File size: 17,393 Bytes
cd0431b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
import copy
import os
from collections import defaultdict
from importlib.util import find_spec
from typing import List, Literal, Optional, Tuple
from tqdm import tqdm
import lm_eval.models.utils
from lm_eval import utils
from lm_eval.api.model import LM, TemplateLM
from lm_eval.api.registry import register_model
from lm_eval.models.utils import retry_on_specific_exceptions
from lm_eval.utils import eval_logger
def get_result(response, ctxlen: int) -> Tuple[float, bool]:
"""Process results from OpenAI API response.
:param response: dict
OpenAI API Response
:param ctxlen: int
Length of context (so we can slice them away and only keep the predictions)
:return:
continuation_logprobs: np.array
Log probabilities of continuation tokens
is_greedy: bool
whether argmax matches given continuation exactly
"""
is_greedy = True
logprobs = response.logprobs.token_logprobs
continuation_logprobs = sum(logprobs[ctxlen:])
for i in range(ctxlen, len(response.logprobs.token_logprobs)):
token = response.logprobs.token_logprobs[i]
top_tokens = response.logprobs.top_logprobs[i]
top_token = max(top_tokens.keys(), key=lambda x: top_tokens[x])
if top_token != token:
is_greedy = False
break
return continuation_logprobs, is_greedy
def oa_completion(client, chat: bool = False, **kwargs):
"""Query OpenAI API for completion.
Retry with back-off until they respond
"""
if not find_spec("openai") or not find_spec("tiktoken"):
raise Exception(
"attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. "
"Please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`"
)
else:
import openai
def _exception_callback(e: Exception, sleep_time: float) -> None:
import traceback
traceback.print_exc()
@retry_on_specific_exceptions(
on_exceptions=[openai.OpenAIError],
max_retries=None, # retry forever, consider changing
on_exception_callback=_exception_callback,
)
def completion():
if chat:
return client.chat.completions.create(**kwargs)
else:
return client.completions.create(**kwargs)
return completion()
@register_model("openai-completions", "local-completions")
class OpenaiCompletionsLM(TemplateLM):
_DEFAULT_MAX_LENGTH = 2048
def __init__(
self,
model: str,
base_url: str = None,
tokenizer: Optional[str] = None,
tokenizer_backend: Literal["tiktoken", "huggingface"] = "tiktoken",
truncate: bool = False,
max_gen_toks: int = 256,
batch_size: int = 1,
seed: int = 1234,
max_length: Optional[int] = None,
) -> None:
"""
:param engine: str
OpenAI API engine (e.g. gpt-3.5-turbo-instruct)
:param truncate: bool
Truncate input if too long (if False and input is too long, throw error)
"""
super().__init__()
self.seed = seed
try:
import openai # noqa: E401
import tiktoken
except ModuleNotFoundError:
raise Exception(
"attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. \
please install these via `pip install lm-eval[openai]` or `pip install -e .\"[openai]\"`",
)
self.model = model
self.base_url = base_url
self.tokenizer_backend = tokenizer_backend
self.truncate = truncate
self._batch_size = int(batch_size)
self._max_gen_toks = max_gen_toks
self._max_length = max_length
# if we have a local model, use HF tokenizer over tiktoken
if self.tokenizer_backend == "huggingface":
import transformers # noqa: E401
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
tokenizer if tokenizer else self.model
)
self.vocab_size = self.tokenizer.vocab
self.end_of_text_token_id = self.tokenizer.eos_token
elif self.tokenizer_backend == "tiktoken":
if self.base_url:
eval_logger.warning(
f"Passed `base_url={self.base_url}` but using Tiktoken tokenizer backend. "
"Pass `tokenizer_backend=huggingface` and provide the HF tokenizer name if your model does not use Tiktoken."
)
self.tokenizer = tiktoken.encoding_for_model(self.model)
self.vocab_size = self.tokenizer.n_vocab
self.end_of_text_token_id = self.tokenizer.eot_token
else:
raise ValueError(
f"Expected tokenizer_backend to be one of ['tiktoken', 'huggingface'] but got {self.tokenizer_backend}"
)
# Read from environment variable OPENAI_API_KEY
# Set to EMPTY for local
openai.api_key = os.environ["OPENAI_API_KEY"]
if self.base_url:
self.client = openai.OpenAI(base_url=self.base_url)
else:
self.client = openai.OpenAI()
@property
def eot_token_id(self):
return self.end_of_text_token_id
@property
def max_length(self) -> int:
if self._max_length:
return self._max_length
else:
return self._DEFAULT_MAX_LENGTH
@property
def max_gen_toks(self) -> int:
return self._max_gen_toks
@property
def batch_size(self) -> int:
return self._batch_size
@property
def device(self):
# Isn't used because we override _loglikelihood_tokens
raise NotImplementedError()
def tok_encode(self, string: str, **kwargs) -> List[int]:
return self.tokenizer.encode(string)
def tok_decode(self, tokens: List[int]) -> str:
return self.tokenizer.decode(tokens)
def _loglikelihood_tokens(
self, requests, disable_tqdm: bool = False
) -> List[Tuple[float, bool]]:
res = []
def _collate(x):
# this doesn't efficiently handle last-token differences yet, but those are kinda annoying because
# it's not guaranteed that the 100 or so logprobs we get to see actually contain all the continuations
# we care about, and so we need some kind of backup for when it isn't
toks = x[1] + x[2]
return -len(toks), tuple(toks)
re_ord = utils.Reorderer(requests, _collate)
for chunk in tqdm(
list(lm_eval.models.utils.chunks(re_ord.get_reordered(), self.batch_size)),
disable=disable_tqdm,
):
inps = []
ctxlens = []
for cache_key, context_enc, continuation_enc in chunk:
# max_length+1 because the API takes up to 2049 tokens, including the first context token
inp = (context_enc + continuation_enc)[-(self.max_length + 1) :]
# TODO: the logic is much simpler if we just look at the length of continuation tokens
ctxlen = len(context_enc) - max(
0, len(context_enc) + len(continuation_enc) - (self.max_length + 1)
)
inps.append(inp)
ctxlens.append(ctxlen)
response = oa_completion(
client=self.client,
model=self.model,
prompt=inps,
echo=True,
max_tokens=0,
temperature=0.0,
logprobs=10,
seed=self.seed,
)
for resp, ctxlen, (cache_key, context_enc, continuation_enc) in zip(
response.choices, ctxlens, chunk
):
answer = get_result(resp, ctxlen)
res.append(answer)
# partial caching
if cache_key is not None:
self.cache_hook.add_partial("loglikelihood", cache_key, answer)
return re_ord.get_original(res)
def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]:
if not requests:
return []
res = []
requests = [req.args for req in requests]
def _collate(x):
toks = self.tok_encode(x[0])
return len(toks), x[0]
re_ord = utils.Reorderer(requests, _collate)
def sameuntil_chunks(xs, size):
ret = []
lastuntil = xs[0][1]
for x in xs:
if len(ret) >= size or x[1] != lastuntil:
yield ret, lastuntil
ret = []
lastuntil = x[1]
ret.append(x)
if ret:
yield ret, lastuntil
# todo: more intelligent batching for heterogeneous `until`
for chunk, request_args in tqdm(
list(sameuntil_chunks(re_ord.get_reordered(), self.batch_size)),
disable=disable_tqdm,
):
inps = []
self._max_gen_toks = request_args.get("max_gen_toks", self.max_gen_toks)
for context, _ in chunk:
context_enc = self.tok_encode(context)
inp = context_enc[-(self.max_length - self.max_gen_toks) :]
inps.append(inp)
until = request_args.get("until", ["<|endoftext|>"])
request_args["temperature"] = request_args.get("temperature", 0)
response = oa_completion(
client=self.client,
model=self.model,
prompt=inps,
max_tokens=self.max_gen_toks,
stop=until,
seed=self.seed,
**{
k: v
for k, v in request_args.items()
if k not in {"do_sample", "max_gen_toks", "until"}
},
)
for resp, (context, args_) in zip(response.choices, chunk):
s = getattr(resp, "text")
until_ = until
for term in until_:
if len(term) > 0:
s = s.split(term)[0]
# partial caching
self.cache_hook.add_partial(
"generate_until", (context, {"until": until_}), s
)
res.append(s)
return re_ord.get_original(res)
def _model_call(self, inps):
# Isn't used because we override _loglikelihood_tokens
raise NotImplementedError()
def _model_generate(self, context, max_length, eos_token_id):
# Isn't used because we override generate_until
raise NotImplementedError()
def loglikelihood_rolling(
self, requests, disable_tqdm: bool = False
) -> List[float]:
loglikelihoods = []
for (string,) in tqdm([req.args for req in requests], disable=disable_tqdm):
rolling_token_windows = list(
map(
utils.make_disjoint_window,
utils.get_rolling_token_windows(
token_list=self.tok_encode(string),
prefix_token=self.eot_token_id,
max_seq_len=self.max_length,
context_len=1,
),
)
)
# TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
rolling_token_windows = [(None,) + x for x in rolling_token_windows]
string_nll = self._loglikelihood_tokens(
rolling_token_windows,
disable_tqdm=True,
)
# discard is_greedy
string_nll = [x[0] for x in string_nll]
string_nll = sum(string_nll)
loglikelihoods.append(string_nll)
return loglikelihoods
@register_model("openai-chat-completions", "local-chat-completions")
class OpenaiChatCompletionsLM(LM):
def __init__(
self,
model: str = "gpt-3.5-turbo", # GPT model or Local model using HuggingFace model paths
base_url: str = None,
truncate: bool = False,
**kwargs,
) -> None:
"""
:param model: str
Implements an OpenAI-style chat completion API for
accessing both OpenAI OR locally-hosted models using
HuggingFace Tokenizer
OpenAI API model (e.g. gpt-3.5-turbo)
using the **gen_kwargs passed on init
:param truncate: bool
Truncate input if too long (if False and input is too long, throw error)
"""
super().__init__()
try:
import openai # noqa: E401
except ModuleNotFoundError:
raise Exception(
"attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. \
please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`",
)
self.model = model
self.base_url = base_url
self.truncate = truncate
# Read from environment variable OPENAI_API_KEY
# Set to EMPTY for local
if self.base_url:
self.client = openai.OpenAI(base_url=self.base_url)
else:
self.client = openai.OpenAI() # openai.AsyncOpenAI()
@property
def max_length(self) -> int:
# Note: the OpenAI API supports up to 2049 tokens, with the first token being the first input token
return 2048
@property
def max_gen_toks(self) -> int:
return 256
@property
def batch_size(self):
# Isn't used because we override _loglikelihood_tokens
raise NotImplementedError()
@property
def device(self):
# Isn't used because we override _loglikelihood_tokens
raise NotImplementedError()
def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]:
res = defaultdict(list)
re_ords = {}
# we group requests by their generation_kwargs,
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
# in the same batch.
grouper = lm_eval.models.utils.Grouper(requests, lambda x: str(x.args[1]))
for key, reqs in grouper.get_grouped().items():
# within each set of reqs for given kwargs, we reorder by token length, descending.
re_ords[key] = utils.Reorderer(
[req.args for req in reqs], lambda x: (-len(x[0]), x[0])
)
pbar = tqdm(total=len(requests), disable=(disable_tqdm or (self.rank != 0)))
for key, re_ord in re_ords.items():
# n needs to be 1 because messages in
# chat completion are not batch but
# is regarded as a single conversation.
chunks = lm_eval.models.utils.chunks(re_ord.get_reordered(), n=1)
for chunk in chunks:
contexts, all_gen_kwargs = zip(*chunk)
inps = [{"role": "user", "content": context} for context in contexts]
gen_kwargs = all_gen_kwargs[0]
until = None
if isinstance(kwargs := copy.deepcopy(gen_kwargs), dict):
if "do_sample" in kwargs.keys():
kwargs.pop("do_sample")
if "until" in kwargs.keys():
until = kwargs.pop("until")
if isinstance(until, str):
until = [kwargs]
elif not isinstance(until, list):
raise ValueError(
f"Expected repr(kwargs['until']) to be of type Union[str, list] but got {until}"
)
kwargs["stop"] = until
kwargs["max_tokens"] = kwargs.pop("max_gen_toks", self.max_gen_toks)
else:
raise ValueError(
f"Expected repr(kwargs) to be of type repr(dict) but got {kwargs}"
)
response = oa_completion(
client=self.client,
chat=True,
messages=inps,
model=self.model,
**kwargs,
)
for resp, (context, args_) in zip(response.choices, chunk):
s = resp.message.content
if until is not None:
for term in until:
if len(term) > 0:
s = s.split(term)[0]
res[key].append(s)
self.cache_hook.add_partial(
"generate_until", (context, {"until": until}), s
)
pbar.update(1)
# reorder this group of results back to original unsorted form
res[key] = re_ord.get_original(res[key])
pbar.close()
return grouper.get_original(res)
def loglikelihood(self, requests, disable_tqdm: bool = False):
raise NotImplementedError("No support for logits.")
def loglikelihood_rolling(self, requests, disable_tqdm: bool = False):
raise NotImplementedError("No support for logits.")
|