File size: 6,905 Bytes
7a67bfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

from typing import Optional, Tuple

import torch
from torch import nn
from torch.nn import functional as F

from deepspeed.utils import groups, log_dist
from .experts import Experts
from .sharded_moe import MOELayer, TopKGate


class MoE(nn.Module):
    """Initialize an MoE layer.

    Arguments:
        hidden_size (int): the hidden dimension of the model, importantly this is also the input and output dimension.
        expert (nn.Module): the torch module that defines the expert (e.g., MLP, torch.linear).
        num_experts (int, optional): default=1, the total number of experts per layer.
        ep_size (int, optional): default=1, number of ranks in the expert parallel world or group.
        k (int, optional): default=1, top-k gating value, only supports k=1 or k=2.
        capacity_factor (float, optional): default=1.0, the capacity of the expert at training time.
        eval_capacity_factor (float, optional): default=1.0, the capacity of the expert at eval time.
        min_capacity (int, optional): default=4, the minimum capacity per expert regardless of the capacity_factor.
        use_residual (bool, optional): default=False, make this MoE layer a Residual MoE (https://arxiv.org/abs/2201.05596) layer.
        noisy_gate_policy (str, optional): default=None, noisy gate policy, valid options are 'Jitter', 'RSample' or 'None'.
        drop_tokens (bool, optional): default=True, whether to drop tokens - (setting to False is equivalent to infinite capacity).
        use_rts (bool, optional): default=True, whether to use Random Token Selection.
        use_tutel (bool, optional): default=False, whether to use Tutel optimizations (if installed).
        enable_expert_tensor_parallelism (bool, optional): default=False, whether to use tensor parallelism for experts
        top2_2nd_expert_sampling (bool, optional): default=True, whether to perform sampling for 2nd expert
    """

    def __init__(self,
                 hidden_size: int,
                 expert: nn.Module,
                 num_experts: int = 1,
                 ep_size: int = 1,
                 k: int = 1,
                 capacity_factor: float = 1.0,
                 eval_capacity_factor: float = 1.0,
                 min_capacity: int = 4,
                 use_residual: bool = False,
                 noisy_gate_policy: Optional[str] = None,
                 drop_tokens: bool = True,
                 use_rts: bool = True,
                 use_tutel: bool = False,
                 enable_expert_tensor_parallelism: bool = False,
                 top2_2nd_expert_sampling: bool = True) -> None:

        super(MoE, self).__init__()

        self.use_residual = use_residual
        self.enable_expert_tensor_parallelism = enable_expert_tensor_parallelism
        assert num_experts % ep_size == 0, f"Number of experts ({num_experts}) should be divisible by expert parallel size ({ep_size})"
        self.ep_size = ep_size
        self.expert_group_name = f"ep_size_{self.ep_size}"
        self.num_experts = num_experts
        self.num_local_experts = num_experts // self.ep_size

        log_dist(
            f'Creating MoE layer with num_experts: {num_experts} | num_local_experts: {self.num_local_experts} | expert_parallel_size: {self.ep_size}',
            [0])

        assert noisy_gate_policy is None or noisy_gate_policy in ['None', 'Jitter', 'RSample'], \
            'Unsupported noisy_gate_policy: ' + noisy_gate_policy

        experts = Experts(expert, self.num_local_experts, self.expert_group_name)
        self.deepspeed_moe = MOELayer(TopKGate(hidden_size, num_experts, k, capacity_factor, eval_capacity_factor,
                                               min_capacity, noisy_gate_policy, drop_tokens, use_rts, None,
                                               top2_2nd_expert_sampling),
                                      experts,
                                      self.expert_group_name,
                                      self.ep_size,
                                      self.num_local_experts,
                                      use_tutel=use_tutel)
        if self.use_residual:
            self.mlp = expert
            # coefficient is used for weighted sum of the output of expert and mlp
            self.coefficient = nn.Linear(hidden_size, 2)

    def set_deepspeed_parallelism(self, use_data_before_expert_parallel_: bool = False) -> None:
        self._create_process_groups(use_data_before_expert_parallel_=use_data_before_expert_parallel_)

    def _create_process_groups(self, use_data_before_expert_parallel_: bool = False) -> None:
        # Create process group for a layer if needed
        if self.expert_group_name not in groups._get_expert_parallel_group_dict():
            print(f"No existing process group found, creating a new group named: {self.expert_group_name}")
            if (groups.mpu is None) or (not self.enable_expert_tensor_parallelism):
                # Condition 1 - no groups.mpu means no tensor parallelism
                # Condition 2 - disabling expert tensor parallelism on purpose
                groups._create_expert_and_data_parallel(
                    self.ep_size, use_data_before_expert_parallel_=use_data_before_expert_parallel_)
            else:
                # expert tensor parallelism is enabled
                groups._create_expert_data_and_model_parallel(
                    self.ep_size, mpu=groups.mpu, use_data_before_expert_parallel_=use_data_before_expert_parallel_)
        # Set the group handle for the MOELayer (deepspeed_moe) object
        self.deepspeed_moe._set_ep_group(groups._get_expert_parallel_group(self.expert_group_name))

    def forward(self,
                hidden_states: torch.Tensor,
                used_token: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """ MoE forward

        Arguments:
            hidden_states (Tensor): input to the layer
            used_token (Tensor, optional): default: None, mask only used tokens

        Returns:
            A tuple including output, gate loss, and expert count.

            * output (Tensor): output of the model

            * l_aux (Tensor): gate loss value

            * exp_counts (Tensor): expert count
        """
        output = self.deepspeed_moe(hidden_states, used_token)
        if self.use_residual:
            # Residual MoE
            output_mlp = self.mlp(hidden_states)
            if isinstance(output_mlp, tuple):
                output_mlp = output_mlp[0]  # Ignore the bias term for now
            coef = self.coefficient(hidden_states)
            coef = F.softmax(coef, dim=-1)
            output = output * coef[..., 0:1] + output_mlp * coef[..., 1:]
        return output, self.deepspeed_moe.l_aux, self.deepspeed_moe.exp_counts