    ])
    return decl.to_table(use_threads=use_threads)