File size: 7,475 Bytes
0cee4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import os
import torch
import deepspeed
import subprocess
import argparse
from .ops.op_builder.all_ops import ALL_OPS
from .git_version_info import installed_ops, torch_info, accelerator_name
from deepspeed.accelerator import get_accelerator

GREEN = '\033[92m'
RED = '\033[91m'
YELLOW = '\033[93m'
END = '\033[0m'
SUCCESS = f"{GREEN} [SUCCESS] {END}"
OKAY = f"{GREEN}[OKAY]{END}"
WARNING = f"{YELLOW}[WARNING]{END}"
FAIL = f'{RED}[FAIL]{END}'
INFO = '[INFO]'

color_len = len(GREEN) + len(END)
okay = f"{GREEN}[OKAY]{END}"
warning = f"{YELLOW}[WARNING]{END}"


def op_report(verbose=True):
    max_dots = 23
    max_dots2 = 11
    h = ["op name", "installed", "compatible"]
    print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1])))
    print("DeepSpeed C++/CUDA extension op report")
    print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1])))

    print("NOTE: Ops not installed will be just-in-time (JIT) compiled at\n"
          "      runtime if needed. Op compatibility means that your system\n"
          "      meet the required dependencies to JIT install the op.")

    print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1])))
    print("JIT compiled ops requires ninja")
    ninja_status = OKAY if ninja_installed() else FAIL
    print('ninja', "." * (max_dots - 5), ninja_status)
    print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1])))
    print(h[0], "." * (max_dots - len(h[0])), h[1], "." * (max_dots2 - len(h[1])), h[2])
    print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1])))
    installed = f"{GREEN}[YES]{END}"
    no = f"{YELLOW}[NO]{END}"
    for op_name, builder in ALL_OPS.items():
        dots = "." * (max_dots - len(op_name))
        is_compatible = OKAY if builder.is_compatible(verbose) else no
        is_installed = installed if installed_ops.get(op_name,
                                                      False) and accelerator_name == get_accelerator()._name else no
        dots2 = '.' * ((len(h[1]) + (max_dots2 - len(h[1]))) - (len(is_installed) - color_len))
        print(op_name, dots, is_installed, dots2, is_compatible)
    print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1])))


def ninja_installed():
    try:
        import ninja  # noqa: F401 # type: ignore
    except ImportError:
        return False
    return True


def nvcc_version():
    import torch.utils.cpp_extension
    cuda_home = torch.utils.cpp_extension.CUDA_HOME
    if cuda_home is None:
        return f"{RED} [FAIL] cannot find CUDA_HOME via torch.utils.cpp_extension.CUDA_HOME={torch.utils.cpp_extension.CUDA_HOME} {END}"
    try:
        output = subprocess.check_output([cuda_home + "/bin/nvcc", "-V"], universal_newlines=True)
    except FileNotFoundError:
        return f"{RED} [FAIL] nvcc missing {END}"
    output_split = output.split()
    release_idx = output_split.index("release")
    release = output_split[release_idx + 1].replace(',', '').split(".")
    return ".".join(release)


def installed_cann_path():
    if "ASCEND_HOME_PATH" in os.environ or os.path.exists(os.environ["ASCEND_HOME_PATH"]):
        return os.environ["ASCEND_HOME_PATH"]
    return None


def installed_cann_version():
    import re
    ascend_path = installed_cann_path()
    if ascend_path is None:
        return f"CANN_HOME does not exist, unable to compile NPU op(s)"
    cann_version = ""
    for dirpath, _, filenames in os.walk(os.path.realpath(ascend_path)):
        if cann_version:
            break
        install_files = [file for file in filenames if re.match(r"ascend_.*_install\.info", file)]
        if install_files:
            filepath = os.path.join(dirpath, install_files[0])
            with open(filepath, "r") as f:
                for line in f:
                    if line.find("version") != -1:
                        cann_version = line.strip().split("=")[-1]
                        break
    return cann_version


def get_shm_size():
    try:
        shm_stats = os.statvfs('/dev/shm')
    except (OSError, FileNotFoundError, ValueError):
        return "UNKNOWN", None

    shm_size = shm_stats.f_frsize * shm_stats.f_blocks
    shm_hbytes = human_readable_size(shm_size)
    warn = []
    if shm_size < 512 * 1024**2:
        warn.append(
            f" {YELLOW} [WARNING] /dev/shm size might be too small, if running in docker increase to at least --shm-size='1gb' {END}"
        )
        if get_accelerator().communication_backend_name() == "nccl":
            warn.append(
                f" {YELLOW} [WARNING] see more details about NCCL requirements: https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/troubleshooting.html#sharing-data {END}"
            )
    return shm_hbytes, warn


def human_readable_size(size):
    units = ['B', 'KB', 'MB', 'GB', 'TB']
    i = 0
    while size >= 1024 and i < len(units) - 1:
        size /= 1024
        i += 1
    return f'{size:.2f} {units[i]}'


def debug_report():
    max_dots = 33

    report = [("torch install path", torch.__path__), ("torch version", torch.__version__),
              ("deepspeed install path", deepspeed.__path__),
              ("deepspeed info", f"{deepspeed.__version__}, {deepspeed.__git_hash__}, {deepspeed.__git_branch__}")]
    if get_accelerator().device_name() == 'cuda':
        hip_version = getattr(torch.version, "hip", None)
        report.extend([("torch cuda version", torch.version.cuda), ("torch hip version", hip_version),
                       ("nvcc version", (None if hip_version else nvcc_version())),
                       ("deepspeed wheel compiled w.", f"torch {torch_info['version']}, " +
                        (f"hip {torch_info['hip_version']}" if hip_version else f"cuda {torch_info['cuda_version']}"))
                       ])
    elif get_accelerator().device_name() == 'npu':
        import torch_npu
        report.extend([("deepspeed wheel compiled w.", f"torch {torch_info['version']}"),
                       ("torch_npu install path", torch_npu.__path__), ("torch_npu version", torch_npu.__version__),
                       ("ascend_cann version", installed_cann_version())])
    else:
        report.extend([("deepspeed wheel compiled w.", f"torch {torch_info['version']} ")])

    report.append(("shared memory (/dev/shm) size", get_shm_size()))

    print("DeepSpeed general environment info:")
    for name, value in report:
        warns = []
        if isinstance(value, tuple):
            value, warns = value
        print(name, "." * (max_dots - len(name)), value)
        if warns:
            for warn in warns:
                print(warn)


def parse_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument('--hide_operator_status',
                        action='store_true',
                        help='Suppress display of installation and compatibility statuses of DeepSpeed operators. ')
    parser.add_argument('--hide_errors_and_warnings', action='store_true', help='Suppress warning and error messages.')
    args = parser.parse_args()
    return args


def main(hide_operator_status=False, hide_errors_and_warnings=False):
    if not hide_operator_status:
        op_report(verbose=not hide_errors_and_warnings)
    debug_report()


def cli_main():
    args = parse_arguments()
    main(hide_operator_status=args.hide_operator_status, hide_errors_and_warnings=args.hide_errors_and_warnings)


if __name__ == "__main__":
    main()