File size: 6,905 Bytes
7a67bfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from typing import Optional, Tuple
import torch
from torch import nn
from torch.nn import functional as F
from deepspeed.utils import groups, log_dist
from .experts import Experts
from .sharded_moe import MOELayer, TopKGate
class MoE(nn.Module):
"""Initialize an MoE layer.
Arguments:
hidden_size (int): the hidden dimension of the model, importantly this is also the input and output dimension.
expert (nn.Module): the torch module that defines the expert (e.g., MLP, torch.linear).
num_experts (int, optional): default=1, the total number of experts per layer.
ep_size (int, optional): default=1, number of ranks in the expert parallel world or group.
k (int, optional): default=1, top-k gating value, only supports k=1 or k=2.
capacity_factor (float, optional): default=1.0, the capacity of the expert at training time.
eval_capacity_factor (float, optional): default=1.0, the capacity of the expert at eval time.
min_capacity (int, optional): default=4, the minimum capacity per expert regardless of the capacity_factor.
use_residual (bool, optional): default=False, make this MoE layer a Residual MoE (https://arxiv.org/abs/2201.05596) layer.
noisy_gate_policy (str, optional): default=None, noisy gate policy, valid options are 'Jitter', 'RSample' or 'None'.
drop_tokens (bool, optional): default=True, whether to drop tokens - (setting to False is equivalent to infinite capacity).
use_rts (bool, optional): default=True, whether to use Random Token Selection.
use_tutel (bool, optional): default=False, whether to use Tutel optimizations (if installed).
enable_expert_tensor_parallelism (bool, optional): default=False, whether to use tensor parallelism for experts
top2_2nd_expert_sampling (bool, optional): default=True, whether to perform sampling for 2nd expert
"""
def __init__(self,
hidden_size: int,
expert: nn.Module,
num_experts: int = 1,
ep_size: int = 1,
k: int = 1,
capacity_factor: float = 1.0,
eval_capacity_factor: float = 1.0,
min_capacity: int = 4,
use_residual: bool = False,
noisy_gate_policy: Optional[str] = None,
drop_tokens: bool = True,
use_rts: bool = True,
use_tutel: bool = False,
enable_expert_tensor_parallelism: bool = False,
top2_2nd_expert_sampling: bool = True) -> None:
super(MoE, self).__init__()
self.use_residual = use_residual
self.enable_expert_tensor_parallelism = enable_expert_tensor_parallelism
assert num_experts % ep_size == 0, f"Number of experts ({num_experts}) should be divisible by expert parallel size ({ep_size})"
self.ep_size = ep_size
self.expert_group_name = f"ep_size_{self.ep_size}"
self.num_experts = num_experts
self.num_local_experts = num_experts // self.ep_size
log_dist(
f'Creating MoE layer with num_experts: {num_experts} | num_local_experts: {self.num_local_experts} | expert_parallel_size: {self.ep_size}',
[0])
assert noisy_gate_policy is None or noisy_gate_policy in ['None', 'Jitter', 'RSample'], \
'Unsupported noisy_gate_policy: ' + noisy_gate_policy
experts = Experts(expert, self.num_local_experts, self.expert_group_name)
self.deepspeed_moe = MOELayer(TopKGate(hidden_size, num_experts, k, capacity_factor, eval_capacity_factor,
min_capacity, noisy_gate_policy, drop_tokens, use_rts, None,
top2_2nd_expert_sampling),
experts,
self.expert_group_name,
self.ep_size,
self.num_local_experts,
use_tutel=use_tutel)
if self.use_residual:
self.mlp = expert
# coefficient is used for weighted sum of the output of expert and mlp
self.coefficient = nn.Linear(hidden_size, 2)
def set_deepspeed_parallelism(self, use_data_before_expert_parallel_: bool = False) -> None:
self._create_process_groups(use_data_before_expert_parallel_=use_data_before_expert_parallel_)
def _create_process_groups(self, use_data_before_expert_parallel_: bool = False) -> None:
# Create process group for a layer if needed
if self.expert_group_name not in groups._get_expert_parallel_group_dict():
print(f"No existing process group found, creating a new group named: {self.expert_group_name}")
if (groups.mpu is None) or (not self.enable_expert_tensor_parallelism):
# Condition 1 - no groups.mpu means no tensor parallelism
# Condition 2 - disabling expert tensor parallelism on purpose
groups._create_expert_and_data_parallel(
self.ep_size, use_data_before_expert_parallel_=use_data_before_expert_parallel_)
else:
# expert tensor parallelism is enabled
groups._create_expert_data_and_model_parallel(
self.ep_size, mpu=groups.mpu, use_data_before_expert_parallel_=use_data_before_expert_parallel_)
# Set the group handle for the MOELayer (deepspeed_moe) object
self.deepspeed_moe._set_ep_group(groups._get_expert_parallel_group(self.expert_group_name))
def forward(self,
hidden_states: torch.Tensor,
used_token: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
""" MoE forward
Arguments:
hidden_states (Tensor): input to the layer
used_token (Tensor, optional): default: None, mask only used tokens
Returns:
A tuple including output, gate loss, and expert count.
* output (Tensor): output of the model
* l_aux (Tensor): gate loss value
* exp_counts (Tensor): expert count
"""
output = self.deepspeed_moe(hidden_states, used_token)
if self.use_residual:
# Residual MoE
output_mlp = self.mlp(hidden_states)
if isinstance(output_mlp, tuple):
output_mlp = output_mlp[0] # Ignore the bias term for now
coef = self.coefficient(hidden_states)
coef = F.softmax(coef, dim=-1)
output = output * coef[..., 0:1] + output_mlp * coef[..., 1:]
return output, self.deepspeed_moe.l_aux, self.deepspeed_moe.exp_counts
|