File size: 32,948 Bytes
11ed373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

# DeepSpeed note, code taken & adapted from commit 9aa94789f13ada713af36cfd8cca2fc9a7f6b79a
# https://github.com/ptillet/torch-blocksparse/blob/master/torch_blocksparse/matmul.py
import importlib
import torch

import triton
import triton.language as tl
import triton._C.libtriton as libtriton
from deepspeed.accelerator import get_accelerator


@triton.jit
def _kernel(A, B, C, stride_za, stride_ha, stride_ma, stride_ka, stride_zb, stride_hb, stride_kb, stride_nb, stride_zc,
            stride_hc, stride_mc, stride_nc, DS0, DS1, SDD_K, SDD_off_width, lut, locks, nlocks, **meta):
    TM = meta['TM']
    TN = meta['TN']
    TK = meta['TK']
    TZ = meta['TZ']
    BLOCK = meta['BLOCK']
    #------------#
    #- Prologue -#
    #------------#
    pid0 = tl.program_id(0)
    pid1 = tl.program_id(1)
    pidz = tl.program_id(2)
    if meta['SDD']:
        pid1 = pid1 + SDD_off_width
        blockidm = tl.arange(0, TM) // BLOCK
        blockidn = tl.arange(0, TN) // BLOCK
        offlutm = blockidm * (TN // BLOCK) * 4
        offlutn = blockidn * 4
        header = lut + pid1 * (TM // BLOCK) * (TN // BLOCK) * 4
        z = tl.load(header + 0)
        i = tl.load(header + 1 + offlutm)
        j = tl.load(header + 2 + offlutn)
        AS1 = SDD_K // TZ
        lockid = tl.where(TZ > 1, 1, 0)
        offka = pid0 * AS1
        offkb = pid0 * AS1
        offmc = 0
        offnc = 0
        offpa = 0
        offpb = 0
        maxid = TZ
        offhc = 0
        offha = z
        offhb = z
        ram = i * BLOCK + (tl.arange(0, TM) % BLOCK)
        rbn = j * BLOCK + (tl.arange(0, TN) % BLOCK)
    else:
        header = lut + pid0 * 6
        offset = tl.load(header + 0)
        AS1 = tl.load(header + 1)
        column = tl.load(header + 2)
        depth = tl.load(header + 3)
        lockid = tl.load(header + 4)
        maxid = tl.load(header + 5)
        pinc = lut + offset
        offhc = depth
        if meta['DSD']:
            # output offset
            offnc = pid1 * TN
            offmc = column * TM
            offpc = 0
            # dense input offset
            offnb = pid1 * TN
            offkb = tl.load(pinc)
            offkb = tl.multiple_of(offkb, 8)  # compiler hint
            offpb = 0
            # sparse input offset
            offma = 0
            offka = 0
            offpa = tl.load(pinc + 1)
            offpa = tl.multiple_of(offpa, 8)  # compiler hint
            offpa = offpa * BLOCK * BLOCK
            offha = 0
            offhb = depth
        else:
            # output offset
            offmc = pid1 * TM
            offnc = column * TN
            offpc = 0
            # dense input offset
            offma = pid1 * TM
            offka = tl.load(pinc)
            offka = tl.multiple_of(offka, 8)  # compiler hint
            offpa = 0
            # sparse input offset
            offnb = 0
            offkb = 0
            offpb = tl.load(pinc + 1)
            offpb = tl.multiple_of(offpb, 8)  # compiler hint
            offpb = offpb * BLOCK * BLOCK
            offha = depth
            offhb = 0
        ram = offma + tl.arange(0, TM)
        rbn = offnb + tl.arange(0, TN)

    # initialize a, b pointers
    rka = offka + tl.arange(0, TK)
    rkb = offkb + tl.arange(0, TK)
    pa = A + pidz * stride_za + offha * stride_ha + offpa + ram[:, None] * stride_ma + rka[None, :] * stride_ka
    pb = B + pidz * stride_zb + offhb * stride_hb + offpb + rbn[None, :] * stride_nb + rkb[:, None] * stride_kb
    if meta['DDS']:
        checkam = ram[:, None] < DS0
    else:
        checkam = AS1 > 0
    if meta['DSD']:
        checkbn = rbn[None, :] < DS0
    else:
        checkbn = AS1 > 0
    a = tl.load(pa, mask=checkam, other=0.)
    b = tl.load(pb, mask=checkbn, other=0.)

    ## ---------------- ##
    ##    Inner Loop    ##
    ## ---------------- ##
    acc = tl.zeros((TM, TN), dtype=tl.float32)
    for k in range(AS1, 0, -TK):
        acc += tl.dot(a, b)
        if meta['SDD']:
            inc_a = TK * stride_ka
            inc_b = TK * stride_kb
        else:
            pinc += 2
        if meta['DSD']:
            inc_b = tl.load(pinc)
            inc_a = tl.load(pinc + 1)
            inc_b = tl.multiple_of(inc_b, 8)
            inc_a = tl.multiple_of(inc_a, 8)
            inc_b = inc_b * stride_kb
        if meta['DDS']:
            inc_a = tl.load(pinc)
            inc_b = tl.load(pinc + 1)
            inc_a = tl.multiple_of(inc_a, 8)
            inc_b = tl.multiple_of(inc_b, 8)
            inc_a = inc_a * stride_ka
        pa += inc_a
        pb += inc_b
        # pre-fetch
        checkak = k > TK
        checkbk = k > TK
        checka = checkam & checkak
        checkb = checkbn & checkbk
        a = tl.load(pa, mask=checka)
        b = tl.load(pb, mask=checkb)
    c = acc.to(C.dtype.element_ty)

    if meta['SDD']:
        checkc = True
        rr_blockidm = tl.arange(0, TM) // BLOCK
        rr_blockidn = tl.arange(0, TN) // BLOCK
        rr_offlutm = rr_blockidm * (TN // BLOCK) * 4
        rr_offlutn = rr_blockidn * 4
        off_bkid = 3 + rr_offlutm[:, None] + rr_offlutn[None, :]
        bkid = tl.load(header + off_bkid)
        offpc = bkid * BLOCK * BLOCK
        rcm = tl.arange(0, TM) % BLOCK
        rcn = tl.arange(0, TN) % BLOCK
    else:
        rcm = offmc + tl.arange(0, TM)
        rcn = offnc + tl.arange(0, TN)
    if meta['DSD']:
        checkc = rcn[None, :] < DS0
    if meta['DDS']:
        checkc = rcm[:, None] < DS0

    pc = C + offpc + offhc * stride_hc + pidz * stride_zc + rcm[:, None] * stride_mc + rcn[None, :] * stride_nc
    # write-back directly
    if lockid == 0:
        tl.store(pc, c, mask=checkc)
    # accumulate partial results using spin-locks
    else:
        plock = locks + tl.program_id(2) * nlocks * tl.num_programs(1) + tl.program_id(1) * nlocks + lockid - 1
        pcount = plock + tl.num_programs(2) * tl.num_programs(1) * nlocks
        while tl.atomic_cas(plock, 0, 1) == 1:
            pass
        count = tl.load(pcount)
        if count == 0:
            tl.store(pc, c, mask=checkc)
        else:
            d = tl.load(pc, mask=checkc)
            tl.store(pc, d + c, mask=checkc)
        tl.atomic_xchg(pcount, (count + 1) % maxid)
        tl.atomic_xchg(plock, 0)


##############
#  MAIN API  #
##############
class _sparse_matmul(torch.autograd.Function):

    sdd_cache = dict()
    dsd_cache = dict()
    dds_cache = dict()
    locks = dict()

    # Given an array sizes representing reduction size for each
    # column of a block-mode matrix multiplication,
    # performs load-balancing to achieve more smaller reductions
    # between `seg_size` elements
    @staticmethod
    def load_balance(sizes, block):
        #global triton
        #if triton is None:
        #    triton = importlib.import_module('triton')
        # segment size
        # heuristics taken from OpenAI blocksparse code
        # https://github.com/openai/blocksparse/blob/master/blocksparse/matmul.py#L95
        max_size = sizes.max()
        min_size = sizes[sizes != 0].min()
        #if max_size > min_size * 2.0:
        #  seg_max = max(triton.cdiv(max_size, 4), min_size*2)
        #else:
        #  seg_max = max_size
        seg_max = max_size
        seg_min = max(triton.cdiv(seg_max, 4), 4)
        # split reduction into segments
        div = sizes // seg_max
        rem = sizes % seg_max
        packs = div + (sizes < seg_min).long() + (rem >= seg_min).long()
        width = packs.sum()
        segments = torch.empty(width, dtype=sizes.dtype)
        column = torch.empty_like(segments)
        lockid = torch.zeros_like(segments)
        maxid = torch.zeros_like(segments)
        nlocks = 0
        current = 0
        col_idx = 0
        for i in range(len(sizes)):
            d, r = div[i], rem[i]
            isempty = sizes[i] < seg_min
            last = current + d + (r >= seg_min) + isempty
            # column id
            column[current:last] = col_idx
            # lock id
            if d > 1 or (d == 1 and r >= seg_min):
                nlocks += 1
                lockid[current:last] = nlocks
                maxid[current:last] = last - current
            # segment size
            segments[current:current + d] = seg_max
            if r < seg_min and not isempty:
                segments[current + d - 1] += r
            if r >= seg_min or isempty:
                segments[current + d] = r
            current = last
            col_idx += 1
        offsets = torch.zeros_like(segments)
        offsets[1:] = torch.cumsum(segments[:-1], dim=0)
        return segments, column, lockid, maxid, offsets

    @staticmethod
    def get_locks(size, dev):
        if dev not in _sparse_matmul.locks or \
            size > _sparse_matmul.locks[dev].size(0):
            _sparse_matmul.locks[dev] = torch.zeros(size, dtype=torch.int32, device=dev)
        return _sparse_matmul.locks[dev]

    ##########################
    # SPARSE = DENSE x DENSE #
    ##########################

    @staticmethod
    def make_sdd_lut(layout, block, dtype, device):
        #_sparse_matmul._load_utils()
        #start_width = 64 // block
        #segmented = _sparse_matmul.sdd_segment(layout.type(torch.int32), start_width)
        start_width = (128 if block > 16 else 32) // block
        layout = layout.type(torch.int32)
        segmented = libtriton.superblock(layout.data_ptr(), layout.shape[0], layout.shape[1], layout.shape[2],
                                         start_width)
        luts, widths, packs = [], [], []
        for size, nnz in segmented:
            """ width = nnz.shape[0] // (size * size)
            h = nnz[:, 0]
            i = nnz[:, 1]
            j = nnz[:, 2]
            b = nnz[:, 3]
            lut = torch.stack((h, i, j, b), dim=1).view(-1).contiguous()
            luts.append(lut.type(torch.int32).to(device))
            widths.append(width)
            packs.append(size) """
            nnz = nnz.reshape(-1, 4)
            width = nnz.shape[0] // (size * size)
            luts.append(torch.from_numpy(nnz).type(torch.int32).to(device))
            widths.append(width)
            packs.append(size)
        # create locks
        return luts, None, widths, packs

    @staticmethod
    def _sdd_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, luts, num_locks, widths, packs, bench, time):
        if trans_c:
            a, b = b, a
            trans_a, trans_b = not trans_b, not trans_a
        AS0 = a.size(0)
        # Shape check
        a_dim = -2 if trans_a else -1
        b_dim = -1 if trans_b else -2
        a_inner, b_inner = a.shape[a_dim], b.shape[b_dim]
        if a_inner != b_inner:
            raise ValueError(f"Size of tensor A along the {a_dim} dim ({a_inner}) must match size "
                             f"of tensor B along the {b_dim} dim ({b_inner})")
        if a_inner % 16 != 0:
            raise ValueError('Reduction size for SDD must be a multiple of 16')

        batch_size = a.size(0)
        a_outer = a.size(3 if trans_a else 2)
        dtype = a.dtype
        is_16_multiple = a_inner % 16 == 0
        is_32_multiple = a_inner % 32 == 0
        is_64_multiple = a_inner % 64 == 0
        if not is_16_multiple:
            raise ValueError('Reduction size for SDD must be a multiple of 16')
        device = a.device
        # create kernel
        total_width = sum([width * pack * pack for width, pack in zip(widths, packs)])
        c = torch.empty((batch_size, total_width, block, block), dtype=dtype, device=a.device)
        for lut, width, pack in zip(luts, widths, packs):
            F32TK = [8, 16]
            F16TK = [16]
            F16TK += [32] if is_32_multiple else []
            F16TK += [64] if is_64_multiple else []
            TK = {torch.float32: F32TK, torch.float16: F16TK}[dtype]
            num_lock = 1
            meta = {
                'TM': block * pack,
                'TN': block * pack,
                'BLOCK': block,
                'TK': TK[0],
                'TZ': 1,
                'SDD': True,
                'DSD': False,
                'DDS': False
            }
            # create output
            locks = _sparse_matmul.get_locks(2 * width * AS0 * num_lock, a.device)
            # maximum grid size is 65535
            # so operation might be decomposed into multiple
            # kernel calls
            max_width = 49152
            total = 0 if bench else None
            for off_width in range(0, width, max_width):
                grid = lambda meta: [meta['TZ'], min(max_width, width - off_width), batch_size]
                _kernel[grid](a,
                              b,
                              c,
                              a.stride(0),
                              a.stride(1),
                              a.stride(3 if trans_a else 2),
                              a.stride(2 if trans_a else 3),
                              b.stride(0),
                              b.stride(1),
                              b.stride(3 if trans_b else 2),
                              b.stride(2 if trans_b else 3),
                              c.stride(0),
                              c.stride(0),
                              c.stride(2),
                              c.stride(3),
                              a_outer,
                              a_outer,
                              a_inner,
                              off_width,
                              lut,
                              locks,
                              num_lock,
                              num_warps=4,
                              **meta)
        # save for backward pass
        return c

    ##########################
    # DENSE = DENSE x SPARSE #
    ##########################

    # Given a binary layout of 0s and 1s,
    # Construct look-up table for efficient execution on GPUs
    @staticmethod
    def make_dxx_lut(layout, block, step, trans, device, transform=lambda idx: idx):
        # load-balancing
        _empty = torch.tensor([], dtype=torch.int64, device=layout.device)
        segments = _empty.clone()
        column = _empty.clone()
        depth = _empty.clone()
        lockid = _empty.clone()
        maxid = _empty.clone()
        offsets = _empty.clone()
        current_offset = 0
        current_maxid = 0
        for z in range(layout.size(0)):
            if trans:
                sizes = torch.sum(layout[z, :, :], 1)
            else:
                sizes = torch.sum(layout[z, :, :], 0)
            z_segments, z_column, z_lockid, z_maxid, z_offsets = _sparse_matmul.load_balance(sizes, block)
            z_depth = z * torch.ones_like(z_segments)
            z_lockid[z_lockid > 0] += current_maxid
            current_maxid = z_lockid.max()
            # concatenate depth
            segments = torch.cat((segments, z_segments))
            column = torch.cat((column, z_column))
            depth = torch.cat((depth, z_depth))
            maxid = torch.cat((maxid, z_maxid))
            offsets = torch.cat((offsets, current_offset + z_offsets))
            lockid = torch.cat((lockid, z_lockid))
            current_offset += layout[z, :, :].sum()
        segments *= step
        # pointer increments
        if trans:
            nnz = layout.nonzero()
        else:
            nnz = layout.transpose(1, 2).nonzero()
        num_blocks = nnz.size(0)
        offsets = torch.min(offsets, (num_blocks - 1) * torch.ones_like(offsets))
        idx = transform(nnz[:, 2] * block)
        xincs = idx.clone()
        xincs[1:] -= idx[:-1]
        # divide block into multiple steps
        div = block // step
        xincs = xincs.view(-1, 1).repeat(1, div)
        xincs[:, 1:] = step
        xincs[:, 0] -= (div - 1) * step
        # first increment for each reduction is actually the offset
        xincs[offsets[segments > 0], 0] = idx[offsets[segments > 0]]
        xincs = xincs.view(-1)
        # block-mode input increments
        if trans:
            widx = torch.arange(num_blocks)
        else:
            widx = _empty.clone()
            current_offset = 0
            for z in range(layout.size(0)):
                layoutw = layout[z, :, :].clone()
                msum = layoutw.sum()
                layoutw[layoutw > 0] = 1 + torch.arange(msum)
                widx = torch.cat((widx, current_offset + layoutw.T[layoutw.T > 0] - 1))
                current_offset += msum
        widx = widx
        wincs = widx * block * block
        wincs[1:] -= widx[:-1] * block * block
        wincs = wincs.view(-1, 1).repeat(1, div)
        if trans:
            wincs[:, 1:] = step
            wincs[:, 0] -= (div - 1) * step
        else:
            wincs[:, 1:] = step * block
            wincs[:, 0] -= (div - 1) * step * block
        wincs[offsets[segments > 0], 0] = widx[offsets[segments > 0]]
        wincs = wincs.view(-1)
        # adjust offset and segment size
        offsets *= 2 * div
        segments *= div
        # create header
        width = column.size(0)
        offsets += 6 * width
        header = torch.stack((offsets, segments, column, depth, lockid, maxid), dim=1).view(-1).contiguous()
        incs = torch.stack((xincs, wincs), dim=1).view(-1).contiguous()
        incs = torch.cat((incs, torch.zeros(2, device=incs.device, dtype=incs.dtype)))
        # create lut
        lut = torch.cat((header, incs))
        lut = lut.type(torch.int32).to(device)
        # create locks
        num_locks = max(1, lockid.max())
        return lut, num_locks, width, None

    @staticmethod
    def _dds_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, lut, num_locks, width, packs, bench, time):
        global triton
        if triton is None:
            triton = importlib.import_module('triton')

        # shapes / dtypes
        AS0 = a.size(0)
        AS1 = a.size(1)
        AS2 = a.size(3 if trans_a else 2)
        AS3 = a.size(2 if trans_a else 3)
        BS0 = spdims[0]
        BS1 = block * spdims[2 if trans_b else 1]
        BS2 = block * spdims[1 if trans_b else 2]
        dtype = a.dtype
        # kernel
        meta = {'TN': block, 'TM': 128, 'TK': 16, 'BLOCK': block, 'TZ': 1, 'SDD': False, 'DSD': False, 'DDS': True}
        # output
        CS0 = AS0
        CS1 = AS1
        CS2 = BS2 if trans_c else AS2
        CS3 = AS2 if trans_c else BS2
        locks = _sparse_matmul.get_locks(2 * AS0 * AS2 // 32 * num_locks, a.device)
        c = torch.empty((CS0, CS1, CS2, CS3), dtype=dtype, device=a.device)
        grid = lambda meta: [width, triton.cdiv(AS2, meta['TM']), AS0]
        _kernel[grid](a,
                      b,
                      c,
                      a.stride(0),
                      a.stride(1),
                      a.stride(3 if trans_a else 2),
                      a.stride(2 if trans_a else 3),
                      b.stride(0),
                      b.stride(1),
                      b.stride(3 if trans_b else 2),
                      b.stride(2 if trans_b else 3),
                      c.stride(0),
                      c.stride(1),
                      c.stride(3 if trans_c else 2),
                      c.stride(2 if trans_c else 3),
                      AS2,
                      BS2,
                      0,
                      0,
                      lut,
                      locks,
                      num_locks,
                      num_warps=4,
                      **meta)
        return c

    @staticmethod
    def _dsd_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, lut, num_locks, width, packs, bench, time):
        global triton
        if triton is None:
            triton = importlib.import_module('triton')

        # shapes / dtypes
        AS0 = spdims[0]
        AS1 = block * spdims[2 if trans_a else 1]
        AS2 = block * spdims[1 if trans_a else 2]
        BS0 = b.size(0)
        BS1 = b.size(1)
        BS2 = b.size(3 if trans_b else 2)
        BS3 = b.size(2 if trans_b else 3)
        dtype = a.dtype
        # kernel

        meta = {'TM': block, 'TN': 128, 'TK': 16, 'BLOCK': block, 'TZ': 1, 'SDD': False, 'DSD': True, 'DDS': False}
        # output
        CS0 = BS0
        CS1 = BS1
        CS2 = BS3 if trans_c else AS1
        CS3 = AS1 if trans_c else BS3
        locks = _sparse_matmul.get_locks(2 * BS0 * BS3 // 32 * num_locks, a.device)
        c = torch.empty((CS0, CS1, CS2, CS3), dtype=dtype, device=a.device)
        grid = lambda meta: [width, triton.cdiv(BS3, meta['TN']), BS0]
        _kernel[grid](a,
                      b,
                      c,
                      a.stride(0),
                      a.stride(1),
                      a.stride(3 if trans_a else 2),
                      a.stride(2 if trans_a else 3),
                      b.stride(0),
                      b.stride(1),
                      b.stride(3 if trans_b else 2),
                      b.stride(2 if trans_b else 3),
                      c.stride(0),
                      c.stride(1),
                      c.stride(2),
                      c.stride(3),
                      BS3,
                      AS1,
                      0,
                      0,
                      lut,
                      locks,
                      num_locks,
                      num_warps=4,
                      **meta)
        return c

    fn = {'sdd': _sdd_matmul.__get__(object), 'dsd': _dsd_matmul.__get__(object), 'dds': _dds_matmul.__get__(object)}

    @staticmethod
    def forward(ctx, a, b, trans_a, trans_b, trans_c, mode, spdims, block, c_lut, c_num_locks, c_width, c_packs,
                c_bench, c_time, da_lut, da_num_locks, da_width, da_packs, da_bench, da_time, db_lut, db_num_locks,
                db_width, db_packs, db_bench, db_time):
        c = _sparse_matmul.fn[mode](a, b, trans_a, trans_b, trans_c, spdims, block, c_lut, c_num_locks, c_width,
                                    c_packs, c_bench, c_time)
        # save for backward
        ctx.save_for_backward(a, b)
        ctx.da_num_locks = da_num_locks
        ctx.da_lut = da_lut
        ctx.da_width = da_width
        ctx.da_packs = da_packs
        ctx.da_bench = da_bench
        ctx.da_time = da_time
        ctx.db_lut = db_lut
        ctx.db_num_locks = db_num_locks
        ctx.db_width = db_width
        ctx.db_bench = db_bench
        ctx.db_packs = db_packs
        ctx.db_time = db_time
        ctx.mode = mode
        ctx.spdims = spdims
        ctx.block = block
        ctx.trans_a = trans_a
        ctx.trans_b = trans_b
        return c

    @staticmethod
    def backward(ctx, dc):
        # saved for backward
        a, b = ctx.saved_tensors
        mode = ctx.mode
        # gradients w.r.t. a
        if ctx.needs_input_grad[0]:
            mode_da = mode[1] + mode[0] + mode[2]
            da = _sparse_matmul.fn[mode_da](dc, b, False, not ctx.trans_b, ctx.trans_a, ctx.spdims, ctx.block,
                                            ctx.da_lut, ctx.da_num_locks, ctx.da_width, ctx.da_packs, ctx.da_bench,
                                            ctx.da_time)
        # gradients w.r.t. b
        if ctx.needs_input_grad[1]:
            mode_db = mode[2] + mode[1] + mode[0]
            db = _sparse_matmul.fn[mode_db](a, dc, not ctx.trans_a, False, ctx.trans_b, ctx.spdims, ctx.block,
                                            ctx.db_lut, ctx.db_num_locks, ctx.db_width, ctx.db_packs, ctx.db_bench,
                                            ctx.db_time)
        return da, db, None, None, None,\
               None, None, None, None,\
               None, None, None, None, None, None,\
               None, None, None, None, None, None,\
               None, None, None, None, None, None


class MatMul:
    """Block-Sparse MatMul class; this class handles three types of matrix-multiplication:
       - sparse = dense X dense
       - dense = sparse X dense
       - dense = dense X sparse

    For more details about sparsity config, please see `Generative Modeling with Sparse Transformers`: https://arxiv.org/abs/1904.10509
    """

    def make_lut(self, dtype, device):
        """Generates the sparsity layout/s used in block-sparse matmul
        """
        key = (dtype, device)
        if key in self.lut_cache:
            return self.lut_cache[key]
        # C look-up table
        layout, block = self.layout, self.block
        step = 16
        if self.mode == 'sdd':
            c_lut, c_num_locks, c_width, c_packs = _sparse_matmul.make_sdd_lut(layout, block, dtype, device)
        elif self.mode == 'dsd':
            c_lut, c_num_locks, c_width, c_packs = _sparse_matmul.make_dxx_lut(layout, block, step, not self.trans_a,
                                                                               device)
        elif self.mode == 'dds':
            c_lut, c_num_locks, c_width, c_packs = _sparse_matmul.make_dxx_lut(layout, block, step, self.trans_b,
                                                                               device)
        # DA look-up table
        if self.mode == 'sdd':
            da_lut, da_num_locks, da_width, da_packs = _sparse_matmul.make_dxx_lut(layout, block, step, True, device)
        elif self.mode == 'dsd':
            da_lut, da_num_locks, da_width, da_packs = _sparse_matmul.make_sdd_lut(layout, block, dtype, device)
        elif self.mode == 'dds':
            da_lut, da_num_locks, da_width, da_packs = _sparse_matmul.make_dxx_lut(layout, block, step,
                                                                                   not self.trans_b, device)
        # DB look-up table
        if self.mode == 'sdd':
            db_lut, db_num_locks, db_width, db_packs = _sparse_matmul.make_dxx_lut(layout, block, step, False, device)
        elif self.mode == 'dsd':
            db_lut, db_num_locks, db_width, db_packs = _sparse_matmul.make_dxx_lut(layout, block, step, self.trans_a,
                                                                                   device)
        elif self.mode == 'dds':
            db_lut, db_num_locks, db_width, db_packs = _sparse_matmul.make_sdd_lut(layout, block, dtype, device)
        self.lut_cache[key] = (c_lut, c_num_locks, c_width, c_packs,\
                               da_lut, da_num_locks, da_width, da_packs,\
                               db_lut, db_num_locks, db_width, db_packs)
        return self.lut_cache[key]

    def __init__(self, layout, block, mode, trans_a=False, trans_b=False, bench=False):
        """Initialize the Block-Sparse MatMul class.

        Arguments:
             layout: required: sparsity layout tensor
             block: required: an integer determining the block size.
             mode: required: a string determining type of matmul; ('sdd') sparse = dense X dense, ('dsd') dense = sparse X dense, ('dds') dense = dense X sparse
             trans_a: optional: a boolean determining if multiplication needs to be applied on transpose of input a; default is false
             trans_b: optional: a boolean determining if multiplication needs to be applied on transpose of input b; default is false
             bench: optional: set if you want to do benchmarking
        """

        if mode not in ['sdd', 'dsd', 'dds']:
            raise NotImplementedError('Supported modes are: sdd, dsd, dds')
        # look-up table cache
        self.lut_cache = dict()
        # attributes
        self.trans_a = trans_a
        self.trans_b = trans_b
        self.mode = mode
        self.block = block
        self.layout = layout
        layout_dim = layout.ndim
        assert layout_dim in (2, 3), "Layout should be a 2 or 3 dimensional tensor of 0s and 1s"
        if not mode == 'sdd':
            # Dims to be reduced on the 'inside' of the matmul, either -1 or -2
            trans_dense, trans_sparse, sparse_inner = (trans_b, trans_a, -1) if mode == 'dsd' else (trans_a, trans_b,
                                                                                                    -2)
            self.dense_inner_dim = -((sparse_inner % 2) + 1) if not trans_dense else sparse_inner
            sparse_inner = sparse_inner if not trans_sparse else -((sparse_inner % 2) + 1)

            # Inner dim of the dense input should be equal to the inner dim of the sparse input
            self.dense_inner_size = layout.shape[sparse_inner] * block
            # Expected shape for sparse inputs
            self.sparse_shape = (layout.sum().item(), block, block)

        # Support using the same layout across attention heads etc.
        if layout_dim == 2:
            layout = layout.unsqueeze(0)

        layout = layout.long()  # Above code assumes the layout tensor is an integral type

        self.spdims = layout.shape
        # timings
        self.bench = bench
        self.time_c = None
        self.time_da = None
        self.time_db = None

    # pad shapes of a tensor to make it
    # compatible with kernel calls
    @staticmethod
    def _pad_shape(x, is_sparse):
        max_dim = 3 if is_sparse else 4
        for i in range(max_dim - x.dim()):
            x = x.unsqueeze(0)
        return x

    def __call__(self, a, b):
        """Applies Block-Sparse MatMul.

        For more details about sparsity config, please see `Generative Modeling with Sparse Transformers`: https://arxiv.org/abs/1904.10509

        Arguments:
             a: required: a dense/block-sparse tensor; first input of mat-mul
             b: required: a dense/block-sparse tensor; second input of mat-mul

        Return:
             c: a dense/block-sparse tensor result of a X b
        """


        c_lut, c_num_locks, c_width, c_packs,\
        da_lut, da_num_locks, da_width, da_packs,\
        db_lut, db_num_locks, db_width, db_packs = self.make_lut(a.dtype, a.device)
        # timings
        time_c = [None]
        time_da = [None]
        time_db = [None]

        original_dims = max(a.ndim, b.ndim)
        a, b = self._validate_inputs(a, b)

        # pad shapes with ones
        a = MatMul._pad_shape(a, self.mode == 'dsd')
        b = MatMul._pad_shape(b, self.mode == 'dds')
        # execute

        c = _sparse_matmul.apply(a, b, self.trans_a, self.trans_b, False, self.mode, self.spdims, self.block, c_lut,
                                 c_num_locks, c_width, c_packs, self.bench, time_c, da_lut, da_num_locks, da_width,
                                 da_packs, self.bench, time_da, db_lut, db_num_locks, db_width, db_packs, self.bench,
                                 time_db)

        # This removes any leading singleton dimensions we may have added to the tensor that weren't in the input
        dims_to_trim = c.ndim - original_dims
        for _ in range(dims_to_trim):
            c = c.squeeze(0)

        self.time_c = time_c[0]
        self.time_da = time_da[0]
        self.time_db = time_db[0]
        return c

    def _validate_inputs(self, a, b):
        if a.device != b.device:
            raise ValueError(f"Inputs must be on the same device; got {a.device} for tensor A "
                             f"and {b.device} for tensor B")
        if not get_accelerator().on_accelerator(a):
            raise ValueError("Only GPU devices are supported for now")

        # When autocast is enabled, torch.matmul autocasts to float16, so we do the same here
        if torch.is_autocast_enabled():
            a, b = a.half(), b.half()
        elif a.dtype != b.dtype:
            raise ValueError(f"Inputs must be the same dtype; got {a.dtype} for A and {b.dtype} for B")

        mode, trans_a, trans_b = self.mode, self.trans_a, self.trans_b
        if mode != 'sdd':
            # One input is sparse
            dense, dense_name, sparse, sparse_name = (a, 'A', b, 'B') if mode == 'dds' else (b, 'B', a, 'A')
            dense_inner = dense.shape[self.dense_inner_dim]
            if dense_inner != self.dense_inner_size:
                raise ValueError(f"Expected tensor {dense_name} to have size {self.dense_inner_size} at dim "
                                 f"{self.dense_inner_dim % dense.ndim}, got {dense_inner}.")

            if sparse.shape[-len(self.sparse_shape):] != self.sparse_shape:
                raise ValueError(f"Expected tensor with trailing dimensions of shape {self.sparse_shape} for argument "
                                 f"{sparse_name}, got {sparse.shape}")

        def add_extra_dims(x):
            # Add extra leading singleton dimensions if needed
            dims_needed = 4 - x.ndim
            if dims_needed > 0:
                singletons = [1] * dims_needed
                x = x.view(*singletons, *x.shape)
            elif dims_needed < 0:
                raise ValueError("Tensors with more than 4 dimensions are not currently supported")

            return x

        # Pad shapes with leading singleton dimensions
        a = add_extra_dims(a)
        b = add_extra_dims(b)

        return a, b