File size: 23,011 Bytes
7a67bfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
"""
The file has been adapted from two fairscale files:
(1) https://github.com/facebookresearch/fairscale/blob/master/fairscale/nn/moe/moe_layer.py
(2) https://github.com/facebookresearch/fairscale/blob/master/fairscale/nn/moe/top2gate.py
Git commit hash: 34df606902a240567a0d898037ece55c2f1336cf
We retain the following license from the original files:
"""
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
from deepspeed.utils.timer import SynchronizedWallClockTimer
from deepspeed.utils import logger
from deepspeed.utils.bwc import bwc_tensor_model_parallel_world_size
from typing import Callable, Dict, TYPE_CHECKING, Any, Optional, Tuple, Union
import torch
from torch import Tensor
from torch.nn import Module
import torch.nn.functional as F
from deepspeed.utils import groups
from .mappings import drop_tokens, gather_tokens
if TYPE_CHECKING:
Base = Module[Tensor]
else:
Base = Module
TOPK_GATE_TIMER = 'topk_gate'
MOE_TIMER = 'moe'
FIRST_ALLTOALL_TIMER = '1st_a2a'
SECOND_ALLTOALL_TIMER = '2nd_a2a'
uniform_map: Dict[torch.device, Callable] = {}
gumbel_map: Dict[torch.device, Callable] = {}
exp_selection_uniform_map: Dict[torch.device, Callable] = {}
try:
# To enable Tutel MoE optimizations:
# python3 -m pip install --user --upgrade git+https://github.com/microsoft/[email protected]
from tutel import moe as tutel_moe
TUTEL_INSTALLED = True
except:
# Fail silently so we don't spam logs unnecessarily if user isn't using tutel
TUTEL_INSTALLED = False
pass
def multiplicative_jitter(x, device: torch.device, epsilon=1e-2):
"""
Modified from switch transformer paper. mesh transformers
Multiply values by a random number between 1-epsilon and 1+epsilon.
Makes models more resilient to rounding errors introduced by bfloat16.
This seems particularly important for logits.
Args:
x: a torch.tensor
device: torch.device
epsilon: a floating point value
Returns:
a jittered x.
"""
if epsilon == 0:
return x
uniform = uniform_map.get(device)
if uniform is None:
uniform = torch.distributions.uniform.Uniform(low=torch.tensor(1.0 - epsilon, device=device),
high=torch.tensor(1.0 + epsilon,
device=device)).rsample # type: ignore
uniform_map[device] = uniform
return x * uniform(x.shape)
def gumbel_rsample(shape: Tuple, device: torch.device) -> Tensor:
gumbel = gumbel_map.get(device)
if gumbel is None:
one = torch.tensor(1.0, device=device)
zero = torch.tensor(0.0, device=device)
gumbel = torch.distributions.gumbel.Gumbel(zero, one).rsample # type: ignore
gumbel_map[device] = gumbel
return gumbel(shape)
from deepspeed import comm as dist
# einsum dimensions: (g)roup, (s)equence, (e)xpert, (m)odel, (c)apacity
# See https://arxiv.org/pdf/2006.16668.pdf for details.
# Based on https://github.com/pytorch/pytorch/pull/40762
class _AllToAll(torch.autograd.Function):
@staticmethod
def forward(ctx: Any, group: dist.ProcessGroup, input: Tensor) -> Tensor: # type: ignore
ctx.group = group
input = input.contiguous()
output = torch.empty_like(input)
dist.all_to_all_single(output, input, group=group)
return output
@staticmethod
def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor]:
return (None, _AllToAll.apply(ctx.group, *grad_output))
# einsum rewrites are on par or more performant
# switch can be bubbled up in future
USE_EINSUM = True
# einsum dimensions: (g)roup, (s)equence, (e)xpert, (m)odel, (c)apacity
# See https://arxiv.org/pdf/2006.16668.pdf for details.
def einsum(rule, a, b):
if USE_EINSUM:
return torch.einsum(rule, a, b)
elif rule == 's,se->se':
return a.reshape(a.shape[0], -1) * b
elif rule == 'se,sc->sec':
return a.unsqueeze(2) * b.unsqueeze(1)
elif rule == 'se,se->s':
return torch.bmm(a.unsqueeze(1), b.unsqueeze(2)).reshape(-1)
elif rule == 'sec,sm->ecm':
s = a.shape[0]
e = a.shape[1]
c = a.shape[2]
m = b.shape[1]
return torch.matmul(a.reshape(s, -1).t(), b).reshape(e, c, m)
elif rule == 'sec,ecm->sm':
return torch.matmul(a.reshape(a.shape[0], -1), b.reshape(-1, b.shape[-1]))
elif rule == 'ks,ksm->sm':
k = b.shape[0]
s = b.shape[1]
m = b.shape[2]
# [k, s] -> [s, k] -> [s, 1, k]
a = a.t().unsqueeze(1)
# [k,s,m] -> [k, sm] -> [sm, k] -> [s, m, k]
b = b.reshape(k, -1).t().reshape(s, m, k)
# bmm([s, 1, k], [s, m, k]^t) -> [s, m, 1]
return torch.bmm(a, b.transpose(1, 2)).squeeze(2)
else:
return torch.einsum(rule, a, b)
# The following functions are extracted and scripted
# because otherwise during a torch.jit.trace, the non-Tensor
# values used in the calculations get recorded as constants.
# torch.jit.script coerces them into Tensors and preserves
# their dynamic shapes. This enables ONNX export.
# We can't script the entire top1gating function because it
# includes stateful caching logic which is incompatible with ONNX.
@torch.jit.script
def _capacity(gates: Tensor, capacity_factor: Tensor, min_capacity: Tensor) -> Tensor:
# gates has shape of SE
num_tokens = gates.shape[0]
num_experts = gates.shape[1]
# to(torch.int64) works around a bug in torch.onnx.export:
# it should cast k to int64 when converting torch.topk but it doesn't.
capacity = torch.ceil((num_tokens / num_experts) * capacity_factor).to(torch.int64)
if capacity < min_capacity:
capacity = min_capacity.to(torch.int64)
return capacity
@torch.jit.script
def _top_idx(source, k):
return torch.topk(source, k=k, dim=0)[1]
@torch.jit.script
def _one_hot_to_float(x, num_classes):
return F.one_hot(x, num_classes=num_classes).float()
def top1gating(logits: Tensor,
capacity_factor: float,
min_capacity: int,
used_token: Tensor = None,
noisy_gate_policy: Optional[str] = None,
drop_tokens: bool = True,
use_rts: bool = True,
ep_group: Union[torch.distributed.ProcessGroup, None] = None,
use_tutel: bool = False) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
"""Implements Top1Gating on logits."""
if noisy_gate_policy == 'RSample':
logits_w_noise = logits + gumbel_rsample(logits.shape, device=logits.device)
# everything is in fp32 in this function
gates = F.softmax(logits, dim=1)
capacity = _capacity(gates, torch.tensor(capacity_factor), torch.tensor(min_capacity))
# Create a mask for 1st's expert per token
# noisy gating
indices1_s = torch.argmax(logits_w_noise if noisy_gate_policy == 'RSample' else gates, dim=1)
num_experts = int(gates.shape[1])
mask1 = F.one_hot(indices1_s, num_classes=num_experts)
# mask only used tokens
if used_token is not None:
mask1 = einsum("s,se->se", used_token, mask1)
# gating decisions
exp_counts = torch.sum(mask1, dim=0).detach().to('cpu')
# if we don't want to drop any tokens
if not drop_tokens:
new_capacity = torch.max(exp_counts).to(logits.device)
# Communicate across expert processes to pick the maximum capacity.
if ep_group is not None:
dist.all_reduce(new_capacity, op=dist.ReduceOp.MAX, group=ep_group)
if groups._get_expert_model_parallel_world_size() == 1:
# If the non-expert is tensor-parallel, we need to pad the capacity to 'tp'.
# This is since we are going to activate drop_tokens() to drop duplicate tokens.
tp = 1 if groups.mpu is None else bwc_tensor_model_parallel_world_size(mpu=groups.mpu)
new_capacity = torch.ceil(new_capacity / tp).mul(tp).to(new_capacity.dtype)
# Make sure the capacity value does not exceed the number of tokens.
capacity = min(new_capacity, torch.tensor(mask1.size(0)))
# Compute l_aux
me = torch.mean(gates, dim=0)
ce = torch.mean(mask1.float(), dim=0)
l_aux = torch.sum(me * ce) * num_experts
# Random Token Selection
if use_rts:
uniform = exp_selection_uniform_map.get(logits.device)
if uniform is None:
uniform = torch.distributions.uniform.Uniform(low=torch.tensor(0.0, device=logits.device),
high=torch.tensor(1.0, device=logits.device)).rsample
exp_selection_uniform_map[logits.device] = uniform
mask1_rand = mask1 * uniform(mask1.shape)
else:
mask1_rand = mask1
assert logits.shape[
0] >= min_capacity, "No. of tokens (batch-size) should be greater than min_capacity. Either set min_capacity to 0 or increase your batch size."
top_idx = _top_idx(mask1_rand, capacity)
new_mask1 = mask1 * torch.zeros_like(mask1).scatter_(0, top_idx, 1)
mask1 = new_mask1
if use_tutel:
# Tutel doesn't support index values masked with zero
# so we need to replace masked indices with -1
indices_mask = mask1.sum(dim=1) * num_experts - 1
indices1_s = torch.min(indices1_s, indices_mask)
# Compute locations in capacity buffer
if use_tutel:
locations1 = tutel_moe.fast_cumsum_sub_one(mask1)
else:
locations1 = torch.cumsum(mask1, dim=0) - 1
if use_tutel:
gates1_s = (gates * mask1).sum(dim=1)
locations1_s = torch.sum(locations1 * mask1, dim=1)
return l_aux, capacity, num_experts, [
indices1_s,
], [
locations1_s,
], [
gates1_s,
], exp_counts
# Store the capacity location for each token
locations1_s = torch.sum(locations1 * mask1, dim=1)
# Normalize gate probabilities
mask1_float = mask1.float()
gates = gates * mask1_float
locations1_sc = _one_hot_to_float(locations1_s, capacity)
combine_weights = einsum("se,sc->sec", gates, locations1_sc)
dispatch_mask = combine_weights.bool()
return l_aux, combine_weights, dispatch_mask, exp_counts
def top2gating(logits: Tensor,
capacity_factor: float,
min_capacity: int,
drop_tokens: bool = True,
ep_group: Union[torch.distributed.ProcessGroup, None] = None,
top2_2nd_expert_sampling: bool = True) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
"""Implements Top2Gating on logits."""
# everything is in fp32 in this function
gates = F.softmax(logits, dim=1)
# Create a mask for 1st's expert per token
indices1_s = torch.argmax(gates, dim=1)
num_experts = int(gates.shape[1])
mask1 = F.one_hot(indices1_s, num_classes=num_experts)
if top2_2nd_expert_sampling:
# Create a mask for 2nd's expert per token using Gumbel-max trick
# https://timvieira.github.io/blog/post/2014/07/31/gumbel-max-trick/
logits += gumbel_rsample(logits.shape, device=logits.device)
# Replace top-expert with min value
logits_except1 = logits.masked_fill(mask1.bool(), float("-inf"))
indices2_s = torch.argmax(logits_except1, dim=1)
mask2 = F.one_hot(indices2_s, num_classes=num_experts)
# Compute locations in capacity buffer
locations1 = torch.cumsum(mask1, dim=0) - 1
locations2 = torch.cumsum(mask2, dim=0) - 1
# Update 2nd's location by accounting for locations of 1st
locations2 += torch.sum(mask1, dim=0, keepdim=True)
# Compute l_aux
me = torch.mean(gates, dim=0)
ce = torch.mean(mask1.float(), dim=0)
l_aux = torch.mean(me * ce) * num_experts * num_experts
# gating decisions
exp_counts = torch.sum(mask1 + mask2, dim=0)
if drop_tokens:
# Calculate configured capacity and remove locations outside capacity from mask
capacity = _capacity(gates, torch.tensor(capacity_factor * 2), torch.tensor(min_capacity))
mask1 *= torch.lt(locations1, capacity)
mask2 *= torch.lt(locations2, capacity)
else:
# Do not drop tokens - set capacity according to current expert assignments
new_capacity = torch.max(exp_counts)
if ep_group is not None:
dist.all_reduce(new_capacity, op=dist.ReduceOp.MAX, group=ep_group)
if groups._get_expert_model_parallel_world_size() == 1:
# If the non-expert is tensor-parallel, we need to pad the capacity to 'tp'.
# This is since we are going to activate drop_tokens() to drop duplicate tokens.
tp = 1 if groups.mpu is None else bwc_tensor_model_parallel_world_size(mpu=groups.mpu)
new_capacity = torch.ceil(new_capacity / tp).mul(tp).to(new_capacity.dtype)
capacity = new_capacity
# Store the capacity location for each token
locations1_s = torch.sum(locations1 * mask1, dim=1)
locations2_s = torch.sum(locations2 * mask2, dim=1)
# Normalize gate probabilities
mask1_float = mask1.float()
mask2_float = mask2.float()
gates1_s = einsum("se,se->s", gates, mask1_float)
gates2_s = einsum("se,se->s", gates, mask2_float)
denom_s = gates1_s + gates2_s
# Avoid divide-by-zero
denom_s = torch.clamp(denom_s, min=torch.finfo(denom_s.dtype).eps)
gates1_s /= denom_s
gates2_s /= denom_s
# Calculate combine_weights and dispatch_mask
gates1 = einsum("s,se->se", gates1_s, mask1_float)
gates2 = einsum("s,se->se", gates2_s, mask2_float)
locations1_sc = _one_hot_to_float(locations1_s, capacity)
locations2_sc = _one_hot_to_float(locations2_s, capacity)
combine1_sec = einsum("se,sc->sec", gates1, locations1_sc)
combine2_sec = einsum("se,sc->sec", gates2, locations2_sc)
combine_weights = combine1_sec + combine2_sec
dispatch_mask = combine_weights.bool()
return l_aux, combine_weights, dispatch_mask, exp_counts.detach().to('cpu')
class TopKGate(Module):
"""Gate module which implements Top2Gating as described in Gshard_.
::
gate = TopKGate(model_dim, num_experts)
l_aux, combine_weights, dispatch_mask = gate(input)
.. Gshard_: https://arxiv.org/pdf/2006.16668.pdf
Args:
model_dim (int):
size of model embedding dimension
num_experts (int):
number of experts in model
"""
wg: torch.nn.Linear
def __init__(self,
model_dim: int,
num_experts: int,
k: int = 1,
capacity_factor: float = 1.0,
eval_capacity_factor: float = 1.0,
min_capacity: int = 8,
noisy_gate_policy: Optional[str] = None,
drop_tokens: bool = True,
use_rts: bool = True,
ep_group: Union[torch.distributed.ProcessGroup, None] = None,
top2_2nd_expert_sampling: bool = True) -> None:
super().__init__()
# Only top-1 and top-2 are supported at the moment.
if k != 1 and k != 2:
raise ValueError('Only top-1 and top-2 gatings are supported.')
self.wg = torch.nn.Linear(model_dim, num_experts, bias=False)
self.ep_group = ep_group
self.k = k
self.capacity_factor = capacity_factor
self.eval_capacity_factor = eval_capacity_factor
self.min_capacity = min_capacity
self.noisy_gate_policy = noisy_gate_policy
self.timers = SynchronizedWallClockTimer()
self.wall_clock_breakdown = False
self.gate_time = 0.0
self.drop_tokens = drop_tokens
self.use_rts = use_rts
self.top2_2nd_expert_sampling = top2_2nd_expert_sampling
def _set_ep_group(self, ep_group):
assert self.ep_group is None, f'Attempting to override an existing ep_group'
self.ep_group = ep_group
def forward(self,
input: torch.Tensor,
used_token: torch.Tensor = None,
use_tutel: bool = False) -> Tuple[Tensor, Tensor, Tensor]: # type: ignore
if self.wall_clock_breakdown:
self.timers(TOPK_GATE_TIMER).start()
input_fp32 = input.float()
# input jittering
if self.noisy_gate_policy == 'Jitter' and self.training:
input_fp32 = multiplicative_jitter(input_fp32, device=input.device)
logits = torch.nn.functional.linear(input_fp32, weight=self.wg.weight.float(), bias=None)
if self.k == 1:
gate_output = top1gating(logits, self.capacity_factor if self.training else self.eval_capacity_factor,
self.min_capacity, used_token, self.noisy_gate_policy if self.training else None,
self.drop_tokens, self.use_rts, self.ep_group, use_tutel)
else:
gate_output = top2gating(logits, self.capacity_factor if self.training else self.eval_capacity_factor,
self.min_capacity, self.drop_tokens, self.ep_group, self.top2_2nd_expert_sampling)
if self.wall_clock_breakdown:
self.timers(TOPK_GATE_TIMER).stop()
self.gate_time = self.timers(TOPK_GATE_TIMER).elapsed(reset=False)
return gate_output
class MOELayer(Base):
"""MOELayer module which implements MixtureOfExperts as described in Gshard_.
::
gate = TopKGate(model_dim, num_experts)
moe = MOELayer(gate, expert)
output = moe(input)
l_aux = moe.l_aux
.. Gshard_: https://arxiv.org/pdf/2006.16668.pdf
Args:
gate (torch.nn.Module):
gate network
expert (torch.nn.Module):
expert network
"""
def __init__(self,
gate: Module,
experts: Module,
ep_group_name,
ep_size,
num_local_experts: int,
use_tutel: bool = False) -> None:
super().__init__()
self.gate = gate
self.experts = experts
self.ep_group = None
self.ep_size = ep_size
self.ep_group_name = ep_group_name
self.num_local_experts = num_local_experts
self.time_falltoall = 0.0
self.time_salltoall = 0.0
self.time_moe = 0.0
self.timers = SynchronizedWallClockTimer()
self.wall_clock_breakdown = False
self.use_tutel = use_tutel and TUTEL_INSTALLED and gate.k == 1
if self.use_tutel:
logger.info('Using Tutel optimizations.')
elif use_tutel and not TUTEL_INSTALLED:
logger.warning("Tutel optimization requested but not installed. "
"Proceeding without Tutel.")
elif use_tutel and TUTEL_INSTALLED and gate.k != 1:
logger.warning("To enable Tutel optimization, use top-1 instead of top-2 gate. "
"Proceeding without Tutel.")
def _set_ep_group(self, ep_group):
self.ep_group = ep_group
self.gate._set_ep_group(ep_group)
def forward(self, *input: Tensor, **kwargs: Any) -> Tensor:
if self.wall_clock_breakdown:
self.timers(MOE_TIMER).start()
# Implement Algorithm 2 from GShard paper.
d_model = input[0].shape[-1]
# Initial implementation -> Reshape into S tokens by dropping sequence dimension.
# Reshape into G groups so that each group can distribute tokens equally
# group_size = kwargs['group_size'] if 'group_size' in kwargs.keys() else 1
reshaped_input = input[0].reshape(-1, d_model)
if self.use_tutel:
self.l_aux, C, E, indices_, locations_, gates_, self.exp_counts = self.gate(reshaped_input, input[1], True)
S, M = reshaped_input.size(0), reshaped_input.size(1)
if not hasattr(self, '_tutel_dispatcher'):
self._tutel_dispatcher = tutel_moe.fast_dispatcher(E, C, M, dispatch_dtype=reshaped_input.dtype)
self._tutel_dispatcher.update(indices_, locations_, gates_, capacity=C)
dispatched_input = self._tutel_dispatcher.encode(reshaped_input)
else:
self.l_aux, combine_weights, dispatch_mask, self.exp_counts = self.gate(reshaped_input, input[1])
dispatched_input = einsum("sec,sm->ecm", dispatch_mask.type_as(input[0]), reshaped_input)
if self.wall_clock_breakdown:
self.timers(FIRST_ALLTOALL_TIMER).start()
if groups._get_expert_model_parallel_world_size() == 1:
# If the non-expert is tensor-parallel, it will create
# duplicate tokens on the tensor-parallel ranks.
# Since our experts are not tensor-parallel, these duplicates
# need to be dropped to ensure correctness.
# this also doubles up as a communication optimization as we are
# reducing the all-to-all communication volume.
dispatched_input = drop_tokens(dispatched_input, dim=1)
dispatched_input = _AllToAll.apply(self.ep_group, dispatched_input)
if self.wall_clock_breakdown:
self.timers(FIRST_ALLTOALL_TIMER).stop()
self.time_falltoall = self.timers(FIRST_ALLTOALL_TIMER).elapsed(reset=False)
# Re-shape after all-to-all: ecm -> gecm
dispatched_input = dispatched_input.reshape(self.ep_size, self.num_local_experts, -1, d_model)
expert_output = self.experts(dispatched_input)
if self.wall_clock_breakdown:
self.timers(SECOND_ALLTOALL_TIMER).start()
expert_output = _AllToAll.apply(self.ep_group, expert_output)
if self.wall_clock_breakdown:
self.timers(SECOND_ALLTOALL_TIMER).stop()
self.time_salltoall = self.timers(SECOND_ALLTOALL_TIMER).elapsed(reset=False)
# Re-shape back: gecm -> ecm
expert_output = expert_output.reshape(self.ep_size * self.num_local_experts, -1, d_model)
if groups._get_expert_model_parallel_world_size() == 1:
# the dropped duplicate tokens need to be gathered on each
# tensor parallel rank again for the tensor-parallel
# non-expert of the next layer.
expert_output = gather_tokens(expert_output, dim=1)
if self.use_tutel:
combined_output = self._tutel_dispatcher.decode(expert_output.view(E * C, M))
else:
combined_output = einsum("sec,ecm->sm", combine_weights.type_as(input[0]), expert_output)
a = combined_output.reshape(input[0].shape)
if self.wall_clock_breakdown:
self.timers(MOE_TIMER).stop()
self.time_moe = self.timers(MOE_TIMER).elapsed(reset=False)
return a
|