File size: 140,813 Bytes
fa6fb51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from cpython.pycapsule cimport PyCapsule_CheckExact, PyCapsule_GetPointer, PyCapsule_New
import os
import warnings
from cython import sizeof
cdef _sequence_to_array(object sequence, object mask, object size,
DataType type, CMemoryPool* pool, c_bool from_pandas):
cdef:
int64_t c_size
PyConversionOptions options
shared_ptr[CChunkedArray] chunked
if type is not None:
options.type = type.sp_type
if size is not None:
options.size = size
options.from_pandas = from_pandas
options.ignore_timezone = os.environ.get('PYARROW_IGNORE_TIMEZONE', False)
with nogil:
chunked = GetResultValue(
ConvertPySequence(sequence, mask, options, pool)
)
if chunked.get().num_chunks() == 1:
return pyarrow_wrap_array(chunked.get().chunk(0))
else:
return pyarrow_wrap_chunked_array(chunked)
cdef inline _is_array_like(obj):
if isinstance(obj, np.ndarray):
return True
return pandas_api._have_pandas_internal() and pandas_api.is_array_like(obj)
def _ndarray_to_arrow_type(object values, DataType type):
return pyarrow_wrap_data_type(_ndarray_to_type(values, type))
cdef shared_ptr[CDataType] _ndarray_to_type(object values,
DataType type) except *:
cdef shared_ptr[CDataType] c_type
dtype = values.dtype
if type is None and dtype != object:
c_type = GetResultValue(NumPyDtypeToArrow(dtype))
if type is not None:
c_type = type.sp_type
return c_type
cdef _ndarray_to_array(object values, object mask, DataType type,
c_bool from_pandas, c_bool safe, CMemoryPool* pool):
cdef:
shared_ptr[CChunkedArray] chunked_out
shared_ptr[CDataType] c_type = _ndarray_to_type(values, type)
CCastOptions cast_options = CCastOptions(safe)
with nogil:
check_status(NdarrayToArrow(pool, values, mask, from_pandas,
c_type, cast_options, &chunked_out))
if chunked_out.get().num_chunks() > 1:
return pyarrow_wrap_chunked_array(chunked_out)
else:
return pyarrow_wrap_array(chunked_out.get().chunk(0))
cdef _codes_to_indices(object codes, object mask, DataType type,
MemoryPool memory_pool):
"""
Convert the codes of a pandas Categorical to indices for a pyarrow
DictionaryArray, taking into account missing values + mask
"""
if mask is None:
mask = codes == -1
else:
mask = mask | (codes == -1)
return array(codes, mask=mask, type=type, memory_pool=memory_pool)
def _handle_arrow_array_protocol(obj, type, mask, size):
if mask is not None or size is not None:
raise ValueError(
"Cannot specify a mask or a size when passing an object that is "
"converted with the __arrow_array__ protocol.")
res = obj.__arrow_array__(type=type)
if not isinstance(res, (Array, ChunkedArray)):
raise TypeError("The object's __arrow_array__ method does not "
"return a pyarrow Array or ChunkedArray.")
if isinstance(res, ChunkedArray) and res.num_chunks==1:
res = res.chunk(0)
return res
def array(object obj, type=None, mask=None, size=None, from_pandas=None,
bint safe=True, MemoryPool memory_pool=None):
"""
Create pyarrow.Array instance from a Python object.
Parameters
----------
obj : sequence, iterable, ndarray, pandas.Series, Arrow-compatible array
If both type and size are specified may be a single use iterable. If
not strongly-typed, Arrow type will be inferred for resulting array.
Any Arrow-compatible array that implements the Arrow PyCapsule Protocol
(has an ``__arrow_c_array__`` method) can be passed as well.
type : pyarrow.DataType
Explicit type to attempt to coerce to, otherwise will be inferred from
the data.
mask : array[bool], optional
Indicate which values are null (True) or not null (False).
size : int64, optional
Size of the elements. If the input is larger than size bail at this
length. For iterators, if size is larger than the input iterator this
will be treated as a "max size", but will involve an initial allocation
of size followed by a resize to the actual size (so if you know the
exact size specifying it correctly will give you better performance).
from_pandas : bool, default None
Use pandas's semantics for inferring nulls from values in
ndarray-like data. If passed, the mask tasks precedence, but
if a value is unmasked (not-null), but still null according to
pandas semantics, then it is null. Defaults to False if not
passed explicitly by user, or True if a pandas object is
passed in.
safe : bool, default True
Check for overflows or other unsafe conversions.
memory_pool : pyarrow.MemoryPool, optional
If not passed, will allocate memory from the currently-set default
memory pool.
Returns
-------
array : pyarrow.Array or pyarrow.ChunkedArray
A ChunkedArray instead of an Array is returned if:
- the object data overflowed binary storage.
- the object's ``__arrow_array__`` protocol method returned a chunked
array.
Notes
-----
Timezone will be preserved in the returned array for timezone-aware data,
else no timezone will be returned for naive timestamps.
Internally, UTC values are stored for timezone-aware data with the
timezone set in the data type.
Pandas's DateOffsets and dateutil.relativedelta.relativedelta are by
default converted as MonthDayNanoIntervalArray. relativedelta leapdays
are ignored as are all absolute fields on both objects. datetime.timedelta
can also be converted to MonthDayNanoIntervalArray but this requires
passing MonthDayNanoIntervalType explicitly.
Converting to dictionary array will promote to a wider integer type for
indices if the number of distinct values cannot be represented, even if
the index type was explicitly set. This means that if there are more than
127 values the returned dictionary array's index type will be at least
pa.int16() even if pa.int8() was passed to the function. Note that an
explicit index type will not be demoted even if it is wider than required.
Examples
--------
>>> import pandas as pd
>>> import pyarrow as pa
>>> pa.array(pd.Series([1, 2]))
<pyarrow.lib.Int64Array object at ...>
[
1,
2
]
>>> pa.array(["a", "b", "a"], type=pa.dictionary(pa.int8(), pa.string()))
<pyarrow.lib.DictionaryArray object at ...>
...
-- dictionary:
[
"a",
"b"
]
-- indices:
[
0,
1,
0
]
>>> import numpy as np
>>> pa.array(pd.Series([1, 2]), mask=np.array([0, 1], dtype=bool))
<pyarrow.lib.Int64Array object at ...>
[
1,
null
]
>>> arr = pa.array(range(1024), type=pa.dictionary(pa.int8(), pa.int64()))
>>> arr.type.index_type
DataType(int16)
"""
cdef:
CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool)
bint is_pandas_object = False
bint c_from_pandas
type = ensure_type(type, allow_none=True)
extension_type = None
if type is not None and type.id == _Type_EXTENSION:
extension_type = type
type = type.storage_type
if from_pandas is None:
c_from_pandas = False
else:
c_from_pandas = from_pandas
if isinstance(obj, Array):
if type is not None and not obj.type.equals(type):
obj = obj.cast(type, safe=safe, memory_pool=memory_pool)
return obj
if hasattr(obj, '__arrow_array__'):
return _handle_arrow_array_protocol(obj, type, mask, size)
elif hasattr(obj, '__arrow_c_array__'):
if type is not None:
requested_type = type.__arrow_c_schema__()
else:
requested_type = None
schema_capsule, array_capsule = obj.__arrow_c_array__(requested_type)
out_array = Array._import_from_c_capsule(schema_capsule, array_capsule)
if type is not None and out_array.type != type:
# PyCapsule interface type coercion is best effort, so we need to
# check the type of the returned array and cast if necessary
out_array = array.cast(type, safe=safe, memory_pool=memory_pool)
return out_array
elif _is_array_like(obj):
if mask is not None:
if _is_array_like(mask):
mask = get_values(mask, &is_pandas_object)
else:
raise TypeError("Mask must be a numpy array "
"when converting numpy arrays")
values = get_values(obj, &is_pandas_object)
if is_pandas_object and from_pandas is None:
c_from_pandas = True
if isinstance(values, np.ma.MaskedArray):
if mask is not None:
raise ValueError("Cannot pass a numpy masked array and "
"specify a mask at the same time")
else:
# don't use shrunken masks
mask = None if values.mask is np.ma.nomask else values.mask
values = values.data
if mask is not None:
if mask.dtype != np.bool_:
raise TypeError("Mask must be boolean dtype")
if mask.ndim != 1:
raise ValueError("Mask must be 1D array")
if len(values) != len(mask):
raise ValueError(
"Mask is a different length from sequence being converted")
if hasattr(values, '__arrow_array__'):
return _handle_arrow_array_protocol(values, type, mask, size)
elif (pandas_api.is_categorical(values) and
type is not None and type.id != Type_DICTIONARY):
result = _ndarray_to_array(
np.asarray(values), mask, type, c_from_pandas, safe, pool
)
elif pandas_api.is_categorical(values):
if type is not None:
index_type = type.index_type
value_type = type.value_type
if values.ordered != type.ordered:
raise ValueError(
"The 'ordered' flag of the passed categorical values "
"does not match the 'ordered' of the specified type. ")
else:
index_type = None
value_type = None
indices = _codes_to_indices(
values.codes, mask, index_type, memory_pool)
try:
dictionary = array(
values.categories.values, type=value_type,
memory_pool=memory_pool)
except TypeError:
# TODO when removing the deprecation warning, this whole
# try/except can be removed (to bubble the TypeError of
# the first array(..) call)
if value_type is not None:
warnings.warn(
"The dtype of the 'categories' of the passed "
"categorical values ({0}) does not match the "
"specified type ({1}). For now ignoring the specified "
"type, but in the future this mismatch will raise a "
"TypeError".format(
values.categories.dtype, value_type),
FutureWarning, stacklevel=2)
dictionary = array(
values.categories.values, memory_pool=memory_pool)
else:
raise
return DictionaryArray.from_arrays(
indices, dictionary, ordered=values.ordered, safe=safe)
else:
if pandas_api.have_pandas:
values, type = pandas_api.compat.get_datetimetz_type(
values, obj.dtype, type)
if type and type.id == _Type_RUN_END_ENCODED:
arr = _ndarray_to_array(
values, mask, type.value_type, c_from_pandas, safe, pool)
result = _pc().run_end_encode(arr, run_end_type=type.run_end_type,
memory_pool=memory_pool)
else:
result = _ndarray_to_array(values, mask, type, c_from_pandas, safe,
pool)
else:
if type and type.id == _Type_RUN_END_ENCODED:
arr = _sequence_to_array(
obj, mask, size, type.value_type, pool, from_pandas)
result = _pc().run_end_encode(arr, run_end_type=type.run_end_type,
memory_pool=memory_pool)
# ConvertPySequence does strict conversion if type is explicitly passed
else:
result = _sequence_to_array(obj, mask, size, type, pool, c_from_pandas)
if extension_type is not None:
result = ExtensionArray.from_storage(extension_type, result)
return result
def asarray(values, type=None):
"""
Convert to pyarrow.Array, inferring type if not provided.
Parameters
----------
values : array-like
This can be a sequence, numpy.ndarray, pyarrow.Array or
pyarrow.ChunkedArray. If a ChunkedArray is passed, the output will be
a ChunkedArray, otherwise the output will be a Array.
type : string or DataType
Explicitly construct the array with this type. Attempt to cast if
indicated type is different.
Returns
-------
arr : Array or ChunkedArray
"""
if isinstance(values, (Array, ChunkedArray)):
if type is not None and not values.type.equals(type):
values = values.cast(type)
return values
else:
return array(values, type=type)
def nulls(size, type=None, MemoryPool memory_pool=None):
"""
Create a strongly-typed Array instance with all elements null.
Parameters
----------
size : int
Array length.
type : pyarrow.DataType, default None
Explicit type for the array. By default use NullType.
memory_pool : MemoryPool, default None
Arrow MemoryPool to use for allocations. Uses the default memory
pool if not passed.
Returns
-------
arr : Array
Examples
--------
>>> import pyarrow as pa
>>> pa.nulls(10)
<pyarrow.lib.NullArray object at ...>
10 nulls
>>> pa.nulls(3, pa.uint32())
<pyarrow.lib.UInt32Array object at ...>
[
null,
null,
null
]
"""
cdef:
CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool)
int64_t length = size
shared_ptr[CDataType] ty
shared_ptr[CArray] arr
type = ensure_type(type, allow_none=True)
if type is None:
type = null()
ty = pyarrow_unwrap_data_type(type)
with nogil:
arr = GetResultValue(MakeArrayOfNull(ty, length, pool))
return pyarrow_wrap_array(arr)
def repeat(value, size, MemoryPool memory_pool=None):
"""
Create an Array instance whose slots are the given scalar.
Parameters
----------
value : Scalar-like object
Either a pyarrow.Scalar or any python object coercible to a Scalar.
size : int
Number of times to repeat the scalar in the output Array.
memory_pool : MemoryPool, default None
Arrow MemoryPool to use for allocations. Uses the default memory
pool if not passed.
Returns
-------
arr : Array
Examples
--------
>>> import pyarrow as pa
>>> pa.repeat(10, 3)
<pyarrow.lib.Int64Array object at ...>
[
10,
10,
10
]
>>> pa.repeat([1, 2], 2)
<pyarrow.lib.ListArray object at ...>
[
[
1,
2
],
[
1,
2
]
]
>>> pa.repeat("string", 3)
<pyarrow.lib.StringArray object at ...>
[
"string",
"string",
"string"
]
>>> pa.repeat(pa.scalar({'a': 1, 'b': [1, 2]}), 2)
<pyarrow.lib.StructArray object at ...>
-- is_valid: all not null
-- child 0 type: int64
[
1,
1
]
-- child 1 type: list<item: int64>
[
[
1,
2
],
[
1,
2
]
]
"""
cdef:
CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool)
int64_t length = size
shared_ptr[CArray] c_array
shared_ptr[CScalar] c_scalar
if not isinstance(value, Scalar):
value = scalar(value, memory_pool=memory_pool)
c_scalar = (<Scalar> value).unwrap()
with nogil:
c_array = GetResultValue(
MakeArrayFromScalar(deref(c_scalar), length, pool)
)
return pyarrow_wrap_array(c_array)
def infer_type(values, mask=None, from_pandas=False):
"""
Attempt to infer Arrow data type that can hold the passed Python
sequence type in an Array object
Parameters
----------
values : array-like
Sequence to infer type from.
mask : ndarray (bool type), optional
Optional exclusion mask where True marks null, False non-null.
from_pandas : bool, default False
Use pandas's NA/null sentinel values for type inference.
Returns
-------
type : DataType
"""
cdef:
shared_ptr[CDataType] out
c_bool use_pandas_sentinels = from_pandas
if mask is not None and not isinstance(mask, np.ndarray):
mask = np.array(mask, dtype=bool)
out = GetResultValue(InferArrowType(values, mask, use_pandas_sentinels))
return pyarrow_wrap_data_type(out)
def _normalize_slice(object arrow_obj, slice key):
"""
Slices with step not equal to 1 (or None) will produce a copy
rather than a zero-copy view
"""
cdef:
Py_ssize_t start, stop, step
Py_ssize_t n = len(arrow_obj)
start, stop, step = key.indices(n)
if step != 1:
indices = np.arange(start, stop, step)
return arrow_obj.take(indices)
else:
length = max(stop - start, 0)
return arrow_obj.slice(start, length)
cdef Py_ssize_t _normalize_index(Py_ssize_t index,
Py_ssize_t length) except -1:
if index < 0:
index += length
if index < 0:
raise IndexError("index out of bounds")
elif index >= length:
raise IndexError("index out of bounds")
return index
cdef wrap_datum(const CDatum& datum):
if datum.kind() == DatumType_ARRAY:
return pyarrow_wrap_array(MakeArray(datum.array()))
elif datum.kind() == DatumType_CHUNKED_ARRAY:
return pyarrow_wrap_chunked_array(datum.chunked_array())
elif datum.kind() == DatumType_RECORD_BATCH:
return pyarrow_wrap_batch(datum.record_batch())
elif datum.kind() == DatumType_TABLE:
return pyarrow_wrap_table(datum.table())
elif datum.kind() == DatumType_SCALAR:
return pyarrow_wrap_scalar(datum.scalar())
else:
raise ValueError("Unable to wrap Datum in a Python object")
cdef _append_array_buffers(const CArrayData* ad, list res):
"""
Recursively append Buffer wrappers from *ad* and its children.
"""
cdef size_t i, n
assert ad != NULL
n = ad.buffers.size()
for i in range(n):
buf = ad.buffers[i]
res.append(pyarrow_wrap_buffer(buf)
if buf.get() != NULL else None)
n = ad.child_data.size()
for i in range(n):
_append_array_buffers(ad.child_data[i].get(), res)
cdef _reduce_array_data(const CArrayData* ad):
"""
Recursively dissect ArrayData to (pickable) tuples.
"""
cdef size_t i, n
assert ad != NULL
n = ad.buffers.size()
buffers = []
for i in range(n):
buf = ad.buffers[i]
buffers.append(pyarrow_wrap_buffer(buf)
if buf.get() != NULL else None)
children = []
n = ad.child_data.size()
for i in range(n):
children.append(_reduce_array_data(ad.child_data[i].get()))
if ad.dictionary.get() != NULL:
dictionary = _reduce_array_data(ad.dictionary.get())
else:
dictionary = None
return pyarrow_wrap_data_type(ad.type), ad.length, ad.null_count, \
ad.offset, buffers, children, dictionary
cdef shared_ptr[CArrayData] _reconstruct_array_data(data):
"""
Reconstruct CArrayData objects from the tuple structure generated
by _reduce_array_data.
"""
cdef:
int64_t length, null_count, offset, i
DataType dtype
Buffer buf
vector[shared_ptr[CBuffer]] c_buffers
vector[shared_ptr[CArrayData]] c_children
shared_ptr[CArrayData] c_dictionary
dtype, length, null_count, offset, buffers, children, dictionary = data
for i in range(len(buffers)):
buf = buffers[i]
if buf is None:
c_buffers.push_back(shared_ptr[CBuffer]())
else:
c_buffers.push_back(buf.buffer)
for i in range(len(children)):
c_children.push_back(_reconstruct_array_data(children[i]))
if dictionary is not None:
c_dictionary = _reconstruct_array_data(dictionary)
return CArrayData.MakeWithChildrenAndDictionary(
dtype.sp_type,
length,
c_buffers,
c_children,
c_dictionary,
null_count,
offset)
def _restore_array(data):
"""
Reconstruct an Array from pickled ArrayData.
"""
cdef shared_ptr[CArrayData] ad = _reconstruct_array_data(data)
return pyarrow_wrap_array(MakeArray(ad))
cdef class _PandasConvertible(_Weakrefable):
def to_pandas(
self,
memory_pool=None,
categories=None,
bint strings_to_categorical=False,
bint zero_copy_only=False,
bint integer_object_nulls=False,
bint date_as_object=True,
bint timestamp_as_object=False,
bint use_threads=True,
bint deduplicate_objects=True,
bint ignore_metadata=False,
bint safe=True,
bint split_blocks=False,
bint self_destruct=False,
str maps_as_pydicts=None,
types_mapper=None,
bint coerce_temporal_nanoseconds=False
):
"""
Convert to a pandas-compatible NumPy array or DataFrame, as appropriate
Parameters
----------
memory_pool : MemoryPool, default None
Arrow MemoryPool to use for allocations. Uses the default memory
pool if not passed.
categories : list, default empty
List of fields that should be returned as pandas.Categorical. Only
applies to table-like data structures.
strings_to_categorical : bool, default False
Encode string (UTF8) and binary types to pandas.Categorical.
zero_copy_only : bool, default False
Raise an ArrowException if this function call would require copying
the underlying data.
integer_object_nulls : bool, default False
Cast integers with nulls to objects
date_as_object : bool, default True
Cast dates to objects. If False, convert to datetime64 dtype with
the equivalent time unit (if supported). Note: in pandas version
< 2.0, only datetime64[ns] conversion is supported.
timestamp_as_object : bool, default False
Cast non-nanosecond timestamps (np.datetime64) to objects. This is
useful in pandas version 1.x if you have timestamps that don't fit
in the normal date range of nanosecond timestamps (1678 CE-2262 CE).
Non-nanosecond timestamps are supported in pandas version 2.0.
If False, all timestamps are converted to datetime64 dtype.
use_threads : bool, default True
Whether to parallelize the conversion using multiple threads.
deduplicate_objects : bool, default True
Do not create multiple copies Python objects when created, to save
on memory use. Conversion will be slower.
ignore_metadata : bool, default False
If True, do not use the 'pandas' metadata to reconstruct the
DataFrame index, if present
safe : bool, default True
For certain data types, a cast is needed in order to store the
data in a pandas DataFrame or Series (e.g. timestamps are always
stored as nanoseconds in pandas). This option controls whether it
is a safe cast or not.
split_blocks : bool, default False
If True, generate one internal "block" for each column when
creating a pandas.DataFrame from a RecordBatch or Table. While this
can temporarily reduce memory note that various pandas operations
can trigger "consolidation" which may balloon memory use.
self_destruct : bool, default False
EXPERIMENTAL: If True, attempt to deallocate the originating Arrow
memory while converting the Arrow object to pandas. If you use the
object after calling to_pandas with this option it will crash your
program.
Note that you may not see always memory usage improvements. For
example, if multiple columns share an underlying allocation,
memory can't be freed until all columns are converted.
maps_as_pydicts : str, optional, default `None`
Valid values are `None`, 'lossy', or 'strict'.
The default behavior (`None`), is to convert Arrow Map arrays to
Python association lists (list-of-tuples) in the same order as the
Arrow Map, as in [(key1, value1), (key2, value2), ...].
If 'lossy' or 'strict', convert Arrow Map arrays to native Python dicts.
This can change the ordering of (key, value) pairs, and will
deduplicate multiple keys, resulting in a possible loss of data.
If 'lossy', this key deduplication results in a warning printed
when detected. If 'strict', this instead results in an exception
being raised when detected.
types_mapper : function, default None
A function mapping a pyarrow DataType to a pandas ExtensionDtype.
This can be used to override the default pandas type for conversion
of built-in pyarrow types or in absence of pandas_metadata in the
Table schema. The function receives a pyarrow DataType and is
expected to return a pandas ExtensionDtype or ``None`` if the
default conversion should be used for that type. If you have
a dictionary mapping, you can pass ``dict.get`` as function.
coerce_temporal_nanoseconds : bool, default False
Only applicable to pandas version >= 2.0.
A legacy option to coerce date32, date64, duration, and timestamp
time units to nanoseconds when converting to pandas. This is the
default behavior in pandas version 1.x. Set this option to True if
you'd like to use this coercion when using pandas version >= 2.0
for backwards compatibility (not recommended otherwise).
Returns
-------
pandas.Series or pandas.DataFrame depending on type of object
Examples
--------
>>> import pyarrow as pa
>>> import pandas as pd
Convert a Table to pandas DataFrame:
>>> table = pa.table([
... pa.array([2, 4, 5, 100]),
... pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"])
... ], names=['n_legs', 'animals'])
>>> table.to_pandas()
n_legs animals
0 2 Flamingo
1 4 Horse
2 5 Brittle stars
3 100 Centipede
>>> isinstance(table.to_pandas(), pd.DataFrame)
True
Convert a RecordBatch to pandas DataFrame:
>>> import pyarrow as pa
>>> n_legs = pa.array([2, 4, 5, 100])
>>> animals = pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"])
>>> batch = pa.record_batch([n_legs, animals],
... names=["n_legs", "animals"])
>>> batch
pyarrow.RecordBatch
n_legs: int64
animals: string
----
n_legs: [2,4,5,100]
animals: ["Flamingo","Horse","Brittle stars","Centipede"]
>>> batch.to_pandas()
n_legs animals
0 2 Flamingo
1 4 Horse
2 5 Brittle stars
3 100 Centipede
>>> isinstance(batch.to_pandas(), pd.DataFrame)
True
Convert a Chunked Array to pandas Series:
>>> import pyarrow as pa
>>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]])
>>> n_legs.to_pandas()
0 2
1 2
2 4
3 4
4 5
5 100
dtype: int64
>>> isinstance(n_legs.to_pandas(), pd.Series)
True
"""
options = dict(
pool=memory_pool,
strings_to_categorical=strings_to_categorical,
zero_copy_only=zero_copy_only,
integer_object_nulls=integer_object_nulls,
date_as_object=date_as_object,
timestamp_as_object=timestamp_as_object,
use_threads=use_threads,
deduplicate_objects=deduplicate_objects,
safe=safe,
split_blocks=split_blocks,
self_destruct=self_destruct,
maps_as_pydicts=maps_as_pydicts,
coerce_temporal_nanoseconds=coerce_temporal_nanoseconds
)
return self._to_pandas(options, categories=categories,
ignore_metadata=ignore_metadata,
types_mapper=types_mapper)
cdef PandasOptions _convert_pandas_options(dict options):
cdef PandasOptions result
result.pool = maybe_unbox_memory_pool(options['pool'])
result.strings_to_categorical = options['strings_to_categorical']
result.zero_copy_only = options['zero_copy_only']
result.integer_object_nulls = options['integer_object_nulls']
result.date_as_object = options['date_as_object']
result.timestamp_as_object = options['timestamp_as_object']
result.use_threads = options['use_threads']
result.deduplicate_objects = options['deduplicate_objects']
result.safe_cast = options['safe']
result.split_blocks = options['split_blocks']
result.self_destruct = options['self_destruct']
result.coerce_temporal_nanoseconds = options['coerce_temporal_nanoseconds']
result.ignore_timezone = os.environ.get('PYARROW_IGNORE_TIMEZONE', False)
maps_as_pydicts = options['maps_as_pydicts']
if maps_as_pydicts is None:
result.maps_as_pydicts = MapConversionType.DEFAULT
elif maps_as_pydicts == "lossy":
result.maps_as_pydicts = MapConversionType.LOSSY
elif maps_as_pydicts == "strict":
result.maps_as_pydicts = MapConversionType.STRICT_
else:
raise ValueError(
"Invalid value for 'maps_as_pydicts': "
+ "valid values are 'lossy', 'strict' or `None` (default). "
+ f"Received '{maps_as_pydicts}'."
)
return result
cdef class Array(_PandasConvertible):
"""
The base class for all Arrow arrays.
"""
def __init__(self):
raise TypeError("Do not call {}'s constructor directly, use one of "
"the `pyarrow.Array.from_*` functions instead."
.format(self.__class__.__name__))
cdef void init(self, const shared_ptr[CArray]& sp_array) except *:
self.sp_array = sp_array
self.ap = sp_array.get()
self.type = pyarrow_wrap_data_type(self.sp_array.get().type())
def _debug_print(self):
with nogil:
check_status(DebugPrint(deref(self.ap), 0))
def diff(self, Array other):
"""
Compare contents of this array against another one.
Return a string containing the result of diffing this array
(on the left side) against the other array (on the right side).
Parameters
----------
other : Array
The other array to compare this array with.
Returns
-------
diff : str
A human-readable printout of the differences.
Examples
--------
>>> import pyarrow as pa
>>> left = pa.array(["one", "two", "three"])
>>> right = pa.array(["two", None, "two-and-a-half", "three"])
>>> print(left.diff(right)) # doctest: +SKIP
@@ -0, +0 @@
-"one"
@@ -2, +1 @@
+null
+"two-and-a-half"
"""
cdef c_string result
with nogil:
result = self.ap.Diff(deref(other.ap))
return frombytes(result, safe=True)
def cast(self, object target_type=None, safe=None, options=None, memory_pool=None):
"""
Cast array values to another data type
See :func:`pyarrow.compute.cast` for usage.
Parameters
----------
target_type : DataType, default None
Type to cast array to.
safe : boolean, default True
Whether to check for conversion errors such as overflow.
options : CastOptions, default None
Additional checks pass by CastOptions
memory_pool : MemoryPool, optional
memory pool to use for allocations during function execution.
Returns
-------
cast : Array
"""
return _pc().cast(self, target_type, safe=safe,
options=options, memory_pool=memory_pool)
def view(self, object target_type):
"""
Return zero-copy "view" of array as another data type.
The data types must have compatible columnar buffer layouts
Parameters
----------
target_type : DataType
Type to construct view as.
Returns
-------
view : Array
"""
cdef DataType type = ensure_type(target_type)
cdef shared_ptr[CArray] result
with nogil:
result = GetResultValue(self.ap.View(type.sp_type))
return pyarrow_wrap_array(result)
def sum(self, **kwargs):
"""
Sum the values in a numerical array.
See :func:`pyarrow.compute.sum` for full usage.
Parameters
----------
**kwargs : dict, optional
Options to pass to :func:`pyarrow.compute.sum`.
Returns
-------
sum : Scalar
A scalar containing the sum value.
"""
options = _pc().ScalarAggregateOptions(**kwargs)
return _pc().call_function('sum', [self], options)
def unique(self):
"""
Compute distinct elements in array.
Returns
-------
unique : Array
An array of the same data type, with deduplicated elements.
"""
return _pc().call_function('unique', [self])
def dictionary_encode(self, null_encoding='mask'):
"""
Compute dictionary-encoded representation of array.
See :func:`pyarrow.compute.dictionary_encode` for full usage.
Parameters
----------
null_encoding : str, default "mask"
How to handle null entries.
Returns
-------
encoded : DictionaryArray
A dictionary-encoded version of this array.
"""
options = _pc().DictionaryEncodeOptions(null_encoding)
return _pc().call_function('dictionary_encode', [self], options)
def value_counts(self):
"""
Compute counts of unique elements in array.
Returns
-------
StructArray
An array of <input type "Values", int64 "Counts"> structs
"""
return _pc().call_function('value_counts', [self])
@staticmethod
def from_pandas(obj, mask=None, type=None, bint safe=True,
MemoryPool memory_pool=None):
"""
Convert pandas.Series to an Arrow Array.
This method uses Pandas semantics about what values indicate
nulls. See pyarrow.array for more general conversion from arrays or
sequences to Arrow arrays.
Parameters
----------
obj : ndarray, pandas.Series, array-like
mask : array (boolean), optional
Indicate which values are null (True) or not null (False).
type : pyarrow.DataType
Explicit type to attempt to coerce to, otherwise will be inferred
from the data.
safe : bool, default True
Check for overflows or other unsafe conversions.
memory_pool : pyarrow.MemoryPool, optional
If not passed, will allocate memory from the currently-set default
memory pool.
Notes
-----
Localized timestamps will currently be returned as UTC (pandas's native
representation). Timezone-naive data will be implicitly interpreted as
UTC.
Returns
-------
array : pyarrow.Array or pyarrow.ChunkedArray
ChunkedArray is returned if object data overflows binary buffer.
"""
return array(obj, mask=mask, type=type, safe=safe, from_pandas=True,
memory_pool=memory_pool)
def __reduce__(self):
return _restore_array, \
(_reduce_array_data(self.sp_array.get().data().get()),)
@staticmethod
def from_buffers(DataType type, length, buffers, null_count=-1, offset=0,
children=None):
"""
Construct an Array from a sequence of buffers.
The concrete type returned depends on the datatype.
Parameters
----------
type : DataType
The value type of the array.
length : int
The number of values in the array.
buffers : List[Buffer]
The buffers backing this array.
null_count : int, default -1
The number of null entries in the array. Negative value means that
the null count is not known.
offset : int, default 0
The array's logical offset (in values, not in bytes) from the
start of each buffer.
children : List[Array], default None
Nested type children with length matching type.num_fields.
Returns
-------
array : Array
"""
cdef:
Buffer buf
Array child
vector[shared_ptr[CBuffer]] c_buffers
vector[shared_ptr[CArrayData]] c_child_data
shared_ptr[CArrayData] array_data
children = children or []
if type.num_fields != len(children):
raise ValueError("Type's expected number of children "
"({0}) did not match the passed number "
"({1}).".format(type.num_fields, len(children)))
if type.num_buffers != len(buffers):
raise ValueError("Type's expected number of buffers "
"({0}) did not match the passed number "
"({1}).".format(type.num_buffers, len(buffers)))
for buf in buffers:
# None will produce a null buffer pointer
c_buffers.push_back(pyarrow_unwrap_buffer(buf))
for child in children:
c_child_data.push_back(child.ap.data())
array_data = CArrayData.MakeWithChildren(type.sp_type, length,
c_buffers, c_child_data,
null_count, offset)
cdef Array result = pyarrow_wrap_array(MakeArray(array_data))
result.validate()
return result
@property
def null_count(self):
return self.sp_array.get().null_count()
@property
def nbytes(self):
"""
Total number of bytes consumed by the elements of the array.
In other words, the sum of bytes from all buffer
ranges referenced.
Unlike `get_total_buffer_size` this method will account for array
offsets.
If buffers are shared between arrays then the shared
portion will be counted multiple times.
The dictionary of dictionary arrays will always be counted in their
entirety even if the array only references a portion of the dictionary.
"""
cdef:
CResult[int64_t] c_size_res
with nogil:
c_size_res = ReferencedBufferSize(deref(self.ap))
size = GetResultValue(c_size_res)
return size
def get_total_buffer_size(self):
"""
The sum of bytes in each buffer referenced by the array.
An array may only reference a portion of a buffer.
This method will overestimate in this case and return the
byte size of the entire buffer.
If a buffer is referenced multiple times then it will
only be counted once.
"""
cdef:
int64_t total_buffer_size
total_buffer_size = TotalBufferSize(deref(self.ap))
return total_buffer_size
def __sizeof__(self):
return super(Array, self).__sizeof__() + self.nbytes
def __iter__(self):
for i in range(len(self)):
yield self.getitem(i)
def __repr__(self):
type_format = object.__repr__(self)
return '{0}\n{1}'.format(type_format, str(self))
def to_string(self, *, int indent=2, int top_level_indent=0, int window=10,
int container_window=2, c_bool skip_new_lines=False):
"""
Render a "pretty-printed" string representation of the Array.
Parameters
----------
indent : int, default 2
How much to indent the internal items in the string to
the right, by default ``2``.
top_level_indent : int, default 0
How much to indent right the entire content of the array,
by default ``0``.
window : int
How many primitive items to preview at the begin and end
of the array when the array is bigger than the window.
The other items will be ellipsed.
container_window : int
How many container items (such as a list in a list array)
to preview at the begin and end of the array when the array
is bigger than the window.
skip_new_lines : bool
If the array should be rendered as a single line of text
or if each element should be on its own line.
"""
cdef:
c_string result
PrettyPrintOptions options
with nogil:
options = PrettyPrintOptions(top_level_indent, window)
options.skip_new_lines = skip_new_lines
options.indent_size = indent
check_status(
PrettyPrint(
deref(self.ap),
options,
&result
)
)
return frombytes(result, safe=True)
def format(self, **kwargs):
"""
DEPRECATED, use pyarrow.Array.to_string
Parameters
----------
**kwargs : dict
Returns
-------
str
"""
import warnings
warnings.warn('Array.format is deprecated, use Array.to_string')
return self.to_string(**kwargs)
def __str__(self):
return self.to_string()
def __eq__(self, other):
try:
return self.equals(other)
except TypeError:
# This also handles comparing with None
# as Array.equals(None) raises a TypeError.
return NotImplemented
def equals(Array self, Array other not None):
"""
Parameters
----------
other : pyarrow.Array
Returns
-------
bool
"""
return self.ap.Equals(deref(other.ap))
def __len__(self):
return self.length()
cdef int64_t length(self):
if self.sp_array.get():
return self.sp_array.get().length()
else:
return 0
def is_null(self, *, nan_is_null=False):
"""
Return BooleanArray indicating the null values.
Parameters
----------
nan_is_null : bool (optional, default False)
Whether floating-point NaN values should also be considered null.
Returns
-------
array : boolean Array
"""
options = _pc().NullOptions(nan_is_null=nan_is_null)
return _pc().call_function('is_null', [self], options)
def is_nan(self):
"""
Return BooleanArray indicating the NaN values.
Returns
-------
array : boolean Array
"""
return _pc().call_function('is_nan', [self])
def is_valid(self):
"""
Return BooleanArray indicating the non-null values.
"""
return _pc().is_valid(self)
def fill_null(self, fill_value):
"""
See :func:`pyarrow.compute.fill_null` for usage.
Parameters
----------
fill_value : any
The replacement value for null entries.
Returns
-------
result : Array
A new array with nulls replaced by the given value.
"""
return _pc().fill_null(self, fill_value)
def __getitem__(self, key):
"""
Slice or return value at given index
Parameters
----------
key : integer or slice
Slices with step not equal to 1 (or None) will produce a copy
rather than a zero-copy view
Returns
-------
value : Scalar (index) or Array (slice)
"""
if isinstance(key, slice):
return _normalize_slice(self, key)
return self.getitem(_normalize_index(key, self.length()))
cdef getitem(self, int64_t i):
return Scalar.wrap(GetResultValue(self.ap.GetScalar(i)))
def slice(self, offset=0, length=None):
"""
Compute zero-copy slice of this array.
Parameters
----------
offset : int, default 0
Offset from start of array to slice.
length : int, default None
Length of slice (default is until end of Array starting from
offset).
Returns
-------
sliced : RecordBatch
"""
cdef:
shared_ptr[CArray] result
if offset < 0:
raise IndexError('Offset must be non-negative')
offset = min(len(self), offset)
if length is None:
result = self.ap.Slice(offset)
else:
if length < 0:
raise ValueError('Length must be non-negative')
result = self.ap.Slice(offset, length)
return pyarrow_wrap_array(result)
def take(self, object indices):
"""
Select values from an array.
See :func:`pyarrow.compute.take` for full usage.
Parameters
----------
indices : Array or array-like
The indices in the array whose values will be returned.
Returns
-------
taken : Array
An array with the same datatype, containing the taken values.
"""
return _pc().take(self, indices)
def drop_null(self):
"""
Remove missing values from an array.
"""
return _pc().drop_null(self)
def filter(self, Array mask, *, null_selection_behavior='drop'):
"""
Select values from an array.
See :func:`pyarrow.compute.filter` for full usage.
Parameters
----------
mask : Array or array-like
The boolean mask to filter the array with.
null_selection_behavior : str, default "drop"
How nulls in the mask should be handled.
Returns
-------
filtered : Array
An array of the same type, with only the elements selected by
the boolean mask.
"""
return _pc().filter(self, mask,
null_selection_behavior=null_selection_behavior)
def index(self, value, start=None, end=None, *, memory_pool=None):
"""
Find the first index of a value.
See :func:`pyarrow.compute.index` for full usage.
Parameters
----------
value : Scalar or object
The value to look for in the array.
start : int, optional
The start index where to look for `value`.
end : int, optional
The end index where to look for `value`.
memory_pool : MemoryPool, optional
A memory pool for potential memory allocations.
Returns
-------
index : Int64Scalar
The index of the value in the array (-1 if not found).
"""
return _pc().index(self, value, start, end, memory_pool=memory_pool)
def sort(self, order="ascending", **kwargs):
"""
Sort the Array
Parameters
----------
order : str, default "ascending"
Which order to sort values in.
Accepted values are "ascending", "descending".
**kwargs : dict, optional
Additional sorting options.
As allowed by :class:`SortOptions`
Returns
-------
result : Array
"""
indices = _pc().sort_indices(
self,
options=_pc().SortOptions(sort_keys=[("", order)], **kwargs)
)
return self.take(indices)
def _to_pandas(self, options, types_mapper=None, **kwargs):
return _array_like_to_pandas(self, options, types_mapper=types_mapper)
def __array__(self, dtype=None, copy=None):
if copy is False:
try:
values = self.to_numpy(zero_copy_only=True)
except ArrowInvalid:
raise ValueError(
"Unable to avoid a copy while creating a numpy array as requested.\n"
"If using `np.array(obj, copy=False)` replace it with "
"`np.asarray(obj)` to allow a copy when needed"
)
# values is already a numpy array at this point, but calling np.array(..)
# again to handle the `dtype` keyword with a no-copy guarantee
return np.array(values, dtype=dtype, copy=False)
values = self.to_numpy(zero_copy_only=False)
if copy is True and is_numeric(self.type.id) and self.null_count == 0:
# to_numpy did not yet make a copy (is_numeric = integer/floats, no decimal)
return np.array(values, dtype=dtype, copy=True)
if dtype is None:
return values
return np.asarray(values, dtype=dtype)
def to_numpy(self, zero_copy_only=True, writable=False):
"""
Return a NumPy view or copy of this array (experimental).
By default, tries to return a view of this array. This is only
supported for primitive arrays with the same memory layout as NumPy
(i.e. integers, floating point, ..) and without any nulls.
For the extension arrays, this method simply delegates to the
underlying storage array.
Parameters
----------
zero_copy_only : bool, default True
If True, an exception will be raised if the conversion to a numpy
array would require copying the underlying data (e.g. in presence
of nulls, or for non-primitive types).
writable : bool, default False
For numpy arrays created with zero copy (view on the Arrow data),
the resulting array is not writable (Arrow data is immutable).
By setting this to True, a copy of the array is made to ensure
it is writable.
Returns
-------
array : numpy.ndarray
"""
cdef:
PyObject* out
PandasOptions c_options
object values
if zero_copy_only and writable:
raise ValueError(
"Cannot return a writable array if asking for zero-copy")
# If there are nulls and the array is a DictionaryArray
# decoding the dictionary will make sure nulls are correctly handled.
# Decoding a dictionary does imply a copy by the way,
# so it can't be done if the user requested a zero_copy.
c_options.decode_dictionaries = True
c_options.zero_copy_only = zero_copy_only
c_options.to_numpy = True
with nogil:
check_status(ConvertArrayToPandas(c_options, self.sp_array,
self, &out))
# wrap_array_output uses pandas to convert to Categorical, here
# always convert to numpy array without pandas dependency
array = PyObject_to_object(out)
if writable and not array.flags.writeable:
# if the conversion already needed to a copy, writeable is True
array = array.copy()
return array
def to_pylist(self):
"""
Convert to a list of native Python objects.
Returns
-------
lst : list
"""
return [x.as_py() for x in self]
def tolist(self):
"""
Alias of to_pylist for compatibility with NumPy.
"""
return self.to_pylist()
def validate(self, *, full=False):
"""
Perform validation checks. An exception is raised if validation fails.
By default only cheap validation checks are run. Pass `full=True`
for thorough validation checks (potentially O(n)).
Parameters
----------
full : bool, default False
If True, run expensive checks, otherwise cheap checks only.
Raises
------
ArrowInvalid
"""
if full:
with nogil:
check_status(self.ap.ValidateFull())
else:
with nogil:
check_status(self.ap.Validate())
@property
def offset(self):
"""
A relative position into another array's data.
The purpose is to enable zero-copy slicing. This value defaults to zero
but must be applied on all operations with the physical storage
buffers.
"""
return self.sp_array.get().offset()
def buffers(self):
"""
Return a list of Buffer objects pointing to this array's physical
storage.
To correctly interpret these buffers, you need to also apply the offset
multiplied with the size of the stored data type.
"""
res = []
_append_array_buffers(self.sp_array.get().data().get(), res)
return res
def _export_to_c(self, out_ptr, out_schema_ptr=0):
"""
Export to a C ArrowArray struct, given its pointer.
If a C ArrowSchema struct pointer is also given, the array type
is exported to it at the same time.
Parameters
----------
out_ptr: int
The raw pointer to a C ArrowArray struct.
out_schema_ptr: int (optional)
The raw pointer to a C ArrowSchema struct.
Be careful: if you don't pass the ArrowArray struct to a consumer,
array memory will leak. This is a low-level function intended for
expert users.
"""
cdef:
void* c_ptr = _as_c_pointer(out_ptr)
void* c_schema_ptr = _as_c_pointer(out_schema_ptr,
allow_null=True)
with nogil:
check_status(ExportArray(deref(self.sp_array),
<ArrowArray*> c_ptr,
<ArrowSchema*> c_schema_ptr))
@staticmethod
def _import_from_c(in_ptr, type):
"""
Import Array from a C ArrowArray struct, given its pointer
and the imported array type.
Parameters
----------
in_ptr: int
The raw pointer to a C ArrowArray struct.
type: DataType or int
Either a DataType object, or the raw pointer to a C ArrowSchema
struct.
This is a low-level function intended for expert users.
"""
cdef:
void* c_ptr = _as_c_pointer(in_ptr)
void* c_type_ptr
shared_ptr[CArray] c_array
c_type = pyarrow_unwrap_data_type(type)
if c_type == nullptr:
# Not a DataType object, perhaps a raw ArrowSchema pointer
c_type_ptr = _as_c_pointer(type)
with nogil:
c_array = GetResultValue(ImportArray(
<ArrowArray*> c_ptr, <ArrowSchema*> c_type_ptr))
else:
with nogil:
c_array = GetResultValue(ImportArray(<ArrowArray*> c_ptr,
c_type))
return pyarrow_wrap_array(c_array)
def __arrow_c_array__(self, requested_schema=None):
"""
Get a pair of PyCapsules containing a C ArrowArray representation of the object.
Parameters
----------
requested_schema : PyCapsule | None
A PyCapsule containing a C ArrowSchema representation of a requested
schema. PyArrow will attempt to cast the array to this data type.
If None, the array will be returned as-is, with a type matching the
one returned by :meth:`__arrow_c_schema__()`.
Returns
-------
Tuple[PyCapsule, PyCapsule]
A pair of PyCapsules containing a C ArrowSchema and ArrowArray,
respectively.
"""
cdef:
ArrowArray* c_array
ArrowSchema* c_schema
shared_ptr[CArray] inner_array
if requested_schema is not None:
target_type = DataType._import_from_c_capsule(requested_schema)
if target_type != self.type:
try:
casted_array = _pc().cast(self, target_type, safe=True)
inner_array = pyarrow_unwrap_array(casted_array)
except ArrowInvalid as e:
raise ValueError(
f"Could not cast {self.type} to requested type {target_type}: {e}"
)
else:
inner_array = self.sp_array
else:
inner_array = self.sp_array
schema_capsule = alloc_c_schema(&c_schema)
array_capsule = alloc_c_array(&c_array)
with nogil:
check_status(ExportArray(deref(inner_array), c_array, c_schema))
return schema_capsule, array_capsule
@staticmethod
def _import_from_c_capsule(schema_capsule, array_capsule):
cdef:
ArrowSchema* c_schema
ArrowArray* c_array
shared_ptr[CArray] array
c_schema = <ArrowSchema*> PyCapsule_GetPointer(schema_capsule, 'arrow_schema')
c_array = <ArrowArray*> PyCapsule_GetPointer(array_capsule, 'arrow_array')
with nogil:
array = GetResultValue(ImportArray(c_array, c_schema))
return pyarrow_wrap_array(array)
def _export_to_c_device(self, out_ptr, out_schema_ptr=0):
"""
Export to a C ArrowDeviceArray struct, given its pointer.
If a C ArrowSchema struct pointer is also given, the array type
is exported to it at the same time.
Parameters
----------
out_ptr: int
The raw pointer to a C ArrowDeviceArray struct.
out_schema_ptr: int (optional)
The raw pointer to a C ArrowSchema struct.
Be careful: if you don't pass the ArrowDeviceArray struct to a consumer,
array memory will leak. This is a low-level function intended for
expert users.
"""
cdef:
void* c_ptr = _as_c_pointer(out_ptr)
void* c_schema_ptr = _as_c_pointer(out_schema_ptr,
allow_null=True)
with nogil:
check_status(ExportDeviceArray(
deref(self.sp_array), <shared_ptr[CSyncEvent]>NULL,
<ArrowDeviceArray*> c_ptr, <ArrowSchema*> c_schema_ptr))
@staticmethod
def _import_from_c_device(in_ptr, type):
"""
Import Array from a C ArrowDeviceArray struct, given its pointer
and the imported array type.
Parameters
----------
in_ptr: int
The raw pointer to a C ArrowDeviceArray struct.
type: DataType or int
Either a DataType object, or the raw pointer to a C ArrowSchema
struct.
This is a low-level function intended for expert users.
"""
cdef:
void* c_ptr = _as_c_pointer(in_ptr)
void* c_type_ptr
shared_ptr[CArray] c_array
c_type = pyarrow_unwrap_data_type(type)
if c_type == nullptr:
# Not a DataType object, perhaps a raw ArrowSchema pointer
c_type_ptr = _as_c_pointer(type)
with nogil:
c_array = GetResultValue(
ImportDeviceArray(<ArrowDeviceArray*> c_ptr,
<ArrowSchema*> c_type_ptr)
)
else:
with nogil:
c_array = GetResultValue(
ImportDeviceArray(<ArrowDeviceArray*> c_ptr, c_type)
)
return pyarrow_wrap_array(c_array)
def __dlpack__(self, stream=None):
"""Export a primitive array as a DLPack capsule.
Parameters
----------
stream : int, optional
A Python integer representing a pointer to a stream. Currently not supported.
Stream is provided by the consumer to the producer to instruct the producer
to ensure that operations can safely be performed on the array.
Returns
-------
capsule : PyCapsule
A DLPack capsule for the array, pointing to a DLManagedTensor.
"""
if stream is None:
dlm_tensor = GetResultValue(ExportToDLPack(self.sp_array))
return PyCapsule_New(dlm_tensor, 'dltensor', dlpack_pycapsule_deleter)
else:
raise NotImplementedError(
"Only stream=None is supported."
)
def __dlpack_device__(self):
"""
Return the DLPack device tuple this arrays resides on.
Returns
-------
tuple : Tuple[int, int]
Tuple with index specifying the type of the device (where
CPU = 1, see cpp/src/arrow/c/dpack_abi.h) and index of the
device which is 0 by default for CPU.
"""
device = GetResultValue(ExportDevice(self.sp_array))
return device.device_type, device.device_id
cdef _array_like_to_pandas(obj, options, types_mapper):
cdef:
PyObject* out
PandasOptions c_options = _convert_pandas_options(options)
original_type = obj.type
name = obj._name
dtype = None
if types_mapper:
dtype = types_mapper(original_type)
elif original_type.id == _Type_EXTENSION:
try:
dtype = original_type.to_pandas_dtype()
except NotImplementedError:
pass
# Only call __from_arrow__ for Arrow extension types or when explicitly
# overridden via types_mapper
if hasattr(dtype, '__from_arrow__'):
arr = dtype.__from_arrow__(obj)
return pandas_api.series(arr, name=name, copy=False)
if pandas_api.is_v1():
# ARROW-3789: Coerce date/timestamp types to datetime64[ns]
c_options.coerce_temporal_nanoseconds = True
if isinstance(obj, Array):
with nogil:
check_status(ConvertArrayToPandas(c_options,
(<Array> obj).sp_array,
obj, &out))
elif isinstance(obj, ChunkedArray):
with nogil:
check_status(libarrow_python.ConvertChunkedArrayToPandas(
c_options,
(<ChunkedArray> obj).sp_chunked_array,
obj, &out))
arr = wrap_array_output(out)
if (isinstance(original_type, TimestampType) and
options["timestamp_as_object"]):
# ARROW-5359 - need to specify object dtype to avoid pandas to
# coerce back to ns resolution
dtype = "object"
elif types_mapper:
dtype = types_mapper(original_type)
else:
dtype = None
result = pandas_api.series(arr, dtype=dtype, name=name, copy=False)
if (isinstance(original_type, TimestampType) and
original_type.tz is not None and
# can be object dtype for non-ns and timestamp_as_object=True
result.dtype.kind == "M"):
from pyarrow.pandas_compat import make_tz_aware
result = make_tz_aware(result, original_type.tz)
return result
cdef wrap_array_output(PyObject* output):
cdef object obj = PyObject_to_object(output)
if isinstance(obj, dict):
return _pandas_api.categorical_type.from_codes(
obj['indices'], categories=obj['dictionary'], ordered=obj['ordered']
)
else:
return obj
cdef class NullArray(Array):
"""
Concrete class for Arrow arrays of null data type.
"""
cdef class BooleanArray(Array):
"""
Concrete class for Arrow arrays of boolean data type.
"""
@property
def false_count(self):
return (<CBooleanArray*> self.ap).false_count()
@property
def true_count(self):
return (<CBooleanArray*> self.ap).true_count()
cdef class NumericArray(Array):
"""
A base class for Arrow numeric arrays.
"""
cdef class IntegerArray(NumericArray):
"""
A base class for Arrow integer arrays.
"""
cdef class FloatingPointArray(NumericArray):
"""
A base class for Arrow floating-point arrays.
"""
cdef class Int8Array(IntegerArray):
"""
Concrete class for Arrow arrays of int8 data type.
"""
cdef class UInt8Array(IntegerArray):
"""
Concrete class for Arrow arrays of uint8 data type.
"""
cdef class Int16Array(IntegerArray):
"""
Concrete class for Arrow arrays of int16 data type.
"""
cdef class UInt16Array(IntegerArray):
"""
Concrete class for Arrow arrays of uint16 data type.
"""
cdef class Int32Array(IntegerArray):
"""
Concrete class for Arrow arrays of int32 data type.
"""
cdef class UInt32Array(IntegerArray):
"""
Concrete class for Arrow arrays of uint32 data type.
"""
cdef class Int64Array(IntegerArray):
"""
Concrete class for Arrow arrays of int64 data type.
"""
cdef class UInt64Array(IntegerArray):
"""
Concrete class for Arrow arrays of uint64 data type.
"""
cdef class Date32Array(NumericArray):
"""
Concrete class for Arrow arrays of date32 data type.
"""
cdef class Date64Array(NumericArray):
"""
Concrete class for Arrow arrays of date64 data type.
"""
cdef class TimestampArray(NumericArray):
"""
Concrete class for Arrow arrays of timestamp data type.
"""
cdef class Time32Array(NumericArray):
"""
Concrete class for Arrow arrays of time32 data type.
"""
cdef class Time64Array(NumericArray):
"""
Concrete class for Arrow arrays of time64 data type.
"""
cdef class DurationArray(NumericArray):
"""
Concrete class for Arrow arrays of duration data type.
"""
cdef class MonthDayNanoIntervalArray(Array):
"""
Concrete class for Arrow arrays of interval[MonthDayNano] type.
"""
def to_pylist(self):
"""
Convert to a list of native Python objects.
pyarrow.MonthDayNano is used as the native representation.
Returns
-------
lst : list
"""
cdef:
CResult[PyObject*] maybe_py_list
PyObject* py_list
CMonthDayNanoIntervalArray* array
array = <CMonthDayNanoIntervalArray*>self.sp_array.get()
maybe_py_list = MonthDayNanoIntervalArrayToPyList(deref(array))
py_list = GetResultValue(maybe_py_list)
return PyObject_to_object(py_list)
cdef class HalfFloatArray(FloatingPointArray):
"""
Concrete class for Arrow arrays of float16 data type.
"""
cdef class FloatArray(FloatingPointArray):
"""
Concrete class for Arrow arrays of float32 data type.
"""
cdef class DoubleArray(FloatingPointArray):
"""
Concrete class for Arrow arrays of float64 data type.
"""
cdef class FixedSizeBinaryArray(Array):
"""
Concrete class for Arrow arrays of a fixed-size binary data type.
"""
cdef class Decimal128Array(FixedSizeBinaryArray):
"""
Concrete class for Arrow arrays of decimal128 data type.
"""
cdef class Decimal256Array(FixedSizeBinaryArray):
"""
Concrete class for Arrow arrays of decimal256 data type.
"""
cdef class BaseListArray(Array):
def flatten(self):
"""
Unnest this ListArray/LargeListArray by one level.
The returned Array is logically a concatenation of all the sub-lists
in this Array.
Note that this method is different from ``self.values`` in that
it takes care of the slicing offset as well as null elements backed
by non-empty sub-lists.
Returns
-------
result : Array
"""
return _pc().list_flatten(self)
def value_parent_indices(self):
"""
Return array of same length as list child values array where each
output value is the index of the parent list array slot containing each
child value.
Examples
--------
>>> import pyarrow as pa
>>> arr = pa.array([[1, 2, 3], [], None, [4]],
... type=pa.list_(pa.int32()))
>>> arr.value_parent_indices()
<pyarrow.lib.Int64Array object at ...>
[
0,
0,
0,
3
]
"""
return _pc().list_parent_indices(self)
def value_lengths(self):
"""
Return integers array with values equal to the respective length of
each list element. Null list values are null in the output.
Examples
--------
>>> import pyarrow as pa
>>> arr = pa.array([[1, 2, 3], [], None, [4]],
... type=pa.list_(pa.int32()))
>>> arr.value_lengths()
<pyarrow.lib.Int32Array object at ...>
[
3,
0,
null,
1
]
"""
return _pc().list_value_length(self)
cdef class ListArray(BaseListArray):
"""
Concrete class for Arrow arrays of a list data type.
"""
@staticmethod
def from_arrays(offsets, values, DataType type=None, MemoryPool pool=None, mask=None):
"""
Construct ListArray from arrays of int32 offsets and values.
Parameters
----------
offsets : Array (int32 type)
values : Array (any type)
type : DataType, optional
If not specified, a default ListType with the values' type is
used.
pool : MemoryPool, optional
mask : Array (boolean type), optional
Indicate which values are null (True) or not null (False).
Returns
-------
list_array : ListArray
Examples
--------
>>> import pyarrow as pa
>>> values = pa.array([1, 2, 3, 4])
>>> offsets = pa.array([0, 2, 4])
>>> pa.ListArray.from_arrays(offsets, values)
<pyarrow.lib.ListArray object at ...>
[
[
1,
2
],
[
3,
4
]
]
>>> # nulls in the offsets array become null lists
>>> offsets = pa.array([0, None, 2, 4])
>>> pa.ListArray.from_arrays(offsets, values)
<pyarrow.lib.ListArray object at ...>
[
[
1,
2
],
null,
[
3,
4
]
]
"""
cdef:
Array _offsets, _values
shared_ptr[CArray] out
shared_ptr[CBuffer] c_mask
cdef CMemoryPool* cpool = maybe_unbox_memory_pool(pool)
_offsets = asarray(offsets, type='int32')
_values = asarray(values)
c_mask = c_mask_inverted_from_obj(mask, pool)
if type is not None:
with nogil:
out = GetResultValue(
CListArray.FromArraysAndType(
type.sp_type, _offsets.ap[0], _values.ap[0], cpool, c_mask))
else:
with nogil:
out = GetResultValue(
CListArray.FromArrays(
_offsets.ap[0], _values.ap[0], cpool, c_mask))
cdef Array result = pyarrow_wrap_array(out)
result.validate()
return result
@property
def values(self):
"""
Return the underlying array of values which backs the ListArray
ignoring the array's offset.
If any of the list elements are null, but are backed by a
non-empty sub-list, those elements will be included in the
output.
Compare with :meth:`flatten`, which returns only the non-null
values taking into consideration the array's offset.
Returns
-------
values : Array
See Also
--------
ListArray.flatten : ...
Examples
--------
The values include null elements from sub-lists:
>>> import pyarrow as pa
>>> array = pa.array([[1, 2], None, [3, 4, None, 6]])
>>> array.values
<pyarrow.lib.Int64Array object at ...>
[
1,
2,
3,
4,
null,
6
]
If an array is sliced, the slice still uses the same
underlying data as the original array, just with an
offset. Since values ignores the offset, the values are the
same:
>>> sliced = array.slice(1, 2)
>>> sliced
<pyarrow.lib.ListArray object at ...>
[
null,
[
3,
4,
null,
6
]
]
>>> sliced.values
<pyarrow.lib.Int64Array object at ...>
[
1,
2,
3,
4,
null,
6
]
"""
cdef CListArray* arr = <CListArray*> self.ap
return pyarrow_wrap_array(arr.values())
@property
def offsets(self):
"""
Return the list offsets as an int32 array.
The returned array will not have a validity bitmap, so you cannot
expect to pass it to `ListArray.from_arrays` and get back the same
list array if the original one has nulls.
Returns
-------
offsets : Int32Array
Examples
--------
>>> import pyarrow as pa
>>> array = pa.array([[1, 2], None, [3, 4, 5]])
>>> array.offsets
<pyarrow.lib.Int32Array object at ...>
[
0,
2,
2,
5
]
"""
return pyarrow_wrap_array((<CListArray*> self.ap).offsets())
cdef class LargeListArray(BaseListArray):
"""
Concrete class for Arrow arrays of a large list data type.
Identical to ListArray, but 64-bit offsets.
"""
@staticmethod
def from_arrays(offsets, values, DataType type=None, MemoryPool pool=None, mask=None):
"""
Construct LargeListArray from arrays of int64 offsets and values.
Parameters
----------
offsets : Array (int64 type)
values : Array (any type)
type : DataType, optional
If not specified, a default ListType with the values' type is
used.
pool : MemoryPool, optional
mask : Array (boolean type), optional
Indicate which values are null (True) or not null (False).
Returns
-------
list_array : LargeListArray
"""
cdef:
Array _offsets, _values
shared_ptr[CArray] out
shared_ptr[CBuffer] c_mask
cdef CMemoryPool* cpool = maybe_unbox_memory_pool(pool)
_offsets = asarray(offsets, type='int64')
_values = asarray(values)
c_mask = c_mask_inverted_from_obj(mask, pool)
if type is not None:
with nogil:
out = GetResultValue(
CLargeListArray.FromArraysAndType(
type.sp_type, _offsets.ap[0], _values.ap[0], cpool, c_mask))
else:
with nogil:
out = GetResultValue(
CLargeListArray.FromArrays(
_offsets.ap[0], _values.ap[0], cpool, c_mask))
cdef Array result = pyarrow_wrap_array(out)
result.validate()
return result
@property
def values(self):
"""
Return the underlying array of values which backs the LargeListArray
ignoring the array's offset.
If any of the list elements are null, but are backed by a
non-empty sub-list, those elements will be included in the
output.
Compare with :meth:`flatten`, which returns only the non-null
values taking into consideration the array's offset.
Returns
-------
values : Array
See Also
--------
LargeListArray.flatten : ...
Examples
--------
The values include null elements from the sub-lists:
>>> import pyarrow as pa
>>> array = pa.array(
... [[1, 2], None, [3, 4, None, 6]],
... type=pa.large_list(pa.int32()),
... )
>>> array.values
<pyarrow.lib.Int32Array object at ...>
[
1,
2,
3,
4,
null,
6
]
If an array is sliced, the slice still uses the same
underlying data as the original array, just with an
offset. Since values ignores the offset, the values are the
same:
>>> sliced = array.slice(1, 2)
>>> sliced
<pyarrow.lib.LargeListArray object at ...>
[
null,
[
3,
4,
null,
6
]
]
>>> sliced.values
<pyarrow.lib.Int32Array object at ...>
[
1,
2,
3,
4,
null,
6
]
"""
cdef CLargeListArray* arr = <CLargeListArray*> self.ap
return pyarrow_wrap_array(arr.values())
@property
def offsets(self):
"""
Return the list offsets as an int64 array.
The returned array will not have a validity bitmap, so you cannot
expect to pass it to `LargeListArray.from_arrays` and get back the
same list array if the original one has nulls.
Returns
-------
offsets : Int64Array
"""
return pyarrow_wrap_array((<CLargeListArray*> self.ap).offsets())
cdef class ListViewArray(Array):
"""
Concrete class for Arrow arrays of a list view data type.
"""
@staticmethod
def from_arrays(offsets, sizes, values, DataType type=None, MemoryPool pool=None, mask=None):
"""
Construct ListViewArray from arrays of int32 offsets, sizes, and values.
Parameters
----------
offsets : Array (int32 type)
sizes : Array (int32 type)
values : Array (any type)
type : DataType, optional
If not specified, a default ListType with the values' type is
used.
pool : MemoryPool, optional
mask : Array (boolean type), optional
Indicate which values are null (True) or not null (False).
Returns
-------
list_view_array : ListViewArray
Examples
--------
>>> import pyarrow as pa
>>> values = pa.array([1, 2, 3, 4])
>>> offsets = pa.array([0, 1, 2])
>>> sizes = pa.array([2, 2, 2])
>>> pa.ListViewArray.from_arrays(offsets, sizes, values)
<pyarrow.lib.ListViewArray object at ...>
[
[
1,
2
],
[
2,
3
],
[
3,
4
]
]
>>> # use a null mask to represent null values
>>> mask = pa.array([False, True, False])
>>> pa.ListViewArray.from_arrays(offsets, sizes, values, mask=mask)
<pyarrow.lib.ListViewArray object at ...>
[
[
1,
2
],
null,
[
3,
4
]
]
>>> # null values can be defined in either offsets or sizes arrays
>>> # WARNING: this will result in a copy of the offsets or sizes arrays
>>> offsets = pa.array([0, None, 2])
>>> pa.ListViewArray.from_arrays(offsets, sizes, values)
<pyarrow.lib.ListViewArray object at ...>
[
[
1,
2
],
null,
[
3,
4
]
]
"""
cdef:
Array _offsets, _sizes, _values
shared_ptr[CArray] out
shared_ptr[CBuffer] c_mask
CMemoryPool* cpool = maybe_unbox_memory_pool(pool)
_offsets = asarray(offsets, type='int32')
_sizes = asarray(sizes, type='int32')
_values = asarray(values)
c_mask = c_mask_inverted_from_obj(mask, pool)
if type is not None:
with nogil:
out = GetResultValue(
CListViewArray.FromArraysAndType(
type.sp_type, _offsets.ap[0], _sizes.ap[0], _values.ap[0], cpool, c_mask))
else:
with nogil:
out = GetResultValue(
CListViewArray.FromArrays(
_offsets.ap[0], _sizes.ap[0], _values.ap[0], cpool, c_mask))
cdef Array result = pyarrow_wrap_array(out)
result.validate()
return result
@property
def values(self):
"""
Return the underlying array of values which backs the ListViewArray
ignoring the array's offset and sizes.
The values array may be out of order and/or contain additional values
that are not found in the logical representation of the array. The only
guarantee is that each non-null value in the ListView Array is contiguous.
Compare with :meth:`flatten`, which returns only the non-null
values taking into consideration the array's order and offset.
Returns
-------
values : Array
Examples
--------
The values include null elements from sub-lists:
>>> import pyarrow as pa
>>> values = [1, 2, None, 3, 4]
>>> offsets = [0, 0, 1]
>>> sizes = [2, 0, 4]
>>> array = pa.ListViewArray.from_arrays(offsets, sizes, values)
>>> array
<pyarrow.lib.ListViewArray object at ...>
[
[
1,
2
],
[],
[
2,
null,
3,
4
]
]
>>> array.values
<pyarrow.lib.Int64Array object at ...>
[
1,
2,
null,
3,
4
]
"""
cdef CListViewArray* arr = <CListViewArray*> self.ap
return pyarrow_wrap_array(arr.values())
@property
def offsets(self):
"""
Return the list offsets as an int32 array.
The returned array will not have a validity bitmap, so you cannot
expect to pass it to `ListViewArray.from_arrays` and get back the same
list array if the original one has nulls.
Returns
-------
offsets : Int32Array
Examples
--------
>>> import pyarrow as pa
>>> values = [1, 2, None, 3, 4]
>>> offsets = [0, 0, 1]
>>> sizes = [2, 0, 4]
>>> array = pa.ListViewArray.from_arrays(offsets, sizes, values)
>>> array.offsets
<pyarrow.lib.Int32Array object at ...>
[
0,
0,
1
]
"""
return pyarrow_wrap_array((<CListViewArray*> self.ap).offsets())
@property
def sizes(self):
"""
Return the list sizes as an int32 array.
The returned array will not have a validity bitmap, so you cannot
expect to pass it to `ListViewArray.from_arrays` and get back the same
list array if the original one has nulls.
Returns
-------
sizes : Int32Array
Examples
--------
>>> import pyarrow as pa
>>> values = [1, 2, None, 3, 4]
>>> offsets = [0, 0, 1]
>>> sizes = [2, 0, 4]
>>> array = pa.ListViewArray.from_arrays(offsets, sizes, values)
>>> array.sizes
<pyarrow.lib.Int32Array object at ...>
[
2,
0,
4
]
"""
return pyarrow_wrap_array((<CListViewArray*> self.ap).sizes())
def flatten(self, memory_pool=None):
"""
Unnest this ListViewArray by one level.
The returned Array is logically a concatenation of all the sub-lists
in this Array.
Note that this method is different from ``self.values`` in that
it takes care of the slicing offset as well as null elements backed
by non-empty sub-lists.
Parameters
----------
memory_pool : MemoryPool, optional
Returns
-------
result : Array
Examples
--------
>>> import pyarrow as pa
>>> values = [1, 2, 3, 4]
>>> offsets = [2, 1, 0]
>>> sizes = [2, 2, 2]
>>> array = pa.ListViewArray.from_arrays(offsets, sizes, values)
>>> array
<pyarrow.lib.ListViewArray object at ...>
[
[
3,
4
],
[
2,
3
],
[
1,
2
]
]
>>> array.flatten()
<pyarrow.lib.Int64Array object at ...>
[
3,
4,
2,
3,
1,
2
]
"""
cdef CMemoryPool* cpool = maybe_unbox_memory_pool(memory_pool)
with nogil:
out = GetResultValue((<CListViewArray*> self.ap).Flatten(cpool))
cdef Array result = pyarrow_wrap_array(out)
result.validate()
return result
cdef class LargeListViewArray(Array):
"""
Concrete class for Arrow arrays of a large list view data type.
Identical to ListViewArray, but with 64-bit offsets.
"""
@staticmethod
def from_arrays(offsets, sizes, values, DataType type=None, MemoryPool pool=None, mask=None):
"""
Construct LargeListViewArray from arrays of int64 offsets and values.
Parameters
----------
offsets : Array (int64 type)
sizes : Array (int64 type)
values : Array (any type)
type : DataType, optional
If not specified, a default ListType with the values' type is
used.
pool : MemoryPool, optional
mask : Array (boolean type), optional
Indicate which values are null (True) or not null (False).
Returns
-------
list_view_array : LargeListViewArray
Examples
--------
>>> import pyarrow as pa
>>> values = pa.array([1, 2, 3, 4])
>>> offsets = pa.array([0, 1, 2])
>>> sizes = pa.array([2, 2, 2])
>>> pa.LargeListViewArray.from_arrays(offsets, sizes, values)
<pyarrow.lib.LargeListViewArray object at ...>
[
[
1,
2
],
[
2,
3
],
[
3,
4
]
]
>>> # use a null mask to represent null values
>>> mask = pa.array([False, True, False])
>>> pa.LargeListViewArray.from_arrays(offsets, sizes, values, mask=mask)
<pyarrow.lib.LargeListViewArray object at ...>
[
[
1,
2
],
null,
[
3,
4
]
]
>>> # null values can be defined in either offsets or sizes arrays
>>> # WARNING: this will result in a copy of the offsets or sizes arrays
>>> offsets = pa.array([0, None, 2])
>>> pa.LargeListViewArray.from_arrays(offsets, sizes, values)
<pyarrow.lib.LargeListViewArray object at ...>
[
[
1,
2
],
null,
[
3,
4
]
]
"""
cdef:
Array _offsets, _sizes, _values
shared_ptr[CArray] out
shared_ptr[CBuffer] c_mask
CMemoryPool* cpool = maybe_unbox_memory_pool(pool)
_offsets = asarray(offsets, type='int64')
_sizes = asarray(sizes, type='int64')
_values = asarray(values)
c_mask = c_mask_inverted_from_obj(mask, pool)
if type is not None:
with nogil:
out = GetResultValue(
CLargeListViewArray.FromArraysAndType(
type.sp_type, _offsets.ap[0], _sizes.ap[0], _values.ap[0], cpool, c_mask))
else:
with nogil:
out = GetResultValue(
CLargeListViewArray.FromArrays(
_offsets.ap[0], _sizes.ap[0], _values.ap[0], cpool, c_mask))
cdef Array result = pyarrow_wrap_array(out)
result.validate()
return result
@property
def values(self):
"""
Return the underlying array of values which backs the LargeListArray
ignoring the array's offset.
The values array may be out of order and/or contain additional values
that are not found in the logical representation of the array. The only
guarantee is that each non-null value in the ListView Array is contiguous.
Compare with :meth:`flatten`, which returns only the non-null
values taking into consideration the array's order and offset.
Returns
-------
values : Array
See Also
--------
LargeListArray.flatten : ...
Examples
--------
The values include null elements from sub-lists:
>>> import pyarrow as pa
>>> values = [1, 2, None, 3, 4]
>>> offsets = [0, 0, 1]
>>> sizes = [2, 0, 4]
>>> array = pa.LargeListViewArray.from_arrays(offsets, sizes, values)
>>> array
<pyarrow.lib.LargeListViewArray object at ...>
[
[
1,
2
],
[],
[
2,
null,
3,
4
]
]
>>> array.values
<pyarrow.lib.Int64Array object at ...>
[
1,
2,
null,
3,
4
]
"""
cdef CLargeListViewArray* arr = <CLargeListViewArray*> self.ap
return pyarrow_wrap_array(arr.values())
@property
def offsets(self):
"""
Return the list view offsets as an int64 array.
The returned array will not have a validity bitmap, so you cannot
expect to pass it to `LargeListViewArray.from_arrays` and get back the
same list array if the original one has nulls.
Returns
-------
offsets : Int64Array
Examples
--------
>>> import pyarrow as pa
>>> values = [1, 2, None, 3, 4]
>>> offsets = [0, 0, 1]
>>> sizes = [2, 0, 4]
>>> array = pa.LargeListViewArray.from_arrays(offsets, sizes, values)
>>> array.offsets
<pyarrow.lib.Int64Array object at ...>
[
0,
0,
1
]
"""
return pyarrow_wrap_array((<CLargeListViewArray*> self.ap).offsets())
@property
def sizes(self):
"""
Return the list view sizes as an int64 array.
The returned array will not have a validity bitmap, so you cannot
expect to pass it to `LargeListViewArray.from_arrays` and get back the
same list array if the original one has nulls.
Returns
-------
sizes : Int64Array
Examples
--------
>>> import pyarrow as pa
>>> values = [1, 2, None, 3, 4]
>>> offsets = [0, 0, 1]
>>> sizes = [2, 0, 4]
>>> array = pa.LargeListViewArray.from_arrays(offsets, sizes, values)
>>> array.sizes
<pyarrow.lib.Int64Array object at ...>
[
2,
0,
4
]
"""
return pyarrow_wrap_array((<CLargeListViewArray*> self.ap).sizes())
def flatten(self, memory_pool=None):
"""
Unnest this LargeListViewArray by one level.
The returned Array is logically a concatenation of all the sub-lists
in this Array.
Note that this method is different from ``self.values`` in that
it takes care of the slicing offset as well as null elements backed
by non-empty sub-lists.
Parameters
----------
memory_pool : MemoryPool, optional
Returns
-------
result : Array
Examples
--------
>>> import pyarrow as pa
>>> values = [1, 2, 3, 4]
>>> offsets = [2, 1, 0]
>>> sizes = [2, 2, 2]
>>> array = pa.LargeListViewArray.from_arrays(offsets, sizes, values)
>>> array
<pyarrow.lib.LargeListViewArray object at ...>
[
[
3,
4
],
[
2,
3
],
[
1,
2
]
]
>>> array.flatten()
<pyarrow.lib.Int64Array object at ...>
[
3,
4,
2,
3,
1,
2
]
"""
cdef CMemoryPool* cpool = maybe_unbox_memory_pool(memory_pool)
with nogil:
out = GetResultValue((<CLargeListViewArray*> self.ap).Flatten(cpool))
cdef Array result = pyarrow_wrap_array(out)
result.validate()
return result
cdef class MapArray(ListArray):
"""
Concrete class for Arrow arrays of a map data type.
"""
@staticmethod
def from_arrays(offsets, keys, items, DataType type=None, MemoryPool pool=None):
"""
Construct MapArray from arrays of int32 offsets and key, item arrays.
Parameters
----------
offsets : array-like or sequence (int32 type)
keys : array-like or sequence (any type)
items : array-like or sequence (any type)
type : DataType, optional
If not specified, a default MapArray with the keys' and items' type is used.
pool : MemoryPool
Returns
-------
map_array : MapArray
Examples
--------
First, let's understand the structure of our dataset when viewed in a rectangular data model.
The total of 5 respondents answered the question "How much did you like the movie x?".
The value -1 in the integer array means that the value is missing. The boolean array
represents the null bitmask corresponding to the missing values in the integer array.
>>> import pyarrow as pa
>>> movies_rectangular = np.ma.masked_array([
... [10, -1, -1],
... [8, 4, 5],
... [-1, 10, 3],
... [-1, -1, -1],
... [-1, -1, -1]
... ],
... [
... [False, True, True],
... [False, False, False],
... [True, False, False],
... [True, True, True],
... [True, True, True],
... ])
To represent the same data with the MapArray and from_arrays, the data is
formed like this:
>>> offsets = [
... 0, # -- row 1 start
... 1, # -- row 2 start
... 4, # -- row 3 start
... 6, # -- row 4 start
... 6, # -- row 5 start
... 6, # -- row 5 end
... ]
>>> movies = [
... "Dark Knight", # ---------------------------------- row 1
... "Dark Knight", "Meet the Parents", "Superman", # -- row 2
... "Meet the Parents", "Superman", # ----------------- row 3
... ]
>>> likings = [
... 10, # -------- row 1
... 8, 4, 5, # --- row 2
... 10, 3 # ------ row 3
... ]
>>> pa.MapArray.from_arrays(offsets, movies, likings).to_pandas()
0 [(Dark Knight, 10)]
1 [(Dark Knight, 8), (Meet the Parents, 4), (Sup...
2 [(Meet the Parents, 10), (Superman, 3)]
3 []
4 []
dtype: object
If the data in the empty rows needs to be marked as missing, it's possible
to do so by modifying the offsets argument, so that we specify `None` as
the starting positions of the rows we want marked as missing. The end row
offset still has to refer to the existing value from keys (and values):
>>> offsets = [
... 0, # ----- row 1 start
... 1, # ----- row 2 start
... 4, # ----- row 3 start
... None, # -- row 4 start
... None, # -- row 5 start
... 6, # ----- row 5 end
... ]
>>> pa.MapArray.from_arrays(offsets, movies, likings).to_pandas()
0 [(Dark Knight, 10)]
1 [(Dark Knight, 8), (Meet the Parents, 4), (Sup...
2 [(Meet the Parents, 10), (Superman, 3)]
3 None
4 None
dtype: object
"""
cdef:
Array _offsets, _keys, _items
shared_ptr[CArray] out
cdef CMemoryPool* cpool = maybe_unbox_memory_pool(pool)
_offsets = asarray(offsets, type='int32')
_keys = asarray(keys)
_items = asarray(items)
if type is not None:
with nogil:
out = GetResultValue(
CMapArray.FromArraysAndType(
type.sp_type, _offsets.sp_array,
_keys.sp_array, _items.sp_array, cpool))
else:
with nogil:
out = GetResultValue(
CMapArray.FromArrays(_offsets.sp_array,
_keys.sp_array,
_items.sp_array, cpool))
cdef Array result = pyarrow_wrap_array(out)
result.validate()
return result
@property
def keys(self):
"""Flattened array of keys across all maps in array"""
return pyarrow_wrap_array((<CMapArray*> self.ap).keys())
@property
def items(self):
"""Flattened array of items across all maps in array"""
return pyarrow_wrap_array((<CMapArray*> self.ap).items())
cdef class FixedSizeListArray(BaseListArray):
"""
Concrete class for Arrow arrays of a fixed size list data type.
"""
@staticmethod
def from_arrays(values, list_size=None, DataType type=None, mask=None):
"""
Construct FixedSizeListArray from array of values and a list length.
Parameters
----------
values : Array (any type)
list_size : int
The fixed length of the lists.
type : DataType, optional
If not specified, a default ListType with the values' type and
`list_size` length is used.
mask : Array (boolean type), optional
Indicate which values are null (True) or not null (False).
Returns
-------
FixedSizeListArray
Examples
--------
Create from a values array and a list size:
>>> import pyarrow as pa
>>> values = pa.array([1, 2, 3, 4])
>>> arr = pa.FixedSizeListArray.from_arrays(values, 2)
>>> arr
<pyarrow.lib.FixedSizeListArray object at ...>
[
[
1,
2
],
[
3,
4
]
]
Or create from a values array, list size and matching type:
>>> typ = pa.list_(pa.field("values", pa.int64()), 2)
>>> arr = pa.FixedSizeListArray.from_arrays(values,type=typ)
>>> arr
<pyarrow.lib.FixedSizeListArray object at ...>
[
[
1,
2
],
[
3,
4
]
]
"""
cdef:
Array _values
int32_t _list_size
CResult[shared_ptr[CArray]] c_result
_values = asarray(values)
c_mask = c_mask_inverted_from_obj(mask, None)
if type is not None:
if list_size is not None:
raise ValueError("Cannot specify both list_size and type")
with nogil:
c_result = CFixedSizeListArray.FromArraysAndType(
_values.sp_array, type.sp_type, c_mask)
else:
if list_size is None:
raise ValueError("Should specify one of list_size and type")
_list_size = <int32_t>list_size
with nogil:
c_result = CFixedSizeListArray.FromArrays(
_values.sp_array, _list_size, c_mask)
cdef Array result = pyarrow_wrap_array(GetResultValue(c_result))
result.validate()
return result
@property
def values(self):
"""
Return the underlying array of values which backs the
FixedSizeListArray.
Note even null elements are included.
Compare with :meth:`flatten`, which returns only the non-null
sub-list values.
Returns
-------
values : Array
See Also
--------
FixedSizeListArray.flatten : ...
Examples
--------
>>> import pyarrow as pa
>>> array = pa.array(
... [[1, 2], None, [3, None]],
... type=pa.list_(pa.int32(), 2)
... )
>>> array.values
<pyarrow.lib.Int32Array object at ...>
[
1,
2,
null,
null,
3,
null
]
"""
cdef CFixedSizeListArray* arr = <CFixedSizeListArray*> self.ap
return pyarrow_wrap_array(arr.values())
cdef class UnionArray(Array):
"""
Concrete class for Arrow arrays of a Union data type.
"""
def child(self, int pos):
"""
DEPRECATED, use field() instead.
Parameters
----------
pos : int
The physical index of the union child field (not its type code).
Returns
-------
field : pyarrow.Field
The given child field.
"""
import warnings
warnings.warn("child is deprecated, use field", FutureWarning)
return self.field(pos)
def field(self, int pos):
"""
Return the given child field as an individual array.
For sparse unions, the returned array has its offset, length,
and null count adjusted.
For dense unions, the returned array is unchanged.
Parameters
----------
pos : int
The physical index of the union child field (not its type code).
Returns
-------
field : Array
The given child field.
"""
cdef shared_ptr[CArray] result
result = (<CUnionArray*> self.ap).field(pos)
if result != NULL:
return pyarrow_wrap_array(result)
raise KeyError("UnionArray does not have child {}".format(pos))
@property
def type_codes(self):
"""Get the type codes array."""
buf = pyarrow_wrap_buffer((<CUnionArray*> self.ap).type_codes())
return Array.from_buffers(int8(), len(self), [None, buf])
@property
def offsets(self):
"""
Get the value offsets array (dense arrays only).
Does not account for any slice offset.
"""
if self.type.mode != "dense":
raise ArrowTypeError("Can only get value offsets for dense arrays")
cdef CDenseUnionArray* dense = <CDenseUnionArray*> self.ap
buf = pyarrow_wrap_buffer(dense.value_offsets())
return Array.from_buffers(int32(), len(self), [None, buf])
@staticmethod
def from_dense(Array types, Array value_offsets, list children,
list field_names=None, list type_codes=None):
"""
Construct dense UnionArray from arrays of int8 types, int32 offsets and
children arrays
Parameters
----------
types : Array (int8 type)
value_offsets : Array (int32 type)
children : list
field_names : list
type_codes : list
Returns
-------
union_array : UnionArray
"""
cdef:
shared_ptr[CArray] out
vector[shared_ptr[CArray]] c
Array child
vector[c_string] c_field_names
vector[int8_t] c_type_codes
for child in children:
c.push_back(child.sp_array)
if field_names is not None:
for x in field_names:
c_field_names.push_back(tobytes(x))
if type_codes is not None:
for x in type_codes:
c_type_codes.push_back(x)
with nogil:
out = GetResultValue(CDenseUnionArray.Make(
deref(types.ap), deref(value_offsets.ap), c, c_field_names,
c_type_codes))
cdef Array result = pyarrow_wrap_array(out)
result.validate()
return result
@staticmethod
def from_sparse(Array types, list children, list field_names=None,
list type_codes=None):
"""
Construct sparse UnionArray from arrays of int8 types and children
arrays
Parameters
----------
types : Array (int8 type)
children : list
field_names : list
type_codes : list
Returns
-------
union_array : UnionArray
"""
cdef:
shared_ptr[CArray] out
vector[shared_ptr[CArray]] c
Array child
vector[c_string] c_field_names
vector[int8_t] c_type_codes
for child in children:
c.push_back(child.sp_array)
if field_names is not None:
for x in field_names:
c_field_names.push_back(tobytes(x))
if type_codes is not None:
for x in type_codes:
c_type_codes.push_back(x)
with nogil:
out = GetResultValue(CSparseUnionArray.Make(
deref(types.ap), c, c_field_names, c_type_codes))
cdef Array result = pyarrow_wrap_array(out)
result.validate()
return result
cdef class StringArray(Array):
"""
Concrete class for Arrow arrays of string (or utf8) data type.
"""
@staticmethod
def from_buffers(int length, Buffer value_offsets, Buffer data,
Buffer null_bitmap=None, int null_count=-1,
int offset=0):
"""
Construct a StringArray from value_offsets and data buffers.
If there are nulls in the data, also a null_bitmap and the matching
null_count must be passed.
Parameters
----------
length : int
value_offsets : Buffer
data : Buffer
null_bitmap : Buffer, optional
null_count : int, default 0
offset : int, default 0
Returns
-------
string_array : StringArray
"""
return Array.from_buffers(utf8(), length,
[null_bitmap, value_offsets, data],
null_count, offset)
cdef class LargeStringArray(Array):
"""
Concrete class for Arrow arrays of large string (or utf8) data type.
"""
@staticmethod
def from_buffers(int length, Buffer value_offsets, Buffer data,
Buffer null_bitmap=None, int null_count=-1,
int offset=0):
"""
Construct a LargeStringArray from value_offsets and data buffers.
If there are nulls in the data, also a null_bitmap and the matching
null_count must be passed.
Parameters
----------
length : int
value_offsets : Buffer
data : Buffer
null_bitmap : Buffer, optional
null_count : int, default 0
offset : int, default 0
Returns
-------
string_array : StringArray
"""
return Array.from_buffers(large_utf8(), length,
[null_bitmap, value_offsets, data],
null_count, offset)
cdef class StringViewArray(Array):
"""
Concrete class for Arrow arrays of string (or utf8) view data type.
"""
cdef class BinaryArray(Array):
"""
Concrete class for Arrow arrays of variable-sized binary data type.
"""
@property
def total_values_length(self):
"""
The number of bytes from beginning to end of the data buffer addressed
by the offsets of this BinaryArray.
"""
return (<CBinaryArray*> self.ap).total_values_length()
cdef class LargeBinaryArray(Array):
"""
Concrete class for Arrow arrays of large variable-sized binary data type.
"""
@property
def total_values_length(self):
"""
The number of bytes from beginning to end of the data buffer addressed
by the offsets of this LargeBinaryArray.
"""
return (<CLargeBinaryArray*> self.ap).total_values_length()
cdef class BinaryViewArray(Array):
"""
Concrete class for Arrow arrays of variable-sized binary view data type.
"""
cdef class DictionaryArray(Array):
"""
Concrete class for dictionary-encoded Arrow arrays.
"""
def dictionary_encode(self):
return self
def dictionary_decode(self):
"""
Decodes the DictionaryArray to an Array.
"""
return self.dictionary.take(self.indices)
@property
def dictionary(self):
cdef CDictionaryArray* darr = <CDictionaryArray*>(self.ap)
if self._dictionary is None:
self._dictionary = pyarrow_wrap_array(darr.dictionary())
return self._dictionary
@property
def indices(self):
cdef CDictionaryArray* darr = <CDictionaryArray*>(self.ap)
if self._indices is None:
self._indices = pyarrow_wrap_array(darr.indices())
return self._indices
@staticmethod
def from_buffers(DataType type, int64_t length, buffers, Array dictionary,
int64_t null_count=-1, int64_t offset=0):
"""
Construct a DictionaryArray from buffers.
Parameters
----------
type : pyarrow.DataType
length : int
The number of values in the array.
buffers : List[Buffer]
The buffers backing the indices array.
dictionary : pyarrow.Array, ndarray or pandas.Series
The array of values referenced by the indices.
null_count : int, default -1
The number of null entries in the indices array. Negative value means that
the null count is not known.
offset : int, default 0
The array's logical offset (in values, not in bytes) from the
start of each buffer.
Returns
-------
dict_array : DictionaryArray
"""
cdef:
vector[shared_ptr[CBuffer]] c_buffers
shared_ptr[CDataType] c_type
shared_ptr[CArrayData] c_data
shared_ptr[CArray] c_result
for buf in buffers:
c_buffers.push_back(pyarrow_unwrap_buffer(buf))
c_type = pyarrow_unwrap_data_type(type)
with nogil:
c_data = CArrayData.Make(
c_type, length, c_buffers, null_count, offset)
c_data.get().dictionary = dictionary.sp_array.get().data()
c_result.reset(new CDictionaryArray(c_data))
cdef Array result = pyarrow_wrap_array(c_result)
result.validate()
return result
@staticmethod
def from_arrays(indices, dictionary, mask=None, bint ordered=False,
bint from_pandas=False, bint safe=True,
MemoryPool memory_pool=None):
"""
Construct a DictionaryArray from indices and values.
Parameters
----------
indices : pyarrow.Array, numpy.ndarray or pandas.Series, int type
Non-negative integers referencing the dictionary values by zero
based index.
dictionary : pyarrow.Array, ndarray or pandas.Series
The array of values referenced by the indices.
mask : ndarray or pandas.Series, bool type
True values indicate that indices are actually null.
ordered : bool, default False
Set to True if the category values are ordered.
from_pandas : bool, default False
If True, the indices should be treated as though they originated in
a pandas.Categorical (null encoded as -1).
safe : bool, default True
If True, check that the dictionary indices are in range.
memory_pool : MemoryPool, default None
For memory allocations, if required, otherwise uses default pool.
Returns
-------
dict_array : DictionaryArray
"""
cdef:
Array _indices, _dictionary
shared_ptr[CDataType] c_type
shared_ptr[CArray] c_result
if isinstance(indices, Array):
if mask is not None:
raise NotImplementedError(
"mask not implemented with Arrow array inputs yet")
_indices = indices
else:
if from_pandas:
_indices = _codes_to_indices(indices, mask, None, memory_pool)
else:
_indices = array(indices, mask=mask, memory_pool=memory_pool)
if isinstance(dictionary, Array):
_dictionary = dictionary
else:
_dictionary = array(dictionary, memory_pool=memory_pool)
if not isinstance(_indices, IntegerArray):
raise ValueError('Indices must be integer type')
cdef c_bool c_ordered = ordered
c_type.reset(new CDictionaryType(_indices.type.sp_type,
_dictionary.sp_array.get().type(),
c_ordered))
if safe:
with nogil:
c_result = GetResultValue(
CDictionaryArray.FromArrays(c_type, _indices.sp_array,
_dictionary.sp_array))
else:
c_result.reset(new CDictionaryArray(c_type, _indices.sp_array,
_dictionary.sp_array))
cdef Array result = pyarrow_wrap_array(c_result)
result.validate()
return result
cdef class StructArray(Array):
"""
Concrete class for Arrow arrays of a struct data type.
"""
def field(self, index):
"""
Retrieves the child array belonging to field.
Parameters
----------
index : Union[int, str]
Index / position or name of the field.
Returns
-------
result : Array
"""
cdef:
CStructArray* arr = <CStructArray*> self.ap
shared_ptr[CArray] child
if isinstance(index, (bytes, str)):
child = arr.GetFieldByName(tobytes(index))
if child == nullptr:
raise KeyError(index)
elif isinstance(index, int):
child = arr.field(
<int>_normalize_index(index, self.ap.num_fields()))
else:
raise TypeError('Expected integer or string index')
return pyarrow_wrap_array(child)
def _flattened_field(self, index, MemoryPool memory_pool=None):
"""
Retrieves the child array belonging to field,
accounting for the parent array null bitmap.
Parameters
----------
index : Union[int, str]
Index / position or name of the field.
memory_pool : MemoryPool, default None
For memory allocations, if required, otherwise use default pool.
Returns
-------
result : Array
"""
cdef:
CStructArray* arr = <CStructArray*> self.ap
shared_ptr[CArray] child
CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool)
if isinstance(index, (bytes, str)):
int_index = self.type.get_field_index(index)
if int_index < 0:
raise KeyError(index)
elif isinstance(index, int):
int_index = _normalize_index(index, self.ap.num_fields())
else:
raise TypeError('Expected integer or string index')
child = GetResultValue(arr.GetFlattenedField(int_index, pool))
return pyarrow_wrap_array(child)
def flatten(self, MemoryPool memory_pool=None):
"""
Return one individual array for each field in the struct.
Parameters
----------
memory_pool : MemoryPool, default None
For memory allocations, if required, otherwise use default pool.
Returns
-------
result : List[Array]
"""
cdef:
vector[shared_ptr[CArray]] arrays
CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool)
CStructArray* sarr = <CStructArray*> self.ap
with nogil:
arrays = GetResultValue(sarr.Flatten(pool))
return [pyarrow_wrap_array(arr) for arr in arrays]
@staticmethod
def from_arrays(arrays, names=None, fields=None, mask=None,
memory_pool=None):
"""
Construct StructArray from collection of arrays representing
each field in the struct.
Either field names or field instances must be passed.
Parameters
----------
arrays : sequence of Array
names : List[str] (optional)
Field names for each struct child.
fields : List[Field] (optional)
Field instances for each struct child.
mask : pyarrow.Array[bool] (optional)
Indicate which values are null (True) or not null (False).
memory_pool : MemoryPool (optional)
For memory allocations, if required, otherwise uses default pool.
Returns
-------
result : StructArray
"""
cdef:
shared_ptr[CArray] c_array
shared_ptr[CBuffer] c_mask
vector[shared_ptr[CArray]] c_arrays
vector[c_string] c_names
vector[shared_ptr[CField]] c_fields
CResult[shared_ptr[CArray]] c_result
ssize_t num_arrays
ssize_t length
ssize_t i
Field py_field
DataType struct_type
if names is None and fields is None:
raise ValueError('Must pass either names or fields')
if names is not None and fields is not None:
raise ValueError('Must pass either names or fields, not both')
c_mask = c_mask_inverted_from_obj(mask, memory_pool)
arrays = [asarray(x) for x in arrays]
for arr in arrays:
c_array = pyarrow_unwrap_array(arr)
if c_array == nullptr:
raise TypeError(f"Expected Array, got {arr.__class__}")
c_arrays.push_back(c_array)
if names is not None:
for name in names:
c_names.push_back(tobytes(name))
else:
for item in fields:
if isinstance(item, tuple):
py_field = field(*item)
else:
py_field = item
c_fields.push_back(py_field.sp_field)
if (c_arrays.size() == 0 and c_names.size() == 0 and
c_fields.size() == 0):
# The C++ side doesn't allow this
if mask is None:
return array([], struct([]))
else:
return array([{}] * len(mask), struct([]), mask=mask)
if names is not None:
# XXX Cannot pass "nullptr" for a shared_ptr<T> argument:
# https://github.com/cython/cython/issues/3020
c_result = CStructArray.MakeFromFieldNames(
c_arrays, c_names, c_mask, -1, 0)
else:
c_result = CStructArray.MakeFromFields(
c_arrays, c_fields, c_mask, -1, 0)
cdef Array result = pyarrow_wrap_array(GetResultValue(c_result))
result.validate()
return result
def sort(self, order="ascending", by=None, **kwargs):
"""
Sort the StructArray
Parameters
----------
order : str, default "ascending"
Which order to sort values in.
Accepted values are "ascending", "descending".
by : str or None, default None
If to sort the array by one of its fields
or by the whole array.
**kwargs : dict, optional
Additional sorting options.
As allowed by :class:`SortOptions`
Returns
-------
result : StructArray
"""
if by is not None:
tosort = self._flattened_field(by)
else:
tosort = self
indices = _pc().sort_indices(
tosort,
options=_pc().SortOptions(sort_keys=[("", order)], **kwargs)
)
return self.take(indices)
cdef class RunEndEncodedArray(Array):
"""
Concrete class for Arrow run-end encoded arrays.
"""
@staticmethod
def _from_arrays(type, allow_none_for_type, logical_length, run_ends, values, logical_offset):
cdef:
int64_t _logical_length
Array _run_ends
Array _values
int64_t _logical_offset
shared_ptr[CDataType] c_type
shared_ptr[CRunEndEncodedArray] ree_array
_logical_length = <int64_t>logical_length
_logical_offset = <int64_t>logical_offset
type = ensure_type(type, allow_none=allow_none_for_type)
if type is not None:
_run_ends = asarray(run_ends, type=type.run_end_type)
_values = asarray(values, type=type.value_type)
c_type = pyarrow_unwrap_data_type(type)
with nogil:
ree_array = GetResultValue(CRunEndEncodedArray.Make(
c_type, _logical_length, _run_ends.sp_array, _values.sp_array, _logical_offset))
else:
_run_ends = asarray(run_ends)
_values = asarray(values)
with nogil:
ree_array = GetResultValue(CRunEndEncodedArray.MakeFromArrays(
_logical_length, _run_ends.sp_array, _values.sp_array, _logical_offset))
cdef Array result = pyarrow_wrap_array(<shared_ptr[CArray]>ree_array)
result.validate(full=True)
return result
@staticmethod
def from_arrays(run_ends, values, type=None):
"""
Construct RunEndEncodedArray from run_ends and values arrays.
Parameters
----------
run_ends : Array (int16, int32, or int64 type)
The run_ends array.
values : Array (any type)
The values array.
type : pyarrow.DataType, optional
The run_end_encoded(run_end_type, value_type) array type.
Returns
-------
RunEndEncodedArray
"""
logical_length = run_ends[-1] if len(run_ends) > 0 else 0
return RunEndEncodedArray._from_arrays(type, True, logical_length,
run_ends, values, 0)
@staticmethod
def from_buffers(DataType type, length, buffers, null_count=-1, offset=0,
children=None):
"""
Construct a RunEndEncodedArray from all the parameters that make up an
Array.
RunEndEncodedArrays do not have buffers, only children arrays, but this
implementation is needed to satisfy the Array interface.
Parameters
----------
type : DataType
The run_end_encoded(run_end_type, value_type) type.
length : int
The logical length of the run-end encoded array. Expected to match
the last value of the run_ends array (children[0]) minus the offset.
buffers : List[Buffer]
Empty List or [None].
null_count : int, default -1
The number of null entries in the array. Run-end encoded arrays
are specified to not have valid bits and null_count always equals 0.
offset : int, default 0
The array's logical offset (in values, not in bytes) from the
start of each buffer.
children : List[Array]
Nested type children containing the run_ends and values arrays.
Returns
-------
RunEndEncodedArray
"""
children = children or []
if type.num_fields != len(children):
raise ValueError("RunEndEncodedType's expected number of children "
"({0}) did not match the passed number "
"({1}).".format(type.num_fields, len(children)))
# buffers are validated as if we needed to pass them to C++, but
# _make_from_arrays will take care of filling in the expected
# buffers array containing a single NULL buffer on the C++ side
if len(buffers) == 0:
buffers = [None]
if buffers[0] is not None:
raise ValueError("RunEndEncodedType expects None as validity "
"bitmap, buffers[0] is not None")
if type.num_buffers != len(buffers):
raise ValueError("RunEndEncodedType's expected number of buffers "
"({0}) did not match the passed number "
"({1}).".format(type.num_buffers, len(buffers)))
# null_count is also validated as if we needed it
if null_count != -1 and null_count != 0:
raise ValueError("RunEndEncodedType's expected null_count (0) "
"did not match passed number ({0})".format(null_count))
return RunEndEncodedArray._from_arrays(type, False, length, children[0],
children[1], offset)
@property
def run_ends(self):
"""
An array holding the logical indexes of each run-end.
The physical offset to the array is applied.
"""
cdef CRunEndEncodedArray* ree_array = <CRunEndEncodedArray*>(self.ap)
return pyarrow_wrap_array(ree_array.run_ends())
@property
def values(self):
"""
An array holding the values of each run.
The physical offset to the array is applied.
"""
cdef CRunEndEncodedArray* ree_array = <CRunEndEncodedArray*>(self.ap)
return pyarrow_wrap_array(ree_array.values())
def find_physical_offset(self):
"""
Find the physical offset of this REE array.
This is the offset of the run that contains the value of the first
logical element of this array considering its offset.
This function uses binary-search, so it has a O(log N) cost.
"""
cdef CRunEndEncodedArray* ree_array = <CRunEndEncodedArray*>(self.ap)
return ree_array.FindPhysicalOffset()
def find_physical_length(self):
"""
Find the physical length of this REE array.
The physical length of an REE is the number of physical values (and
run-ends) necessary to represent the logical range of values from offset
to length.
This function uses binary-search, so it has a O(log N) cost.
"""
cdef CRunEndEncodedArray* ree_array = <CRunEndEncodedArray*>(self.ap)
return ree_array.FindPhysicalLength()
cdef class ExtensionArray(Array):
"""
Concrete class for Arrow extension arrays.
"""
@property
def storage(self):
cdef:
CExtensionArray* ext_array = <CExtensionArray*>(self.ap)
return pyarrow_wrap_array(ext_array.storage())
@staticmethod
def from_storage(BaseExtensionType typ, Array storage):
"""
Construct ExtensionArray from type and storage array.
Parameters
----------
typ : DataType
The extension type for the result array.
storage : Array
The underlying storage for the result array.
Returns
-------
ext_array : ExtensionArray
"""
cdef:
shared_ptr[CExtensionArray] ext_array
if storage.type != typ.storage_type:
raise TypeError("Incompatible storage type {0} "
"for extension type {1}".format(storage.type, typ))
ext_array = make_shared[CExtensionArray](typ.sp_type, storage.sp_array)
cdef Array result = pyarrow_wrap_array(<shared_ptr[CArray]> ext_array)
result.validate()
return result
cdef class FixedShapeTensorArray(ExtensionArray):
"""
Concrete class for fixed shape tensor extension arrays.
Examples
--------
Define the extension type for tensor array
>>> import pyarrow as pa
>>> tensor_type = pa.fixed_shape_tensor(pa.int32(), [2, 2])
Create an extension array
>>> arr = [[1, 2, 3, 4], [10, 20, 30, 40], [100, 200, 300, 400]]
>>> storage = pa.array(arr, pa.list_(pa.int32(), 4))
>>> pa.ExtensionArray.from_storage(tensor_type, storage)
<pyarrow.lib.FixedShapeTensorArray object at ...>
[
[
1,
2,
3,
4
],
[
10,
20,
30,
40
],
[
100,
200,
300,
400
]
]
"""
def to_numpy_ndarray(self):
"""
Convert fixed shape tensor extension array to a multi-dimensional numpy.ndarray.
The resulting ndarray will have (ndim + 1) dimensions.
The size of the first dimension will be the length of the fixed shape tensor array
and the rest of the dimensions will match the permuted shape of the fixed
shape tensor.
The conversion is zero-copy.
Returns
-------
numpy.ndarray
Ndarray representing tensors in the fixed shape tensor array concatenated
along the first dimension.
"""
return self.to_tensor().to_numpy()
def to_tensor(self):
"""
Convert fixed shape tensor extension array to a pyarrow.Tensor.
The resulting Tensor will have (ndim + 1) dimensions.
The size of the first dimension will be the length of the fixed shape tensor array
and the rest of the dimensions will match the permuted shape of the fixed
shape tensor.
The conversion is zero-copy.
Returns
-------
pyarrow.Tensor
Tensor representing tensors in the fixed shape tensor array concatenated
along the first dimension.
"""
cdef:
CFixedShapeTensorArray* ext_array = <CFixedShapeTensorArray*>(self.ap)
CResult[shared_ptr[CTensor]] ctensor
with nogil:
ctensor = ext_array.ToTensor()
return pyarrow_wrap_tensor(GetResultValue(ctensor))
@staticmethod
def from_numpy_ndarray(obj):
"""
Convert numpy tensors (ndarrays) to a fixed shape tensor extension array.
The first dimension of ndarray will become the length of the fixed
shape tensor array.
If input array data is not contiguous a copy will be made.
Parameters
----------
obj : numpy.ndarray
Examples
--------
>>> import pyarrow as pa
>>> import numpy as np
>>> arr = np.array(
... [[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]],
... dtype=np.float32)
>>> pa.FixedShapeTensorArray.from_numpy_ndarray(arr)
<pyarrow.lib.FixedShapeTensorArray object at ...>
[
[
1,
2,
3,
4,
5,
6
],
[
1,
2,
3,
4,
5,
6
]
]
"""
if len(obj.shape) < 2:
raise ValueError(
"Cannot convert 1D array or scalar to fixed shape tensor array")
if np.prod(obj.shape) == 0:
raise ValueError("Expected a non-empty ndarray")
permutation = (-np.array(obj.strides)).argsort(kind='stable')
if permutation[0] != 0:
raise ValueError('First stride needs to be largest to ensure that '
'individual tensor data is contiguous in memory.')
arrow_type = from_numpy_dtype(obj.dtype)
shape = np.take(obj.shape, permutation)
values = np.ravel(obj, order="K")
return ExtensionArray.from_storage(
fixed_shape_tensor(arrow_type, shape[1:], permutation=permutation[1:] - 1),
FixedSizeListArray.from_arrays(values, shape[1:].prod())
)
cdef dict _array_classes = {
_Type_NA: NullArray,
_Type_BOOL: BooleanArray,
_Type_UINT8: UInt8Array,
_Type_UINT16: UInt16Array,
_Type_UINT32: UInt32Array,
_Type_UINT64: UInt64Array,
_Type_INT8: Int8Array,
_Type_INT16: Int16Array,
_Type_INT32: Int32Array,
_Type_INT64: Int64Array,
_Type_DATE32: Date32Array,
_Type_DATE64: Date64Array,
_Type_TIMESTAMP: TimestampArray,
_Type_TIME32: Time32Array,
_Type_TIME64: Time64Array,
_Type_DURATION: DurationArray,
_Type_INTERVAL_MONTH_DAY_NANO: MonthDayNanoIntervalArray,
_Type_HALF_FLOAT: HalfFloatArray,
_Type_FLOAT: FloatArray,
_Type_DOUBLE: DoubleArray,
_Type_LIST: ListArray,
_Type_LARGE_LIST: LargeListArray,
_Type_LIST_VIEW: ListViewArray,
_Type_LARGE_LIST_VIEW: LargeListViewArray,
_Type_MAP: MapArray,
_Type_FIXED_SIZE_LIST: FixedSizeListArray,
_Type_SPARSE_UNION: UnionArray,
_Type_DENSE_UNION: UnionArray,
_Type_BINARY: BinaryArray,
_Type_STRING: StringArray,
_Type_LARGE_BINARY: LargeBinaryArray,
_Type_LARGE_STRING: LargeStringArray,
_Type_BINARY_VIEW: BinaryViewArray,
_Type_STRING_VIEW: StringViewArray,
_Type_DICTIONARY: DictionaryArray,
_Type_FIXED_SIZE_BINARY: FixedSizeBinaryArray,
_Type_DECIMAL128: Decimal128Array,
_Type_DECIMAL256: Decimal256Array,
_Type_STRUCT: StructArray,
_Type_RUN_END_ENCODED: RunEndEncodedArray,
_Type_EXTENSION: ExtensionArray,
}
cdef inline shared_ptr[CBuffer] c_mask_inverted_from_obj(object mask, MemoryPool pool) except *:
"""
Convert mask array obj to c_mask while also inverting to signify 1 for valid and 0 for null
"""
cdef shared_ptr[CBuffer] c_mask
if mask is None:
c_mask = shared_ptr[CBuffer]()
elif isinstance(mask, Array):
if mask.type.id != Type_BOOL:
raise TypeError('Mask must be a pyarrow.Array of type boolean')
if mask.null_count != 0:
raise ValueError('Mask must not contain nulls')
inverted_mask = _pc().invert(mask, memory_pool=pool)
c_mask = pyarrow_unwrap_buffer(inverted_mask.buffers()[1])
else:
raise TypeError('Mask must be a pyarrow.Array of type boolean')
return c_mask
cdef object get_array_class_from_type(
const shared_ptr[CDataType]& sp_data_type):
cdef CDataType* data_type = sp_data_type.get()
if data_type == NULL:
raise ValueError('Array data type was NULL')
if data_type.id() == _Type_EXTENSION:
py_ext_data_type = pyarrow_wrap_data_type(sp_data_type)
return py_ext_data_type.__arrow_ext_class__()
else:
return _array_classes[data_type.id()]
cdef object get_values(object obj, bint* is_series):
if pandas_api.is_series(obj) or pandas_api.is_index(obj):
result = pandas_api.get_values(obj)
is_series[0] = True
elif isinstance(obj, np.ndarray):
result = obj
is_series[0] = False
else:
result = pandas_api.series(obj, copy=False).values
is_series[0] = False
return result
def concat_arrays(arrays, MemoryPool memory_pool=None):
"""
Concatenate the given arrays.
The contents of the input arrays are copied into the returned array.
Raises
------
ArrowInvalid
If not all of the arrays have the same type.
Parameters
----------
arrays : iterable of pyarrow.Array
Arrays to concatenate, must be identically typed.
memory_pool : MemoryPool, default None
For memory allocations. If None, the default pool is used.
Examples
--------
>>> import pyarrow as pa
>>> arr1 = pa.array([2, 4, 5, 100])
>>> arr2 = pa.array([2, 4])
>>> pa.concat_arrays([arr1, arr2])
<pyarrow.lib.Int64Array object at ...>
[
2,
4,
5,
100,
2,
4
]
"""
cdef:
vector[shared_ptr[CArray]] c_arrays
shared_ptr[CArray] c_concatenated
CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool)
for array in arrays:
if not isinstance(array, Array):
raise TypeError("Iterable should contain Array objects, "
"got {0} instead".format(type(array)))
c_arrays.push_back(pyarrow_unwrap_array(array))
with nogil:
c_concatenated = GetResultValue(Concatenate(c_arrays, pool))
return pyarrow_wrap_array(c_concatenated)
def _empty_array(DataType type):
"""
Create empty array of the given type.
"""
if type.id == Type_DICTIONARY:
arr = DictionaryArray.from_arrays(
_empty_array(type.index_type), _empty_array(type.value_type),
ordered=type.ordered)
else:
arr = array([], type=type)
return arr
|