File size: 3,691 Bytes
7a67bfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

# The file has been adapted from the following Megatron-LM file:
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/mpu/mappings.py
# Git commit hash: 9dc3c42a84aa656f583703cf8b6b4f79f712b796
# We retain the following copyright from the original files:

# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import deepspeed
from deepspeed.utils.bwc import (bwc_tensor_model_parallel_world_size, bwc_tensor_model_parallel_rank,
                                 bwc_tensor_model_parallel_group)


def _gather_tokens(input_, dim=0):
    """Gather tensors and concatenate them along a dimension"""
    mpu = deepspeed.utils.groups.mpu

    input_ = input_.contiguous()
    # Size and dimension.
    rank = bwc_tensor_model_parallel_rank(mpu)

    tensor_list = [torch.empty_like(input_) for _ in range(bwc_tensor_model_parallel_world_size(mpu))]
    tensor_list[rank] = input_
    deepspeed.comm.all_gather(tensor_list, input_, group=bwc_tensor_model_parallel_group(mpu))

    # Note: torch.cat already creates a contiguous tensor.
    output = torch.cat(tensor_list, dim=dim).contiguous()

    return output


def _drop_tokens(input_, dim=0):
    """Divide a tensor among the tensor parallel ranks"""
    mpu = deepspeed.utils.groups.mpu

    total_chunks = bwc_tensor_model_parallel_world_size(mpu)
    this_chunk = bwc_tensor_model_parallel_rank(mpu)
    assert input_.shape[
        dim] % total_chunks == 0, f"input dimension {dim} ({input_.shape[dim]}) is not divisible by tensor parallel world size ({total_chunks})"
    chunk_size = input_.shape[dim] // total_chunks

    return torch.narrow(input_, dim, this_chunk * chunk_size, chunk_size)


class _GatherTokens(torch.autograd.Function):
    """All gather tokens among the tensor parallel ranks"""

    @staticmethod
    def symbolic(graph, input_, dim):
        return _gather_tokens(input_, dim)

    @staticmethod
    def forward(ctx, input_, dim):
        ctx.dim = dim
        return _gather_tokens(input_, dim)

    @staticmethod
    def backward(ctx, grad_output):
        return _drop_tokens(grad_output, ctx.dim), None


class _DropTokens(torch.autograd.Function):
    "Divide tokens equally among the tensor parallel ranks"

    @staticmethod
    def symbolic(graph, input_, dim):
        return _drop_tokens(input_, dim)

    @staticmethod
    def forward(ctx, input_, dim):
        ctx.dim = dim
        return _drop_tokens(input_, dim)

    @staticmethod
    def backward(ctx, input_):
        return _gather_tokens(input_, ctx.dim), None


def gather_tokens(input_, dim=0):
    mpu = deepspeed.utils.groups.mpu
    if mpu is None or bwc_tensor_model_parallel_world_size(mpu) == 1:
        # no tensor parallelism for non-experts
        return input_
    return _GatherTokens.apply(input_, dim)


def drop_tokens(input_, dim=0):
    mpu = deepspeed.utils.groups.mpu
    if mpu is None or bwc_tensor_model_parallel_world_size(mpu) == 1:
        # no tensor parallelism for non-experts
        return input_
    return _DropTokens.apply(input_, dim)