File size: 15,045 Bytes
dd3126b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import re
import collections.abc
import os
import json
from deepspeed.runtime.constants import GRADIENT_ACCUMULATION_STEPS, TRAIN_MICRO_BATCH_SIZE_PER_GPU
import itertools
import copy
from ..utils import logger
def search_error(filename):
if not os.path.exists(filename):
return "stderr.log does not exist"
with open(filename) as f:
for line in f:
for s in ["Error", "error", "ERROR"]:
idx = line.find(s)
if idx != -1:
return line[idx + len(s):].lstrip(": ")
return None
def was_interruptted(filename):
if not os.path.exists(filename):
return "stderr.log does not exist"
with open(filename) as f:
for line in f:
s = "KeyboardInterrupt"
idx = line.find(s)
if idx != -1:
return True
return False
def find_replace_str(value, replace_dict):
if not isinstance(value, str):
return str(value)
matches = re.findall(r"\$[\w]+", value)
for var in matches:
var_key = var.replace("$", "").lower()
if var_key == "nvme_path":
continue
assert var_key in replace_dict, f"unknown var key: {var_key}, in {replace_dict}"
if isinstance(replace_dict[var_key], str):
value = value.replace(var, replace_dict[var_key])
else:
assert len(matches) == 1, "unable to replace multiple non-string matches"
value = replace_dict[var_key]
return value
def find_replace(target, replace_dict):
if isinstance(target, dict):
for key, value in target.items():
if isinstance(value, str):
target[key] = find_replace_str(value, replace_dict)
if isinstance(value, list):
for i in range(len(value)):
value[i] = find_replace_str(value[i], replace_dict)
if isinstance(value, dict):
find_replace(value, replace_dict)
elif isinstance(target, list):
for i in range(len(target)):
target[i] = str(find_replace_str(target[i], replace_dict))
def get_list(val):
if not isinstance(val, list):
return [val]
else:
return val
def combine_dict(d, u):
for k, v in u.items():
if isinstance(v, collections.abc.Mapping):
d[k] = combine_dict(d.get(k, {}), v)
else:
if k not in d:
d[k] = v
else:
if not isinstance(d[k], list):
d[k] = [d[k]]
d[k].extend(i for i in get_list(v) if i not in d[k])
return d
def del_if_exists(t, d):
"""Deletes a key from a dictionary if it exists.
Args:
t (string): target key to delete
d (dict): dictionary to delete from
"""
if t in d:
del d[t]
return
for k, v in d.items():
if isinstance(v, collections.abc.Mapping):
del_if_exists(t, v)
def replace_dict(d, u, ignored_keys=[]):
"""Replaces values in dict d with values in dict u.
Args:
d (dict): the target dict to overwrite
u (dict): the dict containing the values to overwrite the target dict
Returns:
dict d with values overwritten by the corresponding ones in dict u.
"""
if u is not None:
for k, v in u.items():
if k not in ignored_keys:
if v is None:
del_if_exists(k, d)
continue
if isinstance(v, collections.abc.Mapping):
d[k] = replace_dict(d.get(k, {}), v, ignored_keys)
else:
d[k] = v
return d
def get_val_by_key(d: dict, k):
if k in d:
return d[k]
for v in d.values():
if isinstance(v, dict):
return get_val_by_key(v, k)
return None
def set_val_by_key(d: dict, k, vv):
if k in d:
d[k] = vv
for v in d.values():
if isinstance(v, dict):
set_val_by_key(v, k, vv)
def fetch_hostfile(hostfile_path):
if not os.path.isfile(hostfile_path):
logger.warning("Unable to find hostfile, will proceed with training "
"with local resources only.")
return None
# e.g., worker-0 slots=16
with open(hostfile_path, 'r') as fd:
resource_pool = collections.OrderedDict()
for line in fd.readlines():
line = line.strip()
if line == '':
# skip empty lines
continue
try:
hostname, slots = line.split()
_, slot_count = slots.split("=")
slot_count = int(slot_count)
except ValueError as err:
logger.error("Hostfile is not formatted correctly, unable to "
"proceed with training.")
raise err
if hostname in resource_pool:
logger.error("Hostfile contains duplicate hosts, unable to "
"proceed with training.")
raise ValueError("host {} is already defined".format(hostname))
resource_pool[hostname] = slot_count
return resource_pool
def validate_ds_config(config: dict):
def is_False(config: dict, key):
if config is None:
return False
return bool(config.get(key))
config_zero = config.get("zero_optimization", {})
if not config_zero:
return True
stage = config_zero.get("stage")
offload = False
if stage == 1:
return True
elif stage == 2:
if is_False(config_zero, "cpu_offload") and is_False(config_zero, "cpu_offload_params"):
return False
elif stage == 3:
offload_devices = ["cpu", "nvme"]
if config_zero.get("offload_optimizer", {}).get("device") in offload_devices:
offload = True
if config_zero.get("offload_param", {}).get("device") in offload_devices:
offload = True
else:
return True
# HF requires that "ZeRO Offload can only work with DeepSpeed optimizers"
if offload and not config.get("optimizer"):
return False
return True
def remove_dupe_dicts(l):
""" Removes duplicate dictionaries from a list. Uses list comprehension and the json library to sort and stringify each dictionary and the set data type to ensure unique values. Works with nested data structures.
Args:
l (list): a list of (nested) data structures.
Returns:
A list of unique values.
"""
list_of_strings = [json.dumps(d, sort_keys=True) for d in l]
list_of_strings = set(list_of_strings)
return [json.loads(s) for s in list_of_strings]
def prune_config(config, ignored_keys=[]):
""" Prunes the input configurations
Args:
configs (dict): A configuration dictionary.
ignored_keys (list, optional): the keys of the sections to delete. Defaults to [].
Returns:
A configuration dictionary.
"""
if ignored_keys:
for k in ignored_keys:
def find_del_key(d: dict, k: str):
if k in d:
del d[k]
else:
for dd in d.values():
if isinstance(dd, dict):
find_del_key(dd, k)
find_del_key(config, k)
def prune_configs(configs, ignored_keys=[]):
""" Prunes the input list of configurations
Args:
configs (list): A list of configuration dictionaries.
ignored_keys (list, optional): the keys of the sections to delete. Defaults to [].
Returns:
A list of valid and unique configuration dictionaries.
"""
pruned_list = []
for config in configs:
prune_config(config, ignored_keys)
pruned_list.append(config)
return remove_dupe_dicts(pruned_list)
def get_tuning_keys(tuning_space: dict):
"""Outputs the list of tunable parameters in the tuning space dict.
Args:
tuning_space (dict): a configuration dictionary containing tunable parameters as lists of values.
Returns:
A list of strings
"""
tuning_keys = []
for key, val in tuning_space.items():
if isinstance(val, dict):
tuning_keys.extend(get_tuning_keys(val))
if isinstance(val, list) and len(val) > 1:
tuning_keys.append(key)
return tuning_keys
def get_all_configs(tuning_space: dict, ignore_keys=None):
""" Splits the tuning space dictionary to result in all combinations of values.
Args:
tuning_space (dict): the tuning space where tunable parameters are lists of values.
"""
def gen_combinations(d: dict):
keys, values = d.keys(), d.values()
for v in values:
if not isinstance(v, list):
v = [v]
values_choices = (gen_combinations(v) if isinstance(v, dict) else get_list(v) for v in values)
for comb in itertools.product(*values_choices):
yield dict(zip(keys, comb))
all_configs = []
ignored_key_vals = {}
for ik in ignore_keys:
ignored_key_vals[ik] = tuning_space.get(ik, {})
del_if_exists(ik, tuning_space)
for c in gen_combinations(tuning_space):
replace_dict(c, ignored_key_vals)
all_configs.append(c)
return all_configs
def canonical_name(config: dict, tuning_keys=None, prefix="", omit_val=False):
""" Generates a name from the acronyms of the tuning keys in the config dict. TRAIN_MICRO_BATCH_SIZE_PER_GPU is always included in the tuning keys.
Args:
config (dict): the config dict used to generate the name
tuning_keys (list, optional): the tuning keys used to generate the name. Defaults to None.
prefix (str, optional): a string added to the beginning of the name. Defaults to None.
"""
if TRAIN_MICRO_BATCH_SIZE_PER_GPU not in tuning_keys:
tuning_keys.append(TRAIN_MICRO_BATCH_SIZE_PER_GPU)
if GRADIENT_ACCUMULATION_STEPS not in tuning_keys:
tuning_keys.append(GRADIENT_ACCUMULATION_STEPS)
tuning_keys.sort()
def get_offload_name(offload_config):
cname = ""
if offload_config is None:
return "None_"
for key, val in offload_config.items():
key = "".join(map(lambda c: c[0], key.split('_')))
if (isinstance(val, int) or isinstance(val, float)) and val > 9000:
cname += key + '{:.1e}'.format(val) + "_"
else:
if isinstance(val, bool):
val = "T" if val else "F"
cname += f"{key}{val}_"
return cname
def get_name_by_keys(config: dict, tuning_keys=None, omit_val=False):
cname = ""
if not tuning_keys or config is None:
return cname
for key, val in config.items():
# skip the arg_mappings section when naming the exp file
if key == "arg_mappings":
continue
if key == "offload_param":
cname += "op_"
if not omit_val:
cname += get_offload_name(val)
continue
if key == "offload_optimizer":
cname += "oo_"
if not omit_val:
cname += get_offload_name(val)
continue
# recursively call the func to get name for the child dicts
if isinstance(val, dict):
n = get_name_by_keys(val, tuning_keys, omit_val=omit_val)
if n != "":
cname += n + "_"
if tuning_keys and key not in tuning_keys:
continue
key_str = "".join(map(lambda c: c[0], key.split('_')))
if not omit_val:
if (isinstance(val, int) or isinstance(val, float)) and val > 9000:
cname += key_str + '{:.1e}'.format(val) + "_"
else:
if isinstance(val, bool):
val = "T" if val else "F"
cname += f"{key_str}{val}_"
else:
cname += key_str + "_"
return cname[:-1]
name = get_name_by_keys(config, tuning_keys, omit_val=omit_val)
return prefix + (name if name != "" else "exp")
def get_first_config(config: dict):
if not config:
return None
cfg = copy.deepcopy(config)
for key, val in cfg.items():
if isinstance(val, dict):
if key == "optimizer": # use user defined optimizer which might have lists of values as params
cfg[key] = val
else:
cfg[key] = get_first_config(val)
if isinstance(val, list) and len(val) > 0:
cfg[key] = val[0]
return cfg
def write_experiments(exps: list, exps_dir: str):
exp_paths = []
for exp in exps:
exp_name = exp['name']
# write the expr config to a json file
exp_path = os.path.join(exps_dir, f'{exp_name}.json')
with open(exp_path, 'w') as fd:
json.dump(exp, fd)
exp_paths.append(exp_path)
return exp_paths
def memory_to_string(n, postfix="", units=None, precision=2):
if units is None:
if n // 10**12 > 0:
return str(round(n / 1024**4, precision)) + " T" + postfix
if n // 10**9 > 0:
return str(round(n / 1024**3, precision)) + " G" + postfix
elif n // 10**6 > 0:
return str(round(n / 1024**2, precision)) + " M" + postfix
elif n // 10**3 > 0:
return str(round(n / 1014, precision)) + " K" + postfix
else:
return str(n) + " "
else:
if units == "T":
return str(round(n / 1024**4, precision)) + " " + units
if units == "G" + postfix:
return str(round(n / 1024**3, precision)) + " " + units
elif units == "M" + postfix:
return str(round(n / 1024**2, precision)) + " " + units
elif units == "K" + postfix:
return str(round(n / 1024, precision)) + " " + units
else:
return str(n) + " "
def number_to_string(n, postfix="", units=None, precision=2):
if units is None:
if n // 10**9 > 0:
return str(round(n / 1000**3, precision)) + " B" + postfix
if n // 10**6 > 0:
return str(round(n / 1000**2, precision)) + " M" + postfix
elif n // 10**3 > 0:
return str(round(n / 1000**1, precision)) + " K" + postfix
else:
return str(n) + " "
else:
if units == "B" + postfix:
return str(round(n / 1000**3, precision)) + " " + units
elif units == "M" + postfix:
return str(round(n / 1000**2, precision)) + " " + units
elif units == "K" + postfix:
return str(round(n / 1000**1, precision)) + " " + units
else:
return str(n) + " "
|