File size: 14,879 Bytes
fa6fb51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# ---------------------------------------------------------------------
# Implement Internal ExecPlan bindings
# cython: profile=False
# distutils: language = c++
# cython: language_level = 3
from pyarrow.lib import Table
from pyarrow.compute import Expression, field
try:
from pyarrow._acero import ( # noqa
Declaration,
ExecNodeOptions,
TableSourceNodeOptions,
FilterNodeOptions,
ProjectNodeOptions,
AggregateNodeOptions,
OrderByNodeOptions,
HashJoinNodeOptions,
AsofJoinNodeOptions,
)
except ImportError as exc:
raise ImportError(
f"The pyarrow installation is not built with support for 'acero' ({str(exc)})"
) from None
try:
import pyarrow.dataset as ds
from pyarrow._dataset import ScanNodeOptions
except ImportError:
class DatasetModuleStub:
class Dataset:
pass
class InMemoryDataset:
pass
ds = DatasetModuleStub
def _dataset_to_decl(dataset, use_threads=True):
decl = Declaration("scan", ScanNodeOptions(dataset, use_threads=use_threads))
# Get rid of special dataset columns
# "__fragment_index", "__batch_index", "__last_in_fragment", "__filename"
projections = [field(f) for f in dataset.schema.names]
decl = Declaration.from_sequence(
[decl, Declaration("project", ProjectNodeOptions(projections))]
)
filter_expr = dataset._scan_options.get("filter")
if filter_expr is not None:
# Filters applied in CScanNodeOptions are "best effort" for the scan node itself
# so we always need to inject an additional Filter node to apply them for real.
decl = Declaration.from_sequence(
[decl, Declaration("filter", FilterNodeOptions(filter_expr))]
)
return decl
def _perform_join(join_type, left_operand, left_keys,
right_operand, right_keys,
left_suffix=None, right_suffix=None,
use_threads=True, coalesce_keys=False,
output_type=Table):
"""
Perform join of two tables or datasets.
The result will be an output table with the result of the join operation
Parameters
----------
join_type : str
One of supported join types.
left_operand : Table or Dataset
The left operand for the join operation.
left_keys : str or list[str]
The left key (or keys) on which the join operation should be performed.
right_operand : Table or Dataset
The right operand for the join operation.
right_keys : str or list[str]
The right key (or keys) on which the join operation should be performed.
left_suffix : str, default None
Which suffix to add to left column names. This prevents confusion
when the columns in left and right operands have colliding names.
right_suffix : str, default None
Which suffix to add to the right column names. This prevents confusion
when the columns in left and right operands have colliding names.
use_threads : bool, default True
Whether to use multithreading or not.
coalesce_keys : bool, default False
If the duplicated keys should be omitted from one of the sides
in the join result.
output_type: Table or InMemoryDataset
The output type for the exec plan result.
Returns
-------
result_table : Table or InMemoryDataset
"""
if not isinstance(left_operand, (Table, ds.Dataset)):
raise TypeError(f"Expected Table or Dataset, got {type(left_operand)}")
if not isinstance(right_operand, (Table, ds.Dataset)):
raise TypeError(f"Expected Table or Dataset, got {type(right_operand)}")
# Prepare left and right tables Keys to send them to the C++ function
left_keys_order = {}
if not isinstance(left_keys, (tuple, list)):
left_keys = [left_keys]
for idx, key in enumerate(left_keys):
left_keys_order[key] = idx
right_keys_order = {}
if not isinstance(right_keys, (list, tuple)):
right_keys = [right_keys]
for idx, key in enumerate(right_keys):
right_keys_order[key] = idx
# By default expose all columns on both left and right table
left_columns = left_operand.schema.names
right_columns = right_operand.schema.names
# Pick the join type
if join_type == "left semi" or join_type == "left anti":
right_columns = []
elif join_type == "right semi" or join_type == "right anti":
left_columns = []
elif join_type == "inner" or join_type == "left outer":
right_columns = [
col for col in right_columns if col not in right_keys_order
]
elif join_type == "right outer":
left_columns = [
col for col in left_columns if col not in left_keys_order
]
# Turn the columns to vectors of FieldRefs
# and set aside indices of keys.
left_column_keys_indices = {}
for idx, colname in enumerate(left_columns):
if colname in left_keys:
left_column_keys_indices[colname] = idx
right_column_keys_indices = {}
for idx, colname in enumerate(right_columns):
if colname in right_keys:
right_column_keys_indices[colname] = idx
# Add the join node to the execplan
if isinstance(left_operand, ds.Dataset):
left_source = _dataset_to_decl(left_operand, use_threads=use_threads)
else:
left_source = Declaration("table_source", TableSourceNodeOptions(left_operand))
if isinstance(right_operand, ds.Dataset):
right_source = _dataset_to_decl(right_operand, use_threads=use_threads)
else:
right_source = Declaration(
"table_source", TableSourceNodeOptions(right_operand)
)
if coalesce_keys:
join_opts = HashJoinNodeOptions(
join_type, left_keys, right_keys, left_columns, right_columns,
output_suffix_for_left=left_suffix or "",
output_suffix_for_right=right_suffix or "",
)
else:
join_opts = HashJoinNodeOptions(
join_type, left_keys, right_keys,
output_suffix_for_left=left_suffix or "",
output_suffix_for_right=right_suffix or "",
)
decl = Declaration(
"hashjoin", options=join_opts, inputs=[left_source, right_source]
)
if coalesce_keys and join_type == "full outer":
# In case of full outer joins, the join operation will output all columns
# so that we can coalesce the keys and exclude duplicates in a subsequent
# projection.
left_columns_set = set(left_columns)
right_columns_set = set(right_columns)
# Where the right table columns start.
right_operand_index = len(left_columns)
projected_col_names = []
projections = []
for idx, col in enumerate(left_columns + right_columns):
if idx < len(left_columns) and col in left_column_keys_indices:
# Include keys only once and coalesce left+right table keys.
projected_col_names.append(col)
# Get the index of the right key that is being paired
# with this left key. We do so by retrieving the name
# of the right key that is in the same position in the provided keys
# and then looking up the index for that name in the right table.
right_key_index = right_column_keys_indices[
right_keys[left_keys_order[col]]]
projections.append(
Expression._call("coalesce", [
Expression._field(idx), Expression._field(
right_operand_index+right_key_index)
])
)
elif idx >= right_operand_index and col in right_column_keys_indices:
# Do not include right table keys. As they would lead to duplicated keys
continue
else:
# For all the other columns include them as they are.
# Just recompute the suffixes that the join produced as the projection
# would lose them otherwise.
if (
left_suffix and idx < right_operand_index
and col in right_columns_set
):
col += left_suffix
if (
right_suffix and idx >= right_operand_index
and col in left_columns_set
):
col += right_suffix
projected_col_names.append(col)
projections.append(
Expression._field(idx)
)
projection = Declaration(
"project", ProjectNodeOptions(projections, projected_col_names)
)
decl = Declaration.from_sequence([decl, projection])
result_table = decl.to_table(use_threads=use_threads)
if output_type == Table:
return result_table
elif output_type == ds.InMemoryDataset:
return ds.InMemoryDataset(result_table)
else:
raise TypeError("Unsupported output type")
def _perform_join_asof(left_operand, left_on, left_by,
right_operand, right_on, right_by,
tolerance, use_threads=True,
output_type=Table):
"""
Perform asof join of two tables or datasets.
The result will be an output table with the result of the join operation
Parameters
----------
left_operand : Table or Dataset
The left operand for the join operation.
left_on : str
The left key (or keys) on which the join operation should be performed.
left_by: str or list[str]
The left key (or keys) on which the join operation should be performed.
right_operand : Table or Dataset
The right operand for the join operation.
right_on : str or list[str]
The right key (or keys) on which the join operation should be performed.
right_by: str or list[str]
The right key (or keys) on which the join operation should be performed.
tolerance : int
The tolerance to use for the asof join. The tolerance is interpreted in
the same units as the "on" key.
output_type: Table or InMemoryDataset
The output type for the exec plan result.
Returns
-------
result_table : Table or InMemoryDataset
"""
if not isinstance(left_operand, (Table, ds.Dataset)):
raise TypeError(f"Expected Table or Dataset, got {type(left_operand)}")
if not isinstance(right_operand, (Table, ds.Dataset)):
raise TypeError(f"Expected Table or Dataset, got {type(right_operand)}")
if not isinstance(left_by, (tuple, list)):
left_by = [left_by]
if not isinstance(right_by, (tuple, list)):
right_by = [right_by]
# AsofJoin does not return on or by columns for right_operand.
right_columns = [
col for col in right_operand.schema.names
if col not in [right_on] + right_by
]
columns_collisions = set(left_operand.schema.names) & set(right_columns)
if columns_collisions:
raise ValueError(
"Columns {} present in both tables. AsofJoin does not support "
"column collisions.".format(columns_collisions),
)
# Add the join node to the execplan
if isinstance(left_operand, ds.Dataset):
left_source = _dataset_to_decl(left_operand, use_threads=use_threads)
else:
left_source = Declaration(
"table_source", TableSourceNodeOptions(left_operand),
)
if isinstance(right_operand, ds.Dataset):
right_source = _dataset_to_decl(right_operand, use_threads=use_threads)
else:
right_source = Declaration(
"table_source", TableSourceNodeOptions(right_operand)
)
join_opts = AsofJoinNodeOptions(
left_on, left_by, right_on, right_by, tolerance
)
decl = Declaration(
"asofjoin", options=join_opts, inputs=[left_source, right_source]
)
result_table = decl.to_table(use_threads=use_threads)
if output_type == Table:
return result_table
elif output_type == ds.InMemoryDataset:
return ds.InMemoryDataset(result_table)
else:
raise TypeError("Unsupported output type")
def _filter_table(table, expression):
"""Filter rows of a table based on the provided expression.
The result will be an output table with only the rows matching
the provided expression.
Parameters
----------
table : Table or Dataset
Table or Dataset that should be filtered.
expression : Expression
The expression on which rows should be filtered.
Returns
-------
Table
"""
decl = Declaration.from_sequence([
Declaration("table_source", options=TableSourceNodeOptions(table)),
Declaration("filter", options=FilterNodeOptions(expression))
])
return decl.to_table(use_threads=True)
def _sort_source(table_or_dataset, sort_keys, output_type=Table, **kwargs):
if isinstance(table_or_dataset, ds.Dataset):
data_source = _dataset_to_decl(table_or_dataset, use_threads=True)
else:
data_source = Declaration(
"table_source", TableSourceNodeOptions(table_or_dataset)
)
order_by = Declaration("order_by", OrderByNodeOptions(sort_keys, **kwargs))
decl = Declaration.from_sequence([data_source, order_by])
result_table = decl.to_table(use_threads=True)
if output_type == Table:
return result_table
elif output_type == ds.InMemoryDataset:
return ds.InMemoryDataset(result_table)
else:
raise TypeError("Unsupported output type")
def _group_by(table, aggregates, keys, use_threads=True):
decl = Declaration.from_sequence([
Declaration("table_source", TableSourceNodeOptions(table)),
Declaration("aggregate", AggregateNodeOptions(aggregates, keys=keys))
])
return decl.to_table(use_threads=use_threads)
|