File size: 14,637 Bytes
179036e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import torch
from .basic_layer import Embedding_Compress, LinearLayer_Compress, Conv2dLayer_Compress, BNLayer_Compress, ColumnParallelLinear_Compress, RowParallelLinear_Compress
from .constants import *
from deepspeed.utils import logger

try:
    from neural_compressor.compression import pruner as nc_pruner
except ImportError as e:
    nc_pruner = None


def recursive_getattr(model, module_name):
    """
    Recursively get the attribute of a module.
    Args:
        model (`torch.nn.Module`)
            The model to get the attribute from.
        module_name (`str`)
            The name of the module to get the attribute from.
    """
    split_list = module_name.split('.')
    output = model
    for name in split_list:
        output = getattr(output, name)
    return output


def recursive_setattr(model, module_name, module):
    """
    Recursively set the attribute of a module.
    Args:
        model (`torch.nn.Module`)
            The model to set the attribute in.
        module_name (`str`)
            The name of the module to set the attribute in.
        module (`torch.nn.Module`)
            The module to set the attribute to.
    """
    split_list = module_name.split('.')
    output = model
    for name in split_list[:-1]:
        output = getattr(output, name)
    output.__setattr__(split_list[-1], module)


def module_replacement(model, module_name, compression_technique=None, mpu=None):
    """
    Replace a module with a new module.
    Args:
        model (`torch.nn.Module`)
            The model to replace the module in.
        module_name (`str`)
            The name of the module to replace.
        compression_technique (`str`)
            The compression technique to use for the new module.
    """

    # Get the old module
    old_module = recursive_getattr(model, module_name)

    need_bias = False
    if hasattr(old_module, 'bias') and old_module.bias is not None:
        need_bias = True

    # Initialize the new module
    if isinstance(old_module, LinearLayer_Compress) or isinstance(old_module, torch.nn.Linear):
        if isinstance(old_module, LinearLayer_Compress):
            new_module = old_module
        else:
            new_module = LinearLayer_Compress(old_module.in_features, old_module.out_features,
                                              bias=need_bias).to(device=old_module.weight.device,
                                                                 dtype=old_module.weight.dtype)
            new_module.weight.data = old_module.weight.data
            if need_bias:
                new_module.bias.data = old_module.bias.data
    elif isinstance(old_module, Conv2dLayer_Compress) or isinstance(old_module, torch.nn.Conv2d):
        if isinstance(old_module, Conv2dLayer_Compress):
            new_module = old_module
        else:
            new_module = Conv2dLayer_Compress(old_module.in_channels, old_module.out_channels, old_module.kernel_size, old_module.stride, old_module.padding, \
                                            old_module.dilation, old_module.groups, need_bias, \
                                            old_module.padding_mode).to(device=old_module.weight.device, dtype=old_module.weight.dtype)
            new_module.weight.data = old_module.weight.data
            if need_bias:
                new_module.bias.data = old_module.bias.data
    elif isinstance(old_module, torch.nn.BatchNorm2d):
        new_module = BNLayer_Compress(old_module.num_features, old_module.eps, old_module.momentum, old_module.affine,
                                      old_module.track_running_stats).to(old_module.weight.device,
                                                                         old_module.weight.dtype)
        new_module.weight.data = old_module.weight.data
        if need_bias:
            new_module.bias.data = old_module.bias.data
        new_module.running_mean.data = old_module.running_mean.data
        new_module.running_var.data = old_module.running_var.data
    elif isinstance(old_module, Embedding_Compress) or isinstance(old_module, torch.nn.Embedding):
        if isinstance(old_module, Embedding_Compress):
            new_module = old_module
        else:
            new_module = Embedding_Compress(old_module.num_embeddings, old_module.embedding_dim, old_module.padding_idx, old_module.max_norm, old_module.norm_type, \
                                        old_module.scale_grad_by_freq, old_module.sparse).to(device=old_module.weight.device, dtype=old_module.weight.dtype)
            new_module.weight.data = old_module.weight.data
    elif mpu is not None and (isinstance(old_module, ColumnParallelLinear_Compress)
                              or isinstance(old_module, mpu.ColumnParallelLinear)):
        if isinstance(old_module, ColumnParallelLinear_Compress):
            new_module = old_module
        else:
            new_module = ColumnParallelLinear_Compress(mpu,
                                                       old_module.input_size,
                                                       old_module.output_size,
                                                       gather_output=old_module.gather_output,
                                                       skip_bias_add=old_module.skip_bias_add,
                                                       bias=need_bias).to(device=old_module.weight.device,
                                                                          dtype=old_module.weight.dtype)
            new_module.weight.data = old_module.weight.data
            if need_bias:
                new_module.bias.data = old_module.bias.data
    elif mpu is not None and (isinstance(old_module, RowParallelLinear_Compress)
                              or isinstance(old_module, mpu.RowParallelLinear)):
        if isinstance(old_module, RowParallelLinear_Compress):
            new_module = old_module
        else:
            new_module = RowParallelLinear_Compress(mpu,
                                                    old_module.input_size,
                                                    old_module.output_size,
                                                    input_is_parallel=old_module.input_is_parallel,
                                                    skip_bias_add=old_module.skip_bias_add,
                                                    bias=need_bias).to(device=old_module.weight.device,
                                                                       dtype=old_module.weight.dtype)
            new_module.weight.data = old_module.weight.data
            if need_bias:
                new_module.bias.data = old_module.bias.data
    else:
        new_module = None

    if compression_technique is not None:
        for k, v in compression_technique.items():
            if k == SPARSE_PRUNING:
                if v[SPARSE_PRUNING_ENABLED]:
                    new_module.enable_sparse_pruning(v[SPARSE_PRUNING_DENSE_RATIO], v[SPARSE_PRUNING_METHOD])
            elif k == ROW_PRUNING:
                if v[ROW_PRUNING_ENABLED]:
                    new_module.enable_row_pruning(v[ROW_PRUNING_DENSE_RATIO], v[ROW_PRUNING_METHOD])
            elif k == HEAD_PRUNING:
                if v[HEAD_PRUNING_ENABLED]:
                    new_module.enable_head_pruning(v[HEAD_PRUNING_DENSE_RATIO], v[HEAD_PRUNING_METHOD],
                                                   v[HEAD_PRUNING_NUM_HEADS])
            elif k == ACTIVATION_QUANTIZATION:
                if v[ACTIVATION_QUANTIZATION_ENABLED]:
                    new_module.enable_activation_quantization(v[ACTIVATION_QUANTIZE_BITS], v[ACTIVATION_QUANTIZE_TYPE],
                                                              v[ACTIVATION_QUANTIZE_RANGE])
            elif k == WEIGHT_QUANTIZATION:
                if v[WEIGHT_QUANTIZE_ENABLED]:
                    new_module.enable_weight_quantization(v[WEIGHT_QUANTIZE_START_BITS],
                                                          v[WEIGHT_QUANTIZE_TARGET_BITS],
                                                          v[WEIGHT_QUANTIZATION_PERIOD],
                                                          v[WEIGHT_QUANTIZE_IN_FORWARD_ENABLED],
                                                          v[WEIGHT_QUANTIZE_TYPE], v[WEIGHT_QUANTIZE_GROUPS])
            elif k == CHANNEL_PRUNING:
                if v[CHANNEL_PRUNING_ENABLED]:
                    new_module.enable_channel_pruning(v[CHANNEL_PRUNING_DENSE_RATIO], v[CHANNEL_PRUNING_METHOD])
            else:
                raise NotImplementedError('Compression technique {} is not implemented'.format(k))

    # Replace the old module with the new one
    recursive_setattr(model, module_name, new_module)


def is_module_compressible(module, mpu=None):
    ret = isinstance(module, torch.nn.Linear) or \
          isinstance(module, torch.nn.Conv2d) or \
          isinstance(module, torch.nn.Embedding) or \
          isinstance(module, torch.nn.BatchNorm2d)

    if mpu is not None:
        ret = ret or isinstance(module, mpu.RowParallelLinear) or isinstance(module, mpu.ColumnParallelLinear)

    return ret


def compression_preparation(model, compression_technique_list, mpu):
    """
    Prepare the compression techniques of a model.
    Args:
        model (`torch.nn.Module`)
            The model to prepare the compression techniques of.
        compression_technique_list (`list`)
            The list of compression techniques to prepare the model to.
            list[]
    """
    # Here we first replace all module with our linear wrapper
    for module_name, module in model.named_modules():
        if is_module_compressible(module, mpu):
            module_replacement(model, module_name, mpu=mpu)
    for module_name_lists, _, compression_technique in compression_technique_list:
        for mnl in module_name_lists:
            for module_name in mnl:
                module_replacement(model, module_name, compression_technique)

    return model


def fix_compression(model, module_name, compression_technique, mask=None, dim_reduction=False):
    """
    Fix the compression technique of a module.
    Args:
        model (`torch.nn.Module`)
            The model to fix the compression technique of.
        module_name (`str`)
            The name of the module to fix the compression technique of.
        compression_technique (`str`)
            The compression technique to fix the module to.
    """
    # Here we can make things much simpler by just replacing the module
    module = recursive_getattr(model, module_name)
    for k, v in compression_technique.items():
        if k == WEIGHT_QUANTIZATION and v[WEIGHT_QUANTIZE_IN_FORWARD_ENABLED] and v[WEIGHT_QUANTIZE_ENABLED]:
            return module.fix_weight_quantization()
        elif k == SPARSE_PRUNING and v[SPARSE_PRUNING_ENABLED]:
            return module.fix_sparse_pruning_helper()
        elif k == ROW_PRUNING and (v[ROW_PRUNING_ENABLED] or mask is not None):
            return module.fix_row_col_pruning_helper(mask, dim_reduction=dim_reduction)
        elif k == HEAD_PRUNING and (v[HEAD_PRUNING_ENABLED] or mask is not None):
            return module.fix_head_pruning_helper(mask, v[HEAD_PRUNING_NUM_HEADS], dim_reduction=dim_reduction)
        elif k == CHANNEL_PRUNING and (v[CHANNEL_PRUNING_ENABLED] or mask is not None):
            return module.fix_channel_pruning_helper(mask, dim_reduction=dim_reduction)


def convert_conv1d_to_linear(model, convert_type):
    '''
    This is a help function to convert conv1d to linear (e.g., convert GPT2 from HF)
    '''
    if hasattr(model, 'module'):
        c_model = model.module
    else:
        c_model = model

    for name, module in c_model.named_modules():
        if isinstance(module, convert_type):
            old_module = recursive_getattr(c_model, name)
            new_module = torch.nn.Linear(old_module.weight.data.size(0),
                                         old_module.weight.data.size(1),
                                         bias=True if old_module.bias is not None else False)
            new_module.weight.data = old_module.weight.data.t().contiguous()
            if new_module.bias is not None:
                new_module.bias.data = old_module.bias.data.view(-1)

            recursive_setattr(c_model, name, new_module)

    return model


def generate_pruners(config, model):
    """Generate pruners.
    Args:
        config (`neural_compressor.WeightPruningConfig`)
            The object to the class WeightPruningConfig.
        model (`torch.nn.module`)
            The torch module object to be pruned.
    """
    assert nc_pruner is not None, "please ensure the neural_compressor python package is installed by pip or conda if user wants to use snip_momentum sparse pruning"
    from nc_pruner.utils import process_config, parse_to_prune
    from nc_pruner.pruners import get_pruner
    assert isinstance(model, torch.nn.Module)
    pruners_info = process_config(config)
    pruners = []
    for info in pruners_info:
        modules = parse_to_prune(info, model)
        if modules == {}:
            logger.warning("one pruner hooks no layers, please have a check")

        pruners.append(get_pruner(info, modules))
        info['modules'] = [key for key in modules.keys()]
        info['len_of_modules'] = len(info['modules'])
        logger.info(info)
    return pruners


def register_on_step_begin(model):
    """Mount on_step_begin to the model.
    Args:
        model (`torch.nn.module`)
            The torch module object to be pruned.
    """

    def hook(module, input):
        for pruner in module.pruners:
            pruner.on_step_begin(0)

    hook_handle = model.register_forward_pre_hook(hook)
    return hook_handle


def rewrite_optimizer_step(opt: torch.optim.Optimizer):
    """Mount on_before/after_optimizer_step to the optimizer.
    Args:
        model (`torch.opt.Optimizer`)
            The torch optimizer object to be hooked.
    """

    def new_step(self, closure=None):
        if hasattr(self, "pruners"):
            for pruner in self.pruners:
                pruner.on_before_optimizer_step()

        if closure is not None:
            res = self.orig_step(closure)
        else:
            res = self.orig_step()
        if hasattr(self, "pruners"):
            for pruner in self.pruners:
                pruner.on_after_optimizer_step()
        return res

    opt.orig_step = opt.step
    import types
    opt.step = types.MethodType(new_step, opt)
    return opt