File size: 6,768 Bytes
179036e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import os
import re
import torch
import types
from typing import List, Tuple, Union
from dataclasses import dataclass
from .constants import (FP32_WEIGHT_KEY, PARAM, VOCAB_TENSOR, CAT_DIM, PARAM_N_SUB_PARAMS, SUB_PARAM_SHAPE)


@dataclass
class SubparamShape:
    patterns: List[str]
    shape: Tuple[Union[Tuple[int], int]]
    partition_dim: int


def load_hp_checkpoint_state(self, folder, tp_rank, tp_world_size):
    hp_mapping = self._hp_mapping
    hp_mapping.optim_fragment = {}

    hp_keys = []
    for file in os.listdir(folder):
        # We expect files named something like "exp_avg.pt", "exp_avg_sq.pt", "fp32.pt"
        pattern = r'(.+).pt'
        match = re.search(pattern, file)
        if match:
            hp_keys.append(match.group(1))

    step = None
    for key in hp_keys:
        ckpt_file = os.path.join(folder, f"{key}.pt")
        ckpt_dict = torch.load(ckpt_file)

        if key == "step":
            step = ckpt_dict
            continue

        full_hp_param = ckpt_dict[PARAM]

        # need to deal with slices that were averaged.
        # the opposite of averaging here becomes an exact copy of the first slice
        # I thought of 2 ways:
        # implementation a. find a way for a client to pass a dict with patterns
        # if any(re.search(pattern, folder) for pattern in WEIGHTS_TO_AVERAGE_PATTERNS):
        #     tp_rank = 0
        #     tp_world_size = 1
        # the other approach is to assume that the saved data is correct and if full_hp_param.shape ==
        # self.shape that means we automatically copy?
        # implementation b.
        # this version requires no additional data passed from the client
        # if the shapes already match it must be slices that were averaged - so we just hack around those
        if full_hp_param.shape == self.shape:
            tp_rank = 0
            tp_world_size = 1

        # special case for word_embeddings weights which get padded differently depending on TP degree.
        # the converter to universal currently strips the original padding completely so the saved
        # weight is padding-free and we just need to add new padding depending on the target TP
        # degree
        is_vocab_tensor = ckpt_dict.get(VOCAB_TENSOR, False)
        if is_vocab_tensor:
            # In the absence of data passed from the user wrt new padded vocab specific to tp degree
            # we can again derive that data by reverse engineering the target shapes like so:
            padded_target_vocab_size = self.shape[0] * tp_world_size
            assert padded_target_vocab_size >= full_hp_param.shape[0], \
                f'Vocab tensor padded size {padded_target_vocab_size} < loaded universal size {full_hp_param.shape[0]}'
            if padded_target_vocab_size > full_hp_param.shape[0]:
                padding_size = padded_target_vocab_size - full_hp_param.shape[0]
                full_hp_param = torch.nn.functional.pad(full_hp_param, (0, 0, 0, padding_size), "constant", 0)

        full_param_numel = full_hp_param.numel()
        tp_slice_numel = self.numel()
        #        if key == FP32_WEIGHT_KEY and 'word_embeddings.weight' in folder:
        #            print_rank_0(f'{full_hp_param[:10]=}', force=True)


        assert full_param_numel == tp_world_size * tp_slice_numel, \
            f'Loading {ckpt_file} full param numel {full_param_numel} != tensor slice numel {tp_slice_numel} * tp_world_size {tp_world_size}'

        #        print(f"{full_hp_param.shape=} {full_param_numel=} {folder=}")
        #        print(f"{dst_tensor.shape=} {dst_tensor.numel()=}{folder=}")

        sub_param_shape = ckpt_dict.get(SUB_PARAM_SHAPE, None)
        # since when we do many to 1 on tp we cat sometimes on dim=0 and other times on dim=1 we have to do exactly the same in reverse
        # special case is when a single parameter is effectively a container for multiple sub parameters
        # (more details at PARAM_N_SUB_PARAMS definition)
        chunk_dim = ckpt_dict.get(CAT_DIM, 0)
        n_sub_params = ckpt_dict.get(PARAM_N_SUB_PARAMS, 1)
        if sub_param_shape:
            partition_dim = sub_param_shape.partition_dim
            sub_dim_sizes = sub_param_shape.shape[partition_dim]
            if not isinstance(sub_dim_sizes, tuple):
                sub_dim_sizes = (sub_dim_sizes, )

            partition_shape = [sum(d) if isinstance(d, tuple) else d for d in sub_param_shape.shape]
            full_hp_param = full_hp_param.view(partition_shape)

            offset = 0
            merged_chunks = []
            for sub_dim_size in sub_dim_sizes:
                sub_params_tp_slice = full_hp_param.narrow(partition_dim,
                                                           offset, sub_dim_size).chunk(tp_world_size,
                                                                                       dim=partition_dim)[tp_rank]
                merged_chunks.append(sub_params_tp_slice)
                offset += sub_dim_size
            tp_hp_slice = torch.cat(merged_chunks, dim=partition_dim)

        elif n_sub_params > 1:
            sub_params = full_hp_param.chunk(n_sub_params, dim=chunk_dim)
            sub_params_tp_slice = [p.chunk(tp_world_size, dim=chunk_dim)[tp_rank] for p in sub_params]
            tp_hp_slice = torch.cat(sub_params_tp_slice, dim=chunk_dim)
        else:
            # this performs the opposite of cat when merging TP slices
            tp_hp_slice = full_hp_param.chunk(tp_world_size, chunk_dim)[tp_rank]

        tp_hp_slice = tp_hp_slice.flatten()

        lp_frag_address = hp_mapping.lp_fragment_address
        tp_hp_fragment = tp_hp_slice.narrow(0, lp_frag_address.start, lp_frag_address.numel)

        #        print(f"{key} SHAPE: {tp_hp_slice.shape=}")
        #        print(f"{key} SHAPE: {dst_tensor.shape=}")
        #        print(f"{key} SHAPE: {tp_hp_fragment.shape=}")

        if key == FP32_WEIGHT_KEY:
            dst_tensor = hp_mapping.get_hp_fragment()
            assert dst_tensor.numel() == lp_frag_address.numel, \
                f'Load checkpoint {key} dst numel {dst_tensor.numel()} != src numel {lp_frag_address.numel}'
            dst_tensor.data.copy_(tp_hp_fragment.data)
        else:
            assert tp_hp_fragment.numel() == lp_frag_address.numel, \
                f'Load checkpoint {key} dst numel {tp_hp_fragment.numel()} != src numel {lp_frag_address.numel}'

            hp_mapping.optim_fragment[key] = tp_hp_fragment.clone().detach()

    return step


def enable_universal_checkpoint(param_list):
    for param in param_list:
        param.load_hp_checkpoint_state = types.MethodType(load_hp_checkpoint_state, param)