File size: 23,011 Bytes
7a67bfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team
"""
The file has been adapted from two fairscale files:
 (1) https://github.com/facebookresearch/fairscale/blob/master/fairscale/nn/moe/moe_layer.py
 (2) https://github.com/facebookresearch/fairscale/blob/master/fairscale/nn/moe/top2gate.py
 Git commit hash: 34df606902a240567a0d898037ece55c2f1336cf
 We retain the following license from the original files:
"""

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

from deepspeed.utils.timer import SynchronizedWallClockTimer
from deepspeed.utils import logger
from deepspeed.utils.bwc import bwc_tensor_model_parallel_world_size
from typing import Callable, Dict, TYPE_CHECKING, Any, Optional, Tuple, Union

import torch
from torch import Tensor
from torch.nn import Module
import torch.nn.functional as F
from deepspeed.utils import groups
from .mappings import drop_tokens, gather_tokens

if TYPE_CHECKING:
    Base = Module[Tensor]
else:
    Base = Module

TOPK_GATE_TIMER = 'topk_gate'
MOE_TIMER = 'moe'
FIRST_ALLTOALL_TIMER = '1st_a2a'
SECOND_ALLTOALL_TIMER = '2nd_a2a'

uniform_map: Dict[torch.device, Callable] = {}
gumbel_map: Dict[torch.device, Callable] = {}
exp_selection_uniform_map: Dict[torch.device, Callable] = {}

try:
    # To enable Tutel MoE optimizations:
    #   python3 -m pip install --user --upgrade git+https://github.com/microsoft/[email protected]
    from tutel import moe as tutel_moe
    TUTEL_INSTALLED = True
except:
    # Fail silently so we don't spam logs unnecessarily if user isn't using tutel
    TUTEL_INSTALLED = False
    pass


def multiplicative_jitter(x, device: torch.device, epsilon=1e-2):
    """
    Modified from switch transformer paper. mesh transformers
    Multiply values by a random number between 1-epsilon and 1+epsilon.
    Makes models more resilient to rounding errors introduced by bfloat16.
    This seems particularly important for logits.
    Args:
        x: a torch.tensor
        device: torch.device
        epsilon: a floating point value
    Returns:
        a jittered x.
    """
    if epsilon == 0:
        return x
    uniform = uniform_map.get(device)
    if uniform is None:
        uniform = torch.distributions.uniform.Uniform(low=torch.tensor(1.0 - epsilon, device=device),
                                                      high=torch.tensor(1.0 + epsilon,
                                                                        device=device)).rsample  # type: ignore
        uniform_map[device] = uniform
    return x * uniform(x.shape)


def gumbel_rsample(shape: Tuple, device: torch.device) -> Tensor:
    gumbel = gumbel_map.get(device)
    if gumbel is None:
        one = torch.tensor(1.0, device=device)
        zero = torch.tensor(0.0, device=device)
        gumbel = torch.distributions.gumbel.Gumbel(zero, one).rsample  # type: ignore
        gumbel_map[device] = gumbel
    return gumbel(shape)


from deepspeed import comm as dist

# einsum dimensions: (g)roup, (s)equence, (e)xpert, (m)odel, (c)apacity
# See https://arxiv.org/pdf/2006.16668.pdf for details.


# Based on https://github.com/pytorch/pytorch/pull/40762
class _AllToAll(torch.autograd.Function):

    @staticmethod
    def forward(ctx: Any, group: dist.ProcessGroup, input: Tensor) -> Tensor:  # type: ignore
        ctx.group = group
        input = input.contiguous()
        output = torch.empty_like(input)
        dist.all_to_all_single(output, input, group=group)
        return output

    @staticmethod
    def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor]:
        return (None, _AllToAll.apply(ctx.group, *grad_output))


# einsum rewrites are on par or more performant
# switch can be bubbled up in future
USE_EINSUM = True


# einsum dimensions: (g)roup, (s)equence, (e)xpert, (m)odel, (c)apacity
# See https://arxiv.org/pdf/2006.16668.pdf for details.
def einsum(rule, a, b):
    if USE_EINSUM:
        return torch.einsum(rule, a, b)
    elif rule == 's,se->se':
        return a.reshape(a.shape[0], -1) * b
    elif rule == 'se,sc->sec':
        return a.unsqueeze(2) * b.unsqueeze(1)
    elif rule == 'se,se->s':
        return torch.bmm(a.unsqueeze(1), b.unsqueeze(2)).reshape(-1)
    elif rule == 'sec,sm->ecm':
        s = a.shape[0]
        e = a.shape[1]
        c = a.shape[2]
        m = b.shape[1]
        return torch.matmul(a.reshape(s, -1).t(), b).reshape(e, c, m)
    elif rule == 'sec,ecm->sm':
        return torch.matmul(a.reshape(a.shape[0], -1), b.reshape(-1, b.shape[-1]))
    elif rule == 'ks,ksm->sm':
        k = b.shape[0]
        s = b.shape[1]
        m = b.shape[2]
        # [k, s] -> [s, k] -> [s, 1, k]
        a = a.t().unsqueeze(1)
        # [k,s,m] -> [k, sm] -> [sm, k] -> [s, m, k]
        b = b.reshape(k, -1).t().reshape(s, m, k)
        # bmm([s, 1, k], [s, m, k]^t) -> [s, m, 1]
        return torch.bmm(a, b.transpose(1, 2)).squeeze(2)
    else:
        return torch.einsum(rule, a, b)


# The following functions are extracted and scripted
# because otherwise during a torch.jit.trace, the non-Tensor
# values used in the calculations get recorded as constants.
# torch.jit.script coerces them into Tensors and preserves
# their dynamic shapes. This enables ONNX export.
# We can't script the entire top1gating function because it
# includes stateful caching logic which is incompatible with ONNX.


@torch.jit.script
def _capacity(gates: Tensor, capacity_factor: Tensor, min_capacity: Tensor) -> Tensor:
    # gates has shape of SE
    num_tokens = gates.shape[0]
    num_experts = gates.shape[1]
    # to(torch.int64) works around a bug in torch.onnx.export:
    # it should cast k to int64 when converting torch.topk but it doesn't.
    capacity = torch.ceil((num_tokens / num_experts) * capacity_factor).to(torch.int64)
    if capacity < min_capacity:
        capacity = min_capacity.to(torch.int64)
    return capacity


@torch.jit.script
def _top_idx(source, k):
    return torch.topk(source, k=k, dim=0)[1]


@torch.jit.script
def _one_hot_to_float(x, num_classes):
    return F.one_hot(x, num_classes=num_classes).float()


def top1gating(logits: Tensor,
               capacity_factor: float,
               min_capacity: int,
               used_token: Tensor = None,
               noisy_gate_policy: Optional[str] = None,
               drop_tokens: bool = True,
               use_rts: bool = True,
               ep_group: Union[torch.distributed.ProcessGroup, None] = None,
               use_tutel: bool = False) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
    """Implements Top1Gating on logits."""
    if noisy_gate_policy == 'RSample':
        logits_w_noise = logits + gumbel_rsample(logits.shape, device=logits.device)
    # everything is in fp32 in this function
    gates = F.softmax(logits, dim=1)

    capacity = _capacity(gates, torch.tensor(capacity_factor), torch.tensor(min_capacity))

    # Create a mask for 1st's expert per token
    # noisy gating
    indices1_s = torch.argmax(logits_w_noise if noisy_gate_policy == 'RSample' else gates, dim=1)
    num_experts = int(gates.shape[1])
    mask1 = F.one_hot(indices1_s, num_classes=num_experts)

    # mask only used tokens
    if used_token is not None:
        mask1 = einsum("s,se->se", used_token, mask1)

    # gating decisions
    exp_counts = torch.sum(mask1, dim=0).detach().to('cpu')

    # if we don't want to drop any tokens
    if not drop_tokens:
        new_capacity = torch.max(exp_counts).to(logits.device)
        # Communicate across expert processes to pick the maximum capacity.
        if ep_group is not None:
            dist.all_reduce(new_capacity, op=dist.ReduceOp.MAX, group=ep_group)
        if groups._get_expert_model_parallel_world_size() == 1:
            # If the non-expert is tensor-parallel, we need to pad the capacity to 'tp'.
            # This is since we are going to activate drop_tokens() to drop duplicate tokens.
            tp = 1 if groups.mpu is None else bwc_tensor_model_parallel_world_size(mpu=groups.mpu)
            new_capacity = torch.ceil(new_capacity / tp).mul(tp).to(new_capacity.dtype)
        # Make sure the capacity value does not exceed the number of tokens.
        capacity = min(new_capacity, torch.tensor(mask1.size(0)))

    # Compute l_aux
    me = torch.mean(gates, dim=0)
    ce = torch.mean(mask1.float(), dim=0)
    l_aux = torch.sum(me * ce) * num_experts

    # Random Token Selection
    if use_rts:
        uniform = exp_selection_uniform_map.get(logits.device)
        if uniform is None:
            uniform = torch.distributions.uniform.Uniform(low=torch.tensor(0.0, device=logits.device),
                                                          high=torch.tensor(1.0, device=logits.device)).rsample
            exp_selection_uniform_map[logits.device] = uniform

        mask1_rand = mask1 * uniform(mask1.shape)
    else:
        mask1_rand = mask1

    assert logits.shape[
        0] >= min_capacity, "No. of tokens (batch-size) should be greater than min_capacity. Either set min_capacity to 0 or increase your batch size."

    top_idx = _top_idx(mask1_rand, capacity)

    new_mask1 = mask1 * torch.zeros_like(mask1).scatter_(0, top_idx, 1)
    mask1 = new_mask1

    if use_tutel:
        # Tutel doesn't support index values masked with zero
        # so we need to replace masked indices with -1
        indices_mask = mask1.sum(dim=1) * num_experts - 1
        indices1_s = torch.min(indices1_s, indices_mask)

    # Compute locations in capacity buffer
    if use_tutel:
        locations1 = tutel_moe.fast_cumsum_sub_one(mask1)
    else:
        locations1 = torch.cumsum(mask1, dim=0) - 1

    if use_tutel:
        gates1_s = (gates * mask1).sum(dim=1)
        locations1_s = torch.sum(locations1 * mask1, dim=1)
        return l_aux, capacity, num_experts, [
            indices1_s,
        ], [
            locations1_s,
        ], [
            gates1_s,
        ], exp_counts

    # Store the capacity location for each token
    locations1_s = torch.sum(locations1 * mask1, dim=1)

    # Normalize gate probabilities
    mask1_float = mask1.float()
    gates = gates * mask1_float

    locations1_sc = _one_hot_to_float(locations1_s, capacity)
    combine_weights = einsum("se,sc->sec", gates, locations1_sc)

    dispatch_mask = combine_weights.bool()

    return l_aux, combine_weights, dispatch_mask, exp_counts


def top2gating(logits: Tensor,
               capacity_factor: float,
               min_capacity: int,
               drop_tokens: bool = True,
               ep_group: Union[torch.distributed.ProcessGroup, None] = None,
               top2_2nd_expert_sampling: bool = True) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
    """Implements Top2Gating on logits."""
    # everything is in fp32 in this function
    gates = F.softmax(logits, dim=1)

    # Create a mask for 1st's expert per token
    indices1_s = torch.argmax(gates, dim=1)
    num_experts = int(gates.shape[1])
    mask1 = F.one_hot(indices1_s, num_classes=num_experts)

    if top2_2nd_expert_sampling:
        # Create a mask for 2nd's expert per token using Gumbel-max trick
        # https://timvieira.github.io/blog/post/2014/07/31/gumbel-max-trick/
        logits += gumbel_rsample(logits.shape, device=logits.device)

    # Replace top-expert with min value
    logits_except1 = logits.masked_fill(mask1.bool(), float("-inf"))
    indices2_s = torch.argmax(logits_except1, dim=1)
    mask2 = F.one_hot(indices2_s, num_classes=num_experts)

    # Compute locations in capacity buffer
    locations1 = torch.cumsum(mask1, dim=0) - 1
    locations2 = torch.cumsum(mask2, dim=0) - 1
    # Update 2nd's location by accounting for locations of 1st
    locations2 += torch.sum(mask1, dim=0, keepdim=True)

    # Compute l_aux
    me = torch.mean(gates, dim=0)
    ce = torch.mean(mask1.float(), dim=0)
    l_aux = torch.mean(me * ce) * num_experts * num_experts

    # gating decisions
    exp_counts = torch.sum(mask1 + mask2, dim=0)

    if drop_tokens:
        # Calculate configured capacity and remove locations outside capacity from mask
        capacity = _capacity(gates, torch.tensor(capacity_factor * 2), torch.tensor(min_capacity))
        mask1 *= torch.lt(locations1, capacity)
        mask2 *= torch.lt(locations2, capacity)
    else:
        # Do not drop tokens - set capacity according to current expert assignments
        new_capacity = torch.max(exp_counts)
        if ep_group is not None:
            dist.all_reduce(new_capacity, op=dist.ReduceOp.MAX, group=ep_group)
        if groups._get_expert_model_parallel_world_size() == 1:
            # If the non-expert is tensor-parallel, we need to pad the capacity to 'tp'.
            # This is since we are going to activate drop_tokens() to drop duplicate tokens.
            tp = 1 if groups.mpu is None else bwc_tensor_model_parallel_world_size(mpu=groups.mpu)
            new_capacity = torch.ceil(new_capacity / tp).mul(tp).to(new_capacity.dtype)
        capacity = new_capacity

    # Store the capacity location for each token
    locations1_s = torch.sum(locations1 * mask1, dim=1)
    locations2_s = torch.sum(locations2 * mask2, dim=1)

    # Normalize gate probabilities
    mask1_float = mask1.float()
    mask2_float = mask2.float()
    gates1_s = einsum("se,se->s", gates, mask1_float)
    gates2_s = einsum("se,se->s", gates, mask2_float)
    denom_s = gates1_s + gates2_s
    # Avoid divide-by-zero
    denom_s = torch.clamp(denom_s, min=torch.finfo(denom_s.dtype).eps)
    gates1_s /= denom_s
    gates2_s /= denom_s

    # Calculate combine_weights and dispatch_mask
    gates1 = einsum("s,se->se", gates1_s, mask1_float)
    gates2 = einsum("s,se->se", gates2_s, mask2_float)
    locations1_sc = _one_hot_to_float(locations1_s, capacity)
    locations2_sc = _one_hot_to_float(locations2_s, capacity)
    combine1_sec = einsum("se,sc->sec", gates1, locations1_sc)
    combine2_sec = einsum("se,sc->sec", gates2, locations2_sc)
    combine_weights = combine1_sec + combine2_sec
    dispatch_mask = combine_weights.bool()

    return l_aux, combine_weights, dispatch_mask, exp_counts.detach().to('cpu')


class TopKGate(Module):
    """Gate module which implements Top2Gating as described in Gshard_.
    ::

        gate = TopKGate(model_dim, num_experts)
        l_aux, combine_weights, dispatch_mask = gate(input)

    .. Gshard_: https://arxiv.org/pdf/2006.16668.pdf

    Args:
        model_dim (int):
            size of model embedding dimension
        num_experts (int):
            number of experts in model
    """

    wg: torch.nn.Linear

    def __init__(self,
                 model_dim: int,
                 num_experts: int,
                 k: int = 1,
                 capacity_factor: float = 1.0,
                 eval_capacity_factor: float = 1.0,
                 min_capacity: int = 8,
                 noisy_gate_policy: Optional[str] = None,
                 drop_tokens: bool = True,
                 use_rts: bool = True,
                 ep_group: Union[torch.distributed.ProcessGroup, None] = None,
                 top2_2nd_expert_sampling: bool = True) -> None:
        super().__init__()

        # Only top-1 and top-2 are supported at the moment.
        if k != 1 and k != 2:
            raise ValueError('Only top-1 and top-2 gatings are supported.')
        self.wg = torch.nn.Linear(model_dim, num_experts, bias=False)
        self.ep_group = ep_group
        self.k = k
        self.capacity_factor = capacity_factor
        self.eval_capacity_factor = eval_capacity_factor
        self.min_capacity = min_capacity
        self.noisy_gate_policy = noisy_gate_policy
        self.timers = SynchronizedWallClockTimer()
        self.wall_clock_breakdown = False
        self.gate_time = 0.0
        self.drop_tokens = drop_tokens
        self.use_rts = use_rts
        self.top2_2nd_expert_sampling = top2_2nd_expert_sampling

    def _set_ep_group(self, ep_group):
        assert self.ep_group is None, f'Attempting to override an existing ep_group'
        self.ep_group = ep_group

    def forward(self,
                input: torch.Tensor,
                used_token: torch.Tensor = None,
                use_tutel: bool = False) -> Tuple[Tensor, Tensor, Tensor]:  # type: ignore

        if self.wall_clock_breakdown:
            self.timers(TOPK_GATE_TIMER).start()

        input_fp32 = input.float()
        # input jittering
        if self.noisy_gate_policy == 'Jitter' and self.training:
            input_fp32 = multiplicative_jitter(input_fp32, device=input.device)
        logits = torch.nn.functional.linear(input_fp32, weight=self.wg.weight.float(), bias=None)

        if self.k == 1:
            gate_output = top1gating(logits, self.capacity_factor if self.training else self.eval_capacity_factor,
                                     self.min_capacity, used_token, self.noisy_gate_policy if self.training else None,
                                     self.drop_tokens, self.use_rts, self.ep_group, use_tutel)

        else:
            gate_output = top2gating(logits, self.capacity_factor if self.training else self.eval_capacity_factor,
                                     self.min_capacity, self.drop_tokens, self.ep_group, self.top2_2nd_expert_sampling)

        if self.wall_clock_breakdown:
            self.timers(TOPK_GATE_TIMER).stop()
            self.gate_time = self.timers(TOPK_GATE_TIMER).elapsed(reset=False)

        return gate_output


class MOELayer(Base):
    """MOELayer module which implements MixtureOfExperts as described in Gshard_.
    ::

        gate = TopKGate(model_dim, num_experts)
        moe = MOELayer(gate, expert)
        output = moe(input)
        l_aux = moe.l_aux

    .. Gshard_: https://arxiv.org/pdf/2006.16668.pdf

    Args:
        gate (torch.nn.Module):
            gate network
        expert (torch.nn.Module):
            expert network
    """

    def __init__(self,
                 gate: Module,
                 experts: Module,
                 ep_group_name,
                 ep_size,
                 num_local_experts: int,
                 use_tutel: bool = False) -> None:
        super().__init__()
        self.gate = gate
        self.experts = experts
        self.ep_group = None
        self.ep_size = ep_size
        self.ep_group_name = ep_group_name
        self.num_local_experts = num_local_experts
        self.time_falltoall = 0.0
        self.time_salltoall = 0.0
        self.time_moe = 0.0
        self.timers = SynchronizedWallClockTimer()
        self.wall_clock_breakdown = False

        self.use_tutel = use_tutel and TUTEL_INSTALLED and gate.k == 1

        if self.use_tutel:
            logger.info('Using Tutel optimizations.')
        elif use_tutel and not TUTEL_INSTALLED:
            logger.warning("Tutel optimization requested but not installed. "
                           "Proceeding without Tutel.")
        elif use_tutel and TUTEL_INSTALLED and gate.k != 1:
            logger.warning("To enable Tutel optimization, use top-1 instead of top-2 gate. "
                           "Proceeding without Tutel.")

    def _set_ep_group(self, ep_group):
        self.ep_group = ep_group
        self.gate._set_ep_group(ep_group)

    def forward(self, *input: Tensor, **kwargs: Any) -> Tensor:

        if self.wall_clock_breakdown:
            self.timers(MOE_TIMER).start()

        # Implement Algorithm 2 from GShard paper.
        d_model = input[0].shape[-1]

        # Initial implementation -> Reshape into S tokens by dropping sequence dimension.
        # Reshape into G groups so that each group can distribute tokens equally
        # group_size = kwargs['group_size'] if 'group_size' in kwargs.keys() else 1
        reshaped_input = input[0].reshape(-1, d_model)

        if self.use_tutel:
            self.l_aux, C, E, indices_, locations_, gates_, self.exp_counts = self.gate(reshaped_input, input[1], True)
            S, M = reshaped_input.size(0), reshaped_input.size(1)

            if not hasattr(self, '_tutel_dispatcher'):
                self._tutel_dispatcher = tutel_moe.fast_dispatcher(E, C, M, dispatch_dtype=reshaped_input.dtype)
            self._tutel_dispatcher.update(indices_, locations_, gates_, capacity=C)
            dispatched_input = self._tutel_dispatcher.encode(reshaped_input)
        else:
            self.l_aux, combine_weights, dispatch_mask, self.exp_counts = self.gate(reshaped_input, input[1])
            dispatched_input = einsum("sec,sm->ecm", dispatch_mask.type_as(input[0]), reshaped_input)

        if self.wall_clock_breakdown:
            self.timers(FIRST_ALLTOALL_TIMER).start()

        if groups._get_expert_model_parallel_world_size() == 1:
            # If the non-expert is tensor-parallel, it will create
            # duplicate tokens on the tensor-parallel ranks.
            # Since our experts are not tensor-parallel, these duplicates
            # need to be dropped to ensure correctness.
            # this also doubles up as a communication optimization as we are
            # reducing the all-to-all communication volume.
            dispatched_input = drop_tokens(dispatched_input, dim=1)

        dispatched_input = _AllToAll.apply(self.ep_group, dispatched_input)

        if self.wall_clock_breakdown:
            self.timers(FIRST_ALLTOALL_TIMER).stop()
            self.time_falltoall = self.timers(FIRST_ALLTOALL_TIMER).elapsed(reset=False)

        # Re-shape after all-to-all: ecm -> gecm
        dispatched_input = dispatched_input.reshape(self.ep_size, self.num_local_experts, -1, d_model)

        expert_output = self.experts(dispatched_input)

        if self.wall_clock_breakdown:
            self.timers(SECOND_ALLTOALL_TIMER).start()

        expert_output = _AllToAll.apply(self.ep_group, expert_output)

        if self.wall_clock_breakdown:
            self.timers(SECOND_ALLTOALL_TIMER).stop()
            self.time_salltoall = self.timers(SECOND_ALLTOALL_TIMER).elapsed(reset=False)

        # Re-shape back: gecm -> ecm
        expert_output = expert_output.reshape(self.ep_size * self.num_local_experts, -1, d_model)

        if groups._get_expert_model_parallel_world_size() == 1:
            # the dropped duplicate tokens need to be gathered on each
            # tensor parallel rank again for the tensor-parallel
            # non-expert of the next layer.
            expert_output = gather_tokens(expert_output, dim=1)

        if self.use_tutel:
            combined_output = self._tutel_dispatcher.decode(expert_output.view(E * C, M))
        else:
            combined_output = einsum("sec,ecm->sm", combine_weights.type_as(input[0]), expert_output)

        a = combined_output.reshape(input[0].shape)

        if self.wall_clock_breakdown:
            self.timers(MOE_TIMER).stop()
            self.time_moe = self.timers(MOE_TIMER).elapsed(reset=False)

        return a