File size: 54,320 Bytes
dd3126b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import shutil
import subprocess
import time
import datetime
import math
import hjson
from ..runtime.config_utils import dict_raise_error_on_duplicate_keys
from ..runtime.constants import *
from ..runtime.zero.config import ZERO_OPTIMIZATION, ZeroStageEnum
from ..utils import logger
from .config import DeepSpeedAutotuningConfig
from .constants import *
from .scheduler import ResourceManager
from .tuner import GridSearchTuner, RandomTuner, ModelBasedTuner
from .utils import *
from deepspeed.accelerator import get_accelerator
try:
from tabulate import tabulate
except ImportError:
tabulate = None
try:
import mlflow
has_mlflow = True
except Exception as e:
has_mlflow = False
ZERO_OPTIMIZATION_STAGE = "stage"
OFFLOAD_OPTIMIZER = "offload_optimizer"
OFFLOAD_PARAM = "offload_param"
ZERO_OPTIMIZATION_STAGE_DEFAULT = ZeroStageEnum.disabled
class Autotuner:
"""The DeepSpeed Autotuner automatically discovers the optimal DeepSpeed configuration that delivers good training speed. The Autotuner uses model information, system information, and heuristics to efficiently tune system knobs that affect compute and memory efficiencies, such as ZeRO optimization stages, micro-batch sizes, and many other ZeRO optimization configurations. It not only reduces the time and resources user spend on tuning, but also can discover configurations better than hand-tuned methods.
Autotuning with DeepSpeed requires no code change from DeepSpeed users. Please refer to the README for usage details.
"""
def __init__(self, args, active_resources):
self.args = args
self.selected_exp_dir = None
assert tabulate is not None, "Missing required package `tabulate`, please install with `pip install deepspeed[autotuning]`."
logger.debug(f"autotuning args={args}")
self.user_config = self._get_user_config(args.user_args)
assert self.user_config is not None, "DeepSpeed configuration is not provided"
self.autotuning_config = DeepSpeedAutotuningConfig(self.user_config)
if self.user_config[AUTOTUNING]:
if AUTOTUNING_EXPS_DIR in self.user_config[AUTOTUNING].keys():
del self.user_config[AUTOTUNING][AUTOTUNING_EXPS_DIR]
if AUTOTUNING_RESULTS_DIR in self.user_config[AUTOTUNING].keys():
del self.user_config[AUTOTUNING][AUTOTUNING_RESULTS_DIR]
self.exps_dir = self.autotuning_config.exps_dir
if self.autotuning_config.overwrite and os.path.exists(self.exps_dir):
shutil.rmtree(self.exps_dir, ignore_errors=True)
if not os.path.exists(self.exps_dir):
try:
os.makedirs(self.exps_dir, exist_ok=True)
logger.info(f"Created autotuning experiments directory: {self.exps_dir}")
except:
logger.error(
f"Failed to create {self.exps_dir}, please check `exps_dir` in the autotuning config file is accessible by all the nodes in the job."
)
exit(-1)
self.results_dir = self.autotuning_config.results_dir
if self.autotuning_config.overwrite and os.path.exists(self.results_dir):
shutil.rmtree(self.results_dir, ignore_errors=True)
if not os.path.exists(self.results_dir):
try:
os.makedirs(self.results_dir, exist_ok=True)
logger.info(f"Created autotuning results directory: {self.exps_dir}")
except:
logger.error(
f"Failed to create {self.results_dir}, please check `results_dir` in the autotuning config file is accessible by all the nodes in the job."
)
exit(-1)
# set the active resource for the autotuner resource manager
self.rm = self._get_resource_manager(active_resources)
# get resource requirement for each autotuning experiment
self.exp_num_nodes, self.exp_num_gpus = self._get_exp_resources(args)
assert self.exp_num_gpus <= self.rm.num_gpus_per_node, "num_gpus in the autotuning configuration must not be less than the --num_gpus value in the train script if any"
assert self.exp_num_nodes <= len(
self.rm.nodes
), "num_nodes in the autotuning configuration must not be less than the --num_nodes value in the train script if any"
self.records = {}
self.optimal_cmd = None
self.optimal_ds_config = None
self.mlflow_parent_id = None
def print_tuning_results(self):
"""Print the autotuning results in tabular format.
"""
best_space_records = self.get_best_space_records()
tab = []
if best_space_records:
for key, val in best_space_records.items():
if not val:
continue
row = []
row.append(key)
num_exps = 0
if key == GLOBAL_TUNING_SPACE:
cnt = 0
for k, v in best_space_records.items():
if k != GLOBAL_TUNING_SPACE:
cnt += v[2]
num_exps = cnt
else:
num_exps = val[2]
row.append(num_exps)
row.append(val[1])
row.append(val[0]['name'])
tab.append(row)
summary = tabulate(tab,
headers=["tuning_space", "num_experiments", "best_metric_val", "best_exp_name"],
tablefmt="pipe")
print(summary)
with open(os.path.join(self.results_dir, 'summary.txt'), 'w', buffering=BUFSIZE) as fd:
fd.write(summary)
fd.flush()
os.fsync(fd)
if GLOBAL_TUNING_SPACE in best_space_records:
best_exp, best_metric_val, total_num_exps = best_space_records[GLOBAL_TUNING_SPACE]
if best_exp:
logger.info(
f"{best_exp['name']} is the optimal setup after tuning. The exp result is at {best_exp['result_dir']}."
)
else:
logger.info(f"No optimal setup is found. Please check that experiments were run successfully.")
tuning_duration = datetime.timedelta(seconds=(time.time() - self.start_time))
logger.info(f"Tuning completed in {tuning_duration}")
with open(os.path.join(self.results_dir, 'summary.txt'), 'a') as f:
f.write(
f"\n\nTuning completed in {tuning_duration}. Total number of experiments: {self.rm.experiment_count - 1}."
)
f.flush()
def _get_user_config(self, user_args):
"""Get DeepSpeed configuration from the user arguments passed to the launcher.
Args:
user_args ([list]): user arguments passed to the DeepSpeed launcher
Returns:
[dict]: DeepSpeed configuration dictionary
"""
user_config_file = None
if "--deepspeed_config" in user_args:
idx = user_args.index("--deepspeed_config")
assert ".json" in user_args[
idx + 1], "DeepSpeed --deepspeed_config requires a json file to specify the configuration"
user_config_file = user_args[idx + 1]
elif "--deepspeed" in user_args:
idx = user_args.index("--deepspeed")
if ".json" in user_args[idx + 1]:
user_config_file = user_args[idx + 1]
logger.debug(f"user_config_file = {user_config_file}")
if user_config_file is not None:
assert os.path.isfile(user_config_file), "DeepSpeed configuration file: {} is not an existing file".format(
user_config_file)
if os.path.exists(user_config_file):
return json.load(open(user_config_file, "r"), object_pairs_hook=dict_raise_error_on_duplicate_keys)
return None
def _get_resource_manager(self, active_resources):
"""Initialize and return a resource manager
Args:
active_resources ([dict]): A dictionary of hostname and its slots (GPUs), e.g. {"worker-0": "0,1,2,3,4,5,6,7,8"}
Raises:
RuntimeError: raises the error if no GPU is available
Returns:
[ResourceManager]: A resource manager that schedules and runs autotuning experiments.
"""
logger.info(f"active_resources = {active_resources}")
hosts = []
ngpus_per_node = 100
for hostname, slots in active_resources.items():
hosts.append(hostname)
ngpus_per_node = min(len(slots), ngpus_per_node)
assert ngpus_per_node > 0, "no gpu is available"
return ResourceManager(args=self.args,
hosts=hosts,
num_gpus_per_node=ngpus_per_node,
results_dir=self.results_dir,
exps_dir=self.exps_dir,
arg_mappings=self.autotuning_config.arg_mappings)
def _get_exp_resources(self, args):
"""Get resource requirement for each autotuning experiment
Args:
args (dict): user args
Returns:
num_nodes, num_gpus: the number of gpus and number of nodes used in the autotuning experiments
"""
if args.num_nodes > 0:
num_nodes = args.num_nodes
else:
num_nodes = len(self.rm.nodes)
if args.num_gpus > 0:
num_gpus = args.num_gpus
else:
num_gpus = self.rm.num_gpus_per_node
return num_nodes, num_gpus
def metric(self):
return self.autotuning_config.metric
def fast_enabled(self):
return self.autotuning_config.fast
def max_train_batch_size(self):
return self.autotuning_config.max_train_batch_size
def mp_size(self):
return self.autotuning_config.mp_size
def max_train_micro_batch_size_per_gpu(self):
if self.max_train_batch_size(
) and self.max_train_batch_size() > 0: # if the user specifies a max_train_batch_size
max_train_micro_batch_size = self.max_train_batch_size() * self.mp_size() // (
self.exp_num_gpus * self.exp_num_nodes) # gradient accumulation steps >=1
return min(self.autotuning_config.max_train_micro_batch_size_per_gpu, max_train_micro_batch_size)
else:
return self.autotuning_config.max_train_micro_batch_size_per_gpu
def min_train_micro_batch_size_per_gpu(self):
return self.autotuning_config.min_train_micro_batch_size_per_gpu
def num_tuning_micro_batch_sizes(self):
return self.autotuning_config.num_tuning_micro_batch_sizes
def fp16_enabled(self):
if FP16 in self.user_config.keys():
return self.user_config[FP16].get(FP16_ENABLED, FP16_ENABLED_DEFAULT)
else:
return False
def get_gpu_memory_info(self):
return get_accelerator().total_memory()
def get_activation_memory_per_gpu(self):
if self.model_info and "activation_mem_per_gpu" in self.model_info:
return self.model_info["activation_mem_per_gpu"]
def get_instantiation_memory_required_per_gpu(self, zero_stage):
num_params = self.get_model_num_params()
total_gpus = self.exp_num_nodes * self.exp_num_gpus
fp16_enabled = self.fp16_enabled()
if not num_params:
return 0
# assume the model uses Adam optimizer
# ZeroStageEnum.disabled:
params_mem = num_params * (2 if fp16_enabled else 4)
gradients_mem = num_params * (2 if fp16_enabled else 4)
optimizer_mem = num_params * (16 if fp16_enabled else 8)
if zero_stage >= ZeroStageEnum.optimizer_states:
optimizer_mem = optimizer_mem / total_gpus
if zero_stage >= ZeroStageEnum.gradients:
gradients_mem = gradients_mem / total_gpus
if zero_stage >= ZeroStageEnum.weights:
params_mem = params_mem / total_gpus
mem_per_gpu = (params_mem + gradients_mem + optimizer_mem) / self.mp_size()
return mem_per_gpu
def _generate_experiments(self, tuning_space, max_train_batch_size_per_gpu):
"""Generates a list of autotuning experiments given a tuning_space.
The corresponding parameter values are replaced by user-defined values in the DeepSpeed configuration file.
Args:
tuning_space ([dict]): A DeepSpeed configuration dictionary where a value can be a list (called a tuning parameter). For example,
{
"zero_optimization": {
"stage": 1,
"reduce_bucket_size": [5e7,
5e8,
1e9],
"allgather_bucket_size": [5e7,
5e8,
1e9],
}
}
reduce_bucket_size and allgather_bucket_size are the tuning parameters in this tuning space.
Returns:
[list]: a list of experiments generated by taking combinations of values of the tuning space. The above tuning space generates 3*3 = 9 experiments if the user DeepSpeed configuration file does not overwrite the two tuning parameters or define more tuning parameters.
"""
exps = []
# each zero stage uses a different template configuration file
config_zero = tuning_space.get(ZERO_OPTIMIZATION, {})
stage = config_zero.get(ZERO_OPTIMIZATION_STAGE, ZERO_OPTIMIZATION_STAGE_DEFAULT)
template_config = {}
if stage == 0:
template_path = DEFAULT_TEMPLATE_PATH_ZERO_0
template_config = hjson.load(open(template_path, 'r'))
prefix = "z0_"
elif stage == 1:
template_path = DEFAULT_TEMPLATE_PATH_ZERO_1
template_config = hjson.load(open(template_path, 'r'))
prefix = "z1_"
elif stage == 2:
template_path = DEFAULT_TEMPLATE_PATH_ZERO_2
template_config = hjson.load(open(template_path, 'r'))
prefix = "z2_"
elif stage == 3:
template_path = DEFAULT_TEMPLATE_PATH_ZERO_3
template_config = hjson.load(open(template_path, 'r'))
model_info = self.model_info
if model_info and "hidden_size" in model_info:
hs = model_info["hidden_size"]
template_config[ZERO_OPTIMIZATION]['reduce_bucket_size'] = hs * hs
template_config[ZERO_OPTIMIZATION]['stage3_prefetch_bucket_size'] = 0.9 * hs * hs
template_config[ZERO_OPTIMIZATION]['stage3_param_persistence_threshold'] = 10 * hs
prefix = "z3_"
else:
return exps
# replace the corresponding parameter values if the user specifies them in the DeepSpeed configuration file
replace_dict(tuning_space, self.user_config, [ZERO_OPTIMIZATION, TRAIN_MICRO_BATCH_SIZE_PER_GPU])
logger.debug(f"tuning_space = {json.dumps(tuning_space)}")
all_configs = get_all_configs(tuning_space, ignore_keys=["optimizer"])
tuning_keys = get_tuning_keys(tuning_space)
logger.debug(f"tuning_keys = {tuning_keys}")
logger.debug(f"before pruning total configs = {len(all_configs)}")
pruned_list = prune_configs(all_configs)
logger.debug(f"after pruning total configs = {len(pruned_list)}")
for config in pruned_list:
exp_config = copy.deepcopy(template_config)
# fill the template with the expr config
replace_dict(exp_config, config)
# if the config does not use offloading, remove the offloading section
config_zero = config.get(ZERO_OPTIMIZATION, None)
if config_zero:
if OFFLOAD_OPTIMIZER not in config_zero and OFFLOAD_OPTIMIZER in exp_config[ZERO_OPTIMIZATION]:
del exp_config[ZERO_OPTIMIZATION][OFFLOAD_OPTIMIZER]
if OFFLOAD_PARAM not in config_zero and OFFLOAD_PARAM in exp_config[ZERO_OPTIMIZATION]:
del exp_config[ZERO_OPTIMIZATION][OFFLOAD_PARAM]
# set gradient accumulation steps according to max_train_batch_size_per_gpu
mbs = exp_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU]
gas = max_train_batch_size_per_gpu // mbs
exp_config[GRADIENT_ACCUMULATION_STEPS] = gas
exp_config[TRAIN_BATCH_SIZE] = mbs * gas * \
self.exp_num_gpus * self.exp_num_nodes // self.mp_size()
exp = {}
# generate the expr name
exp_name = canonical_name(exp_config, tuning_keys, prefix)
exp['name'] = exp_name
exp[DS_CONFIG] = exp_config
exp['num_gpus'] = self.exp_num_gpus
exp['num_nodes'] = self.exp_num_nodes
exps.append(exp)
return exps
def tune(self):
""" Tunes Zero stages, micro batch size per GPU, and other Zero configurations. Performance metrics of different tuning spaces are recorded in self.records.
"""
if has_mlflow:
self.mlflow_parent_id = os.environ['MLFLOW_RUN_ID']
mlflow.start_run(run_id=self.mlflow_parent_id)
self.start_time = time.time()
if self.fast_enabled():
logger.info(f"Fast mode is enabled. Tuning micro batch size only.")
# model info profile run with DEFAULT_MIN_MEM_CONFIG
model_info = self.model_info_profile_run()
if model_info:
self.model_info = model_info
else:
return
logger.info(f"The model has {number_to_string(self.get_model_num_params())} parameters.")
self.gpu_mem = self.get_gpu_memory_info()
logger.info(f"Memory per GPU in the system is {memory_to_string(self.gpu_mem, postfix='B')}.")
self.activation_mem = self.get_activation_memory_per_gpu()
logger.info(
f"The model requires at least {memory_to_string(self.activation_mem, postfix='B')} activation memory for micro batch size 1."
)
stage = self.user_config.get(ZERO_OPTIMIZATION, {}).get(ZERO_OPTIMIZATION_STAGE, 0)
user_zero_stages = [stage] if not isinstance(stage, list) else stage
logger.info(f"User-defined zero stages are {stage}.")
mbs = 0
max_mbs = 0
metric_val = 0
required_gpu_mem = self.get_instantiation_memory_required_per_gpu(ZeroStageEnum.disabled) + self.activation_mem
if self.gpu_mem > required_gpu_mem:
if "all" in user_zero_stages or ZeroStageEnum.disabled in user_zero_stages:
logger.info(
f"The model might be runable with ZERO 0 (which requires at least {memory_to_string(required_gpu_mem, postfix='B')} memory with mbs = 1), adding DEFAULT_TUNING_SPACE_ZERO_0 to the global tuning space"
)
next_max_mbs, next_mbs, next_metric_val = self.tune_space(DEFAULT_TUNING_SPACE_ZERO_0)
if next_mbs > mbs:
mbs = next_mbs
max_mbs = next_max_mbs
metric_val = next_metric_val
if has_mlflow:
mlflow.log_metric(f"z0{self.metric()}", next_metric_val)
else:
logger.info(
f"The model is not runable with ZERO stage {ZeroStageEnum.disabled} (which requires at least {memory_to_string(required_gpu_mem, postfix='B')} memory with mbs = 1)"
)
required_gpu_mem = self.get_instantiation_memory_required_per_gpu(
ZeroStageEnum.optimizer_states) + self.activation_mem
if self.gpu_mem > required_gpu_mem:
if "all" in user_zero_stages or ZeroStageEnum.optimizer_states in user_zero_stages:
logger.info(
f"The model might be runable with ZERO 1 (which requires at least {memory_to_string(required_gpu_mem, postfix='B')} memory), adding DEFAULT_TUNING_SPACE_ZERO_1 to the global tuning space"
)
next_max_mbs, next_mbs, next_metric_val = self.tune_space(DEFAULT_TUNING_SPACE_ZERO_1,
prev_max_mbs=max_mbs,
prev_best_mbs=mbs,
prev_best_metric_val=metric_val)
if next_mbs > mbs:
mbs = next_mbs
max_mbs = next_max_mbs
metric_val = next_metric_val
if has_mlflow:
mlflow.log_metric(f"z1{self.metric()}", next_metric_val)
else:
logger.info(
f"The model is not runable with ZERO stage {ZeroStageEnum.optimizer_states} (which requires at least {memory_to_string(required_gpu_mem, postfix='B')} memory with mbs = 1)"
)
required_gpu_mem = self.get_instantiation_memory_required_per_gpu(
ZeroStageEnum.gradients) + self.activation_mem
if self.gpu_mem > required_gpu_mem:
if "all" in user_zero_stages or ZeroStageEnum.gradients in user_zero_stages:
logger.info(
f"The model might be runable with ZERO 2 (which requires at least {memory_to_string(required_gpu_mem, postfix='B')} memory), adding DEFAULT_TUNING_SPACE_ZERO_2 to the global tuning space"
)
next_max_mbs, next_mbs, next_metric_val = self.tune_space(DEFAULT_TUNING_SPACE_ZERO_2,
prev_max_mbs=max_mbs,
prev_best_mbs=mbs,
prev_best_metric_val=metric_val)
if next_mbs > mbs:
mbs = next_mbs
max_mbs = next_max_mbs
metric_val = next_metric_val
if has_mlflow:
mlflow.log_metric(f"z2{self.metric()}", next_metric_val)
else:
logger.info(
f"The model is not runable with ZERO stage {ZeroStageEnum.gradients} (which requires at least {memory_to_string(required_gpu_mem, postfix='B')} memory with mbs = 1)"
)
required_gpu_mem = self.get_instantiation_memory_required_per_gpu(ZeroStageEnum.weights) + self.activation_mem
if self.gpu_mem > required_gpu_mem:
if "all" in user_zero_stages or ZeroStageEnum.weights in user_zero_stages:
logger.info(
f"The model might be runable with ZERO 3 (which requires at least {memory_to_string(required_gpu_mem, postfix='B')} memory), adding DEFAULT_TUNING_SPACE_ZERO_3 to the global tuning space"
)
_, _, next_metric_val = self.tune_space(DEFAULT_TUNING_SPACE_ZERO_3,
prev_max_mbs=max_mbs,
prev_best_mbs=mbs,
prev_best_metric_val=metric_val)
if has_mlflow:
mlflow.log_metric(f"z3{self.metric()}", next_metric_val)
else:
logger.info(
f"The model has {self.get_model_num_params()} parameters and requires at least {memory_to_string(required_gpu_mem, postfix='B')} memory per GPU with DeepSpeed Zero stage {ZeroStageEnum.weights} optimization. Memory per GPU in system is {memory_to_string(self.gpu_mem)}. No tuning is performed."
)
return
if has_mlflow:
mlflow.end_run()
def tune_space(self, tuning_space, prev_max_mbs=0, prev_best_mbs=0, prev_best_metric_val=0):
config_zero = tuning_space.get(ZERO_OPTIMIZATION, {})
stage = config_zero.get(ZERO_OPTIMIZATION_STAGE, None)
tuning_space_name = TUNING_MICRO_BATCH_SIZE_PREFIX + str(stage)
tuning_micro_batch_sizes = []
max_train_batch_size_per_gpu = 0
tuning_micro_batch_sizes_overwritten = False
# calculate max micro batch size using gpu memory, model instantiation memory and activation memory
# calculated_max_micro_batch_size = (memory_per_gpu - instantiation_memory) // activation_memory_micro_batch_size_1
calculated_max_micro_batch_size = int(
self.gpu_mem - self.get_instantiation_memory_required_per_gpu(stage)) // self.activation_mem
logger.info(
f"Start tuning for space {tuning_space_name}, calculated_max_micro_batch_size = {calculated_max_micro_batch_size}"
)
if calculated_max_micro_batch_size < prev_max_mbs:
logger.info(f"No need to tune Zero stage {stage}. End tuning for space {tuning_space_name}")
return 0, 0, 0
if TRAIN_MICRO_BATCH_SIZE_PER_GPU in self.user_config and isinstance(
self.user_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU], list):
# user-specified micro batch size per gpu is a list which overwrites the default tuning behavior
tuning_micro_batch_sizes = [
s for s in self.user_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU] if isinstance(s, int)
]
gas = self.get_gas_from_user_config()
min_micro_batch_size = min(tuning_micro_batch_sizes)
max_micro_batch_size = max(tuning_micro_batch_sizes)
max_train_batch_size_per_gpu = max_micro_batch_size * gas
tuning_micro_batch_sizes_overwritten = True
else:
# auto-detects the list of micro batch sizes to tune
min_micro_batch_size, max_micro_batch_size = self.get_min_max_micro_batch_size(
stage, prev_max_mbs, calculated_max_micro_batch_size)
if max_micro_batch_size < prev_max_mbs:
logger.info(f"No need to tune Zero stage {stage}. End tuning for space {tuning_space_name}")
return 0, 0, 0
tuning_micro_batch_sizes, max_train_batch_size_per_gpu = self.get_tuning_micro_batch_size_list(
min_micro_batch_size,
max_micro_batch_size,
num_tuning_micro_batch_sizes=self.num_tuning_micro_batch_sizes())
logger.info(
f"tuning_micro_batch_sizes = {tuning_micro_batch_sizes}, max_train_batch_size_per_gpu = {max_train_batch_size_per_gpu}"
)
# return if the tuning_micro_batch_sizes list is empty
if not tuning_micro_batch_sizes:
logger.info(f"End tuning for space {tuning_space_name}")
return 0, 0, 0
# tune micro batch sizes and gradient accumulation steps given max_train_batch_size_per_gpu
tuning_micro_batch_sizes = self.run_tuning_micro_batch_sizes(tuning_micro_batch_sizes,
max_train_batch_size_per_gpu,
min_micro_batch_size, stage,
tuning_micro_batch_sizes_overwritten)
fast_best_record = self.get_best_space_record(tuning_space_name)
fast_best_metric_val = fast_best_record[1] if fast_best_record else 0
fast_best_mbs = fast_best_record[0][DS_CONFIG][TRAIN_MICRO_BATCH_SIZE_PER_GPU] if fast_best_record else 0
logger.info(f"fast_best_mbs = {fast_best_mbs}, name = {fast_best_record[0]['name']}")
if self.fast_enabled() or stage == 0:
logger.info(f"End tuning for space: {tuning_space_name}")
return max_micro_batch_size, fast_best_mbs, fast_best_metric_val
# if the best metric or the micro batch size for that best metric in the current Zero stage after tuning micro batch size is less than the corresponding value in the previous Zero stage, return, do not tune other Zero configuration parameters
if stage > 0:
if fast_best_mbs <= prev_best_mbs or fast_best_metric_val < prev_best_metric_val:
logger.info(
f"End tuning for space: {tuning_space_name}. No need to tune other Zero configuration parameters.")
return max_micro_batch_size, fast_best_mbs, fast_best_metric_val
tuning_space[TRAIN_MICRO_BATCH_SIZE_PER_GPU] = tuning_micro_batch_sizes
tuning_space_name = canonical_name(tuning_space,
tuning_keys=get_tuning_keys(tuning_space),
prefix="z" + str(stage) + "_",
omit_val=True)
logger.info(f'Tuning space is {tuning_space}')
logger.info(f'Tuning space name is {tuning_space_name}')
exps = self._generate_experiments(tuning_space, max_train_batch_size_per_gpu)
logger.info(f'Tuner type is {self.autotuning_config.tuner_type}')
if self.autotuning_config.tuner_type == AUTOTUNING_TUNER_MODELBASED:
t = ModelBasedTuner(exps, self.rm, self.metric(), tuning_space)
elif self.autotuning_config.tuner_type == AUTOTUNING_TUNER_RANDOM:
t = RandomTuner(exps, self.rm, self.metric())
else:
t = GridSearchTuner(exps, self.rm, self.metric())
sample_size = len(self.rm.nodes) * self.rm.num_gpus_per_node // (self.exp_num_gpus * self.exp_num_nodes)
num_exps = t.tune(sample_size=sample_size,
n_trials=self.autotuning_config.tuner_num_trials,
early_stopping=self.autotuning_config.tuner_early_stopping)
exp = t.best_exp
metric_val = t.best_metric_val
if exp:
self.update_records(tuning_space_name, exp, metric_val, num_exps)
full_best_record = self.get_best_space_record(tuning_space_name)
full_best_metric_val = full_best_record[1] if full_best_record else -1
if full_best_metric_val > fast_best_metric_val:
best_metric_val = full_best_metric_val
best_mbs = full_best_record[0][DS_CONFIG][TRAIN_MICRO_BATCH_SIZE_PER_GPU] if full_best_record else -1
else:
best_metric_val = fast_best_metric_val
best_mbs = fast_best_mbs
logger.info(f"End tuning for space: {tuning_space_name}")
return max_micro_batch_size, best_mbs, best_metric_val
def get_plateau_mbs(self, tuning_space_name):
if tuning_space_name not in self.records:
return 0
space_records = self.records[tuning_space_name]
sorted_space_records = sorted(space_records, key=lambda x: x[0][DS_CONFIG][TRAIN_MICRO_BATCH_SIZE_PER_GPU])
prev_metric_val = None
prev_micro_batch_size = 0
for (exp, metric_val, _) in sorted_space_records:
if prev_metric_val:
if metric_val < prev_metric_val:
break
if (metric_val >= prev_metric_val
and (metric_val - prev_metric_val) / prev_metric_val < METRIC_PERCENT_DIFF_CONST):
break
prev_metric_val = metric_val
prev_micro_batch_size = exp[DS_CONFIG][TRAIN_MICRO_BATCH_SIZE_PER_GPU]
plateau_mbs = prev_micro_batch_size
return plateau_mbs
def get_model_num_params(self):
if self.model_info and "num_params" in self.model_info:
return self.model_info["num_params"]
def model_info_profile_run(self):
"""Does a model information profiling experiment that collects the number of model parameters and activation memory.\
The experiment produces a "profile_model_info" folder under self.results_dir.
Returns:
[dict]: a model information dictionary, e.g., {"num_params": 335144976, "trainable_num_params": 335144976, "activation_mem_per_gpu": 324358144, "rank": 0}
"""
logger.info("Starting model info profile run.")
model_info = self.autotuning_config.model_info
if model_info and MODEL_INFO_NUM_PARAMS in model_info:
return model_info
ds_config = copy.deepcopy(self.user_config)
replace_dict(ds_config, DEFAULT_MIN_MEM_CONFIG)
model_info_path = os.path.join(self.results_dir, "profile_model_info", "model_info.json")
ds_config[AUTOTUNING] = {"enabled": True, "model_info_path": model_info_path, "model_info": {"profile": True}}
exp_config = {}
exp_name = "profile_model_info"
exp_config['name'] = exp_name
exp_config[DS_CONFIG] = ds_config
exp_config['num_gpus'] = self.exp_num_gpus
exp_config['num_nodes'] = self.exp_num_nodes
exp_config['hostfile'] = self.args.hostfile
exp_path = os.path.join(self.exps_dir, f'{exp_name}.json')
with open(exp_path, 'w', buffering=BUFSIZE) as fd:
json.dump(exp_config, fd)
fd.flush()
os.fsync(fd)
self.rm.schedule_experiments([exp_path])
self.rm.run()
for exp_id, (exp_json, err) in self.rm.finished_experiments.items():
self.rm.clear()
if err:
logger.error(f"The model is not runnable with DeepSpeed with error = {err}")
return None
if os.path.exists(model_info_path):
with open(model_info_path, 'r') as f:
model_info = hjson.load(f)
return model_info
def update_records(self, space_name, exp, metric_val, num_exps):
if space_name not in self.records:
self.records[space_name] = [(exp, metric_val, num_exps)]
else:
self.records[space_name].append((exp, metric_val, num_exps))
def get_best_space_record(self, space_name):
if space_name not in self.records:
return None
space_records = self.records[space_name]
best_space_record = None
space_num_exps = 0
for (exp, metric_val, num_exps) in space_records:
space_num_exps += num_exps
if best_space_record is None or metric_val > best_space_record[1]:
best_space_record = (exp, metric_val)
if best_space_record:
best_space_record = best_space_record + (space_num_exps, )
return best_space_record
def get_best_space_records(self):
best_space_records = {}
global_best_record = None
for space_name, space_records in self.records.items():
best_space_record = self.get_best_space_record(space_name)
if best_space_record:
best_space_records[space_name] = best_space_record
if not global_best_record or best_space_record[1] > global_best_record[1]:
global_best_record = best_space_record
if global_best_record:
best_space_records[GLOBAL_TUNING_SPACE] = global_best_record
return best_space_records
def run_tuning_micro_batch_sizes(self, tuning_micro_batch_sizes, max_train_batch_size_per_gpu,
min_micro_batch_size, stage, tuning_micro_batch_sizes_overwritten):
assert tuning_micro_batch_sizes, "the tuning micro batch size list is empty"
tuning_micro_batch_sizes.sort()
max_micro_batch_size = tuning_micro_batch_sizes[-1]
max_micro_batch_size_metric_val = 0
ds_config = get_first_config(self.user_config)
ds_config[ZERO_OPTIMIZATION] = {ZERO_OPTIMIZATION_STAGE: stage}
tuning_space_name = TUNING_MICRO_BATCH_SIZE_PREFIX + str(stage)
exp_paths = []
for mbs in tuning_micro_batch_sizes:
ds_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU] = mbs
gas = max_train_batch_size_per_gpu // mbs
ds_config[GRADIENT_ACCUMULATION_STEPS] = gas
ds_config[TRAIN_BATCH_SIZE] = mbs * gas * \
self.exp_num_gpus * self.exp_num_nodes // self.mp_size()
exp_name = tuning_space_name + "_gas" + str(gas) + "_tmbspg" + str(mbs)
exp_config = {}
exp_config['name'] = exp_name
exp_config[DS_CONFIG] = ds_config
exp_config['num_gpus'] = self.exp_num_gpus
exp_config['num_nodes'] = self.exp_num_nodes
exp_config['hostfile'] = self.args.hostfile
exp_path = os.path.join(self.exps_dir, f'{exp_name}.json')
with open(exp_path, 'w', buffering=BUFSIZE) as fd:
json.dump(exp_config, fd)
fd.flush()
os.fsync(fd)
exp_paths.append(exp_path)
self.rm.schedule_experiments(exp_paths)
self.rm.run()
for exp_id, (exp, err) in self.rm.finished_experiments.items():
if exp:
metric_file = exp[DS_CONFIG][AUTOTUNING][AUTOTUNING_METRIC_PATH]
if os.path.exists(metric_file):
with open(metric_file, 'r') as f:
results = hjson.load(f)
metric_val = results[self.metric()]
self.update_records(tuning_space_name, exp, metric_val, 1)
if max_micro_batch_size == exp[DS_CONFIG][TRAIN_MICRO_BATCH_SIZE_PER_GPU]:
max_micro_batch_size_metric_val = metric_val
if has_mlflow:
os.environ.pop('MLFLOW_RUN_ID')
mlflow.start_run(nested=True, run_name=exp['name'])
for metric in results:
mlflow.log_metric(metric, results[metric])
mlflow.end_run()
os.environ['MLFLOW_RUN_ID'] = self.mlflow_parent_id
else:
self.update_records(tuning_space_name, exp, 0, 1)
else:
mbs = exp[DS_CONFIG][TRAIN_MICRO_BATCH_SIZE_PER_GPU]
logger.info(f"micro batch size = {mbs} was not run successfully")
self.rm.clear()
if tuning_micro_batch_sizes_overwritten:
return tuning_micro_batch_sizes
# in a auto-detected tuning_micro_batch_sizes list, max_micro_batch_size might not be performant as the memory consumption is close to max
# try smaller values while gas stays the same
# if finding a more performant mbs value, use it to replace max_micro_batch_size in the list
min_micro_batch_size_with_same_gas = (tuning_micro_batch_sizes[-2] +
1) if len(tuning_micro_batch_sizes) > 1 else min_micro_batch_size
prev_best_metric_val = max_micro_batch_size_metric_val
prev_best_mbs = max_micro_batch_size
stride = (max_micro_batch_size - min_micro_batch_size_with_same_gas) // 3
if stride == 0:
stride = 1
for mbs in reversed(range(min_micro_batch_size_with_same_gas, max_micro_batch_size, stride)):
ds_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU] = mbs
gas = max_train_batch_size_per_gpu // mbs
ds_config[GRADIENT_ACCUMULATION_STEPS] = gas
ds_config[TRAIN_BATCH_SIZE] = mbs * gas * \
self.exp_num_gpus * self.exp_num_nodes // self.mp_size()
exp_name = tuning_space_name + "_gas" + str(gas) + "_tmbspg" + str(mbs)
exp, metric_val = self.run_ds_config(ds_config, exp_name)
if metric_val:
with open(metric_file, 'r') as f:
results = hjson.load(f)
metric_val = results[self.metric()]
if has_mlflow:
os.environ.pop('MLFLOW_RUN_ID')
mlflow.start_run(nested=True, run_name=exp_name)
for metric in results:
mlflow.log_metric(metric, results[metric])
mlflow.end_run()
os.environ['MLFLOW_RUN_ID'] = self.mlflow_parent_id
self.update_records(tuning_space_name, exp, metric_val, 1)
if metric_val > prev_best_metric_val * (1 + METRIC_PERCENT_DIFF_CONST):
prev_best_metric_val = metric_val
prev_best_mbs = mbs
else:
break
else:
self.update_records(tuning_space_name, exp, 0, 1)
break
if prev_best_mbs != max_micro_batch_size:
tuning_micro_batch_sizes[-1] = prev_best_mbs
return tuning_micro_batch_sizes
def get_min_max_micro_batch_size(self, stage, min_micro_batch_size, calculated_max_micro_batch_size):
# get min and max micro batch size with gradient accumulation steps = 1
if min_micro_batch_size > calculated_max_micro_batch_size:
return -1, -1
used_micro_batch_sizes = []
tuning_space_name = TUNING_MICRO_BATCH_SIZE_PREFIX + str(stage)
ds_config = get_first_config(self.user_config)
ds_config[ZERO_OPTIMIZATION] = {ZERO_OPTIMIZATION_STAGE: stage}
gas = self.get_gas_from_user_config()
ds_config[GRADIENT_ACCUMULATION_STEPS] = gas
# search for the min micro batch size
if min_micro_batch_size < 1:
if TRAIN_MICRO_BATCH_SIZE_PER_GPU in self.user_config and isinstance(
self.user_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU], int):
# user specifies train_micro_batch_size_per_gpu as an int
mbs = int(self.user_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU])
else:
# user does not specify train_micro_batch_size_per_gpu or sets it to "auto" when using Hugging Face
val = self.get_val_from_user_args(TRAIN_MICRO_BATCH_SIZE_PER_GPU)
if val:
mbs = int(val)
else:
mbs = 1
assert mbs > 0, "The micro batch size per GPU must be greater than 0."
ds_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU] = mbs
ds_config[GRADIENT_ACCUMULATION_STEPS] = gas
ds_config[TRAIN_BATCH_SIZE] = mbs * gas * \
self.exp_num_gpus * self.exp_num_nodes // self.mp_size()
exp_name = tuning_space_name + "_gas" + str(gas) + "_tmbspg" + str(mbs)
exp, metric_val = self.run_ds_config(ds_config, exp_name)
if metric_val:
self.update_records(tuning_space_name, exp, metric_val, 1)
used_micro_batch_sizes.append(mbs)
min_micro_batch_size = mbs
else:
self.update_records(tuning_space_name, exp, 0, 1)
logger.info(f"User-specified micro batch size per GPU {mbs} does not run")
if self.min_train_micro_batch_size_per_gpu() == mbs:
return -1, -1
mbs = self.min_train_micro_batch_size_per_gpu()
ds_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU] = mbs
ds_config[GRADIENT_ACCUMULATION_STEPS] = gas
ds_config[TRAIN_BATCH_SIZE] = mbs * gas * \
self.exp_num_gpus * self.exp_num_nodes // self.mp_size()
exp_name = tuning_space_name + "_gas" + str(gas) + "_tmbspg" + str(mbs)
exp, metric_val = self.run_ds_config(ds_config, exp_name)
if not metric_val:
self.update_records(tuning_space_name, exp, 0, 1)
logger.info(f"min_train_micro_batch_size_per_gpu {mbs} is not runnable.")
return -1, -1
self.update_records(tuning_space_name, exp, metric_val, 1)
min_micro_batch_size = mbs
used_micro_batch_sizes.append(mbs)
else:
ds_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU] = min_micro_batch_size
ds_config[GRADIENT_ACCUMULATION_STEPS] = gas
ds_config[TRAIN_BATCH_SIZE] = min_micro_batch_size * gas * \
self.exp_num_gpus * self.exp_num_nodes // self.mp_size()
exp_name = tuning_space_name + "_gas" + str(gas) + "_tmbspg" + str(min_micro_batch_size)
exp, metric_val = self.run_ds_config(ds_config, exp_name)
if metric_val:
self.update_records(tuning_space_name, exp, metric_val, 1)
used_micro_batch_sizes.append(min_micro_batch_size)
else:
self.update_records(tuning_space_name, exp, 0, 1)
return -1, -1
# search for the max micro batch size
max_micro_batch_size = min(calculated_max_micro_batch_size, self.max_train_micro_batch_size_per_gpu())
for mbs in [math.ceil(1.05 * max_micro_batch_size), max_micro_batch_size, int(0.95 * max_micro_batch_size)]:
if mbs > self.max_train_micro_batch_size_per_gpu():
continue
if mbs in used_micro_batch_sizes:
return min_micro_batch_size, mbs
ds_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU] = mbs
ds_config[TRAIN_BATCH_SIZE] = mbs * gas * \
self.exp_num_gpus * self.exp_num_nodes // self.mp_size()
exp_name = tuning_space_name + "_gas" + str(gas) + "_tmbspg" + str(mbs)
exp, metric_val = self.run_ds_config(ds_config, exp_name)
if metric_val:
logger.info(f"mbs = {mbs} is found as max mbs")
self.update_records(tuning_space_name, exp, metric_val, 1)
used_micro_batch_sizes.append(mbs)
return min_micro_batch_size, mbs
else:
self.update_records(tuning_space_name, exp, 0, 1)
space_records = self.records[tuning_space_name] if tuning_space_name in self.records else []
if space_records:
prev_idx = min(range(len(space_records)),
key=lambda i: abs(space_records[i][0][DS_CONFIG][TRAIN_MICRO_BATCH_SIZE_PER_GPU] -
min_micro_batch_size))
prev_metric_val = space_records[prev_idx][1]
else:
prev_metric_val = None
low = min_micro_batch_size
high = max_micro_batch_size
# binary search until low is the smallest micro batch size that OOMs.
while low <= high:
mid = int((low + high) // 2)
logger.debug(f"trying mbs = {mid}, low = {low}, high = {high}")
if mid not in used_micro_batch_sizes:
ds_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU] = mid
ds_config[TRAIN_BATCH_SIZE] = mid * gas * \
self.exp_num_gpus * self.exp_num_nodes // self.mp_size()
exp_name = tuning_space_name + "_gas" + str(gas) + "_tmbspg" + str(mid)
exp, metric_val = self.run_ds_config(ds_config, exp_name)
if metric_val:
low = mid + 1
self.update_records(tuning_space_name, exp, metric_val, 1)
used_micro_batch_sizes.append(mid)
if prev_metric_val and (
(metric_val - prev_metric_val) / prev_metric_val) < METRIC_PERCENT_DIFF_CONST:
logger.info(f"performance plateaus at mbs = {low}")
break
prev_metric_val = metric_val
else:
self.update_records(tuning_space_name, exp, 0, 1)
high = mid - 1
else:
low = mid + 1
max_micro_batch_size = low - 1
logger.info(f"min_micro_batch_size = {min_micro_batch_size}, max_micro_batch_size = {max_micro_batch_size}.")
return min_micro_batch_size, max_micro_batch_size
def get_gas_from_user_config(self):
gas = 1
if GRADIENT_ACCUMULATION_STEPS in self.user_config:
gas_in_config = self.user_config[GRADIENT_ACCUMULATION_STEPS]
if isinstance(gas_in_config, int):
gas = gas_in_config
elif gas_in_config == "auto": # GRADIENT_ACCUMULATION_STEPS: "auto"
val = self.get_val_from_user_args(GRADIENT_ACCUMULATION_STEPS)
if val:
gas = int(val)
elif isinstance(gas_in_config, list):
logger.info(
f"Specifying a list of {GRADIENT_ACCUMULATION_STEPS} to tune is not supported. 1 would be used.")
assert gas > 0, "Gradient accumulation steps must be positive."
return gas
def get_val_from_user_args(self, ds_name):
arg_mappings = self.autotuning_config.arg_mappings
user_args = self.args.user_args
if arg_mappings and ds_name in arg_mappings:
arg_name = arg_mappings[ds_name]
if arg_name in user_args:
idx = user_args.index(arg_name)
if user_args[idx + 1].isnumeric():
return (user_args[idx + 1])
return None
def get_tuning_micro_batch_size_list(self, min_micro_batch_size, max_micro_batch_size,
num_tuning_micro_batch_sizes):
"""Get a list of micro batch sizes to tune based on min and max values, as well as the size of the list.
Args:
min_micro_batch_size ([int]): min micro batch size per GPU
max_micro_batch_size ([int]): max micro batch size per GPU
num_tuning_micro_batch_sizes (int): the number of items in the returned list
Returns:
[list]: a list of micro batch sizes to tune.
"""
if min_micro_batch_size <= 0 or max_micro_batch_size <= 0:
logger.info(
f"min_micro_batch_size = {min_micro_batch_size}, max_micro_batch_size = {max_micro_batch_size}")
return [], 0
# NUM_GPUS=$(( ${NUM_WORKERS} * ${NUM_GPUS_PER_WORKER} ))
# DP_SIZE=$(( ${NUM_GPUS} / (${PP_SIZE} * ${MP_SIZE}) ))
# GRAD_ACC_STEPS=$(( ${TARGET_GLOBAL_BATCH_SIZE} / (${BATCH_SIZE} * ${DP_SIZE}) ))
if self.max_train_batch_size(
) and self.max_train_batch_size() > 0: # if the user specifies a max_train_batch_size
max_train_batch_size_per_gpu = self.max_train_batch_size() * self.mp_size() // (self.exp_num_gpus *
self.exp_num_nodes)
else:
gas = self.get_gas_from_user_config()
max_train_batch_size_per_gpu = max_micro_batch_size * gas // self.mp_size()
logger.info(f"max_train_batch_size_per_gpu = {max_train_batch_size_per_gpu}")
if min_micro_batch_size < max_micro_batch_size // 2:
min_micro_batch_size = max_micro_batch_size // 2
# constant stride
stride = (max_micro_batch_size - min_micro_batch_size) // num_tuning_micro_batch_sizes
if stride == 0:
stride = 1
ls = []
min_gas = max_train_batch_size_per_gpu // max_micro_batch_size
# if gas is the same as min_gas, do not add mbs to the tuning list
for mbs in range(min_micro_batch_size, max_micro_batch_size, stride):
if max_train_batch_size_per_gpu // mbs != min_gas:
ls.append(mbs)
ls.append(max_micro_batch_size)
return ls, max_train_batch_size_per_gpu
def run_ds_config(self, ds_config, exp_name):
exp_config = {}
exp_config['name'] = exp_name
exp_config[DS_CONFIG] = ds_config
exp_config['num_gpus'] = self.exp_num_gpus
exp_config['num_nodes'] = self.exp_num_nodes
exp_config['hostfile'] = self.args.hostfile
exp_path = os.path.join(self.exps_dir, f'{exp_name}.json')
logger.debug(f'run_ds_config exp_name = {exp_name}')
with open(exp_path, 'w', buffering=BUFSIZE) as fd:
json.dump(exp_config, fd)
fd.flush()
os.fsync(fd)
self.rm.schedule_experiments([exp_path])
self.rm.run()
exp, metric_val = self.rm.parse_results(self.metric())
self.rm.clear()
return exp, metric_val
def write_optimal_config(self):
best_space_records = self.get_best_space_records()
if GLOBAL_TUNING_SPACE not in best_space_records:
return
best_exp, best_metric_val, _ = best_space_records[GLOBAL_TUNING_SPACE]
if best_exp:
exp_dir = best_exp["result_dir"]
cmd = None
with open(os.path.join(exp_dir, "cmd.txt"), "r") as f:
cmd = [str(i) for i in f.read().split()]
ds_config = hjson.load(open(os.path.join(exp_dir, "ds_config.json"), "r"))
ds_config.pop(AUTOTUNING)
ds_config_path = os.path.join(self.results_dir, "ds_config_optimal.json")
json.dump(ds_config, open(ds_config_path, "w"))
cmd_path = os.path.join(self.results_dir, "cmd_optimal.txt")
with open(cmd_path, "w") as fd:
fd.write(" ".join(cmd))
fd.write("\n")
fd.flush()
self.optimal_cmd = cmd
self.optimal_ds_config = ds_config
logger.info(
f"Wrote the optimal DeepSpeed configuration found by autotuning to {ds_config_path}, and the corresponding DeepSpeed command to {cmd_path}"
)
def run_after_tuning(self):
""" Launches the training with the optimal DeepSpeed configuration found through the autotuning process.
"ds_config_optimal.json" describing the optimal DeepSpeed configuration as well the command used to launch training "cmd_optimal.txt" are saved to self.results_dir.
"""
if self.optimal_cmd:
result = subprocess.Popen(self.optimal_cmd)
result.wait()
logger.info(f"Done running with the optimal DeepSpeed configuration using {self.optimal_cmd}")
else:
logger.info(f"No optimal DeepSpeed configuration found by autotuning.")
|