File size: 5,312 Bytes
11ed373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import torch
import abc
from abc import ABC

from deepspeed.ops.op_builder import FPQuantizerBuilder

fp_quant_module = None


class Quantizer(ABC):
    """
    Abstract Quantizer class that implmenents quantize/dequantize methods.

    Arguments:
        group_size (int, optional): number of values or elements that are grouped
            together for the quantization process.
    """

    def __init__(self, group_size=512) -> None:
        self.group_size = group_size

    @abc.abstractmethod
    def quantize(self,
                 input,
                 q_bits=8,
                 q_mantisa_bits=3,
                 stochastic_mode=False,
                 return_meta_tensor=False) -> torch.Tensor:
        ...

    @abc.abstractmethod
    def dequantize(self, input_q, fp_out=None, q_bits=8, q_mantisa_bits=3, scale=None) -> torch.Tensor:
        ...


class FP_Quantize(Quantizer):

    def __init__(self, group_size=512) -> None:
        global fp_quant_module
        super().__init__(group_size=group_size)
        if fp_quant_module is None:
            fp_quant_module = FPQuantizerBuilder().load()
        self.orig_dtype = None

    def quantize(self,
                 input,
                 q_bits=8,
                 q_mantisa_bits=3,
                 stochastic_mode=False,
                 return_meta_tensor=False) -> torch.Tensor:
        assert input.dtype == torch.bfloat16, "only support bf16 for now"
        if return_meta_tensor:
            assert q_bits == 8, "meta tensor is only supported with q_bit=8"

        self.orig_dtype = input.dtype
        self.orig_shape = input.shape

        if q_bits == 8:
            pass
        elif q_bits == 12:
            q_mantisa_bits = 4
        elif q_bits == 6:
            q_mantisa_bits = 2
        elif q_bits == 4:
            q_mantisa_bits = 1
        else:
            assert (0), \
                f"Missing {q_bits}-quantization, please add the template arguments for the kernel to support this precision!"

        out = fp_quant_module.quantize(input, self.group_size, stochastic_mode, q_bits, q_mantisa_bits)

        if return_meta_tensor:
            data, scale = out.split(self.group_size, dim=-1)
            return data.contiguous().reshape(input.shape), scale.contiguous()

        return out

    def dequantize(self, input_q, fp_out=None, q_bits=8, q_mantisa_bits=3, scale=None) -> torch.Tensor:
        assert (self.orig_dtype is not None), \
            "[De-quantization Error]: you need to call quantize before dequantizing!"
        fp_out = torch.empty(self.orig_shape, dtype=self.orig_dtype,
                             device=input_q.device) if fp_out is None else fp_out
        if q_bits == 8:
            pass
        elif q_bits == 12:
            q_mantisa_bits = 4
        elif q_bits == 6:
            q_mantisa_bits = 2
        elif q_bits == 4:
            q_mantisa_bits = 1
        else:
            assert (0), \
                f"Missing {q_bits}-dequantization, please add the template arguments for the kernel to support this precision!"

        if scale is not None:
            assert input_q.numel() == fp_out.numel(), \
            f'[De-quantization Error]: quantized data should have the same size as original tensor when scale is not None!'
            input_q = torch.cat([input_q.reshape(-1, self.group_size), scale], dim=-1).contiguous()

        fp_quant_module.dequantize(fp_out, input_q, self.group_size, q_mantisa_bits, q_bits - q_mantisa_bits - 1)
        return fp_out

    def selective_dequantize(self,
                             input_q,
                             indexes,
                             fp_out=None,
                             q_bits=8,
                             q_mantisa_bits=3,
                             scale=None) -> torch.Tensor:
        assert (not hasattr(self, 'orig_shape') or len(self.orig_shape) == 3), \
            "Selective-Dequantization works on 3d tensor only! Please reshape the tensor before calling dequantize function."
        assert (self.orig_dtype is not None), \
            "[De-quantization Error]: you need to call quantize before dequantizing!"
        fp_out = torch.empty(
            (indexes.shape[0],
             *self.orig_shape[1:]), dtype=self.orig_dtype, device=input_q.device) if fp_out is None else fp_out
        if q_bits == 8:
            pass
        elif q_bits == 12:
            q_mantisa_bits = 4
        elif q_bits == 6:
            q_mantisa_bits = 2
        elif q_bits == 4:
            q_mantisa_bits = 1
        else:
            assert (0), \
                f"Missing {q_bits}-dequantization, please add the template arguments for the kernel to support this precision!"

        if scale is not None:
            assert input_q.numel() == fp_out.numel(), \
            f'[De-quantization Error]: quantized data should have the same size as original tensor when scale is not None!'
            input_q = torch.cat([input_q.reshape(-1, self.group_size), scale], dim=-1).contiguous()

        fp_quant_module.selective_dequantize(fp_out, input_q, indexes, self.group_size, q_mantisa_bits,
                                             q_bits - q_mantisa_bits - 1)
        return fp_out