File size: 50,350 Bytes
dd3126b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from typing import List, Optional
from collections import OrderedDict
import numpy as np
from deepspeed.accelerator import get_accelerator
from deepspeed.utils import logger
from deepspeed.moe.layer import MoE
from deepspeed.utils.timer import FORWARD_GLOBAL_TIMER, BACKWARD_GLOBAL_TIMER, STEP_GLOBAL_TIMER

Tensor = torch.Tensor

module_flop_count = []
module_mac_count = []
old_functions = {}

DEFAULT_PRECISION = 2


class FlopsProfiler(object):
    """Measures the latency, number of estimated floating-point operations and parameters of each module in a PyTorch model.

    The flops-profiler profiles the forward pass of a PyTorch model and prints the model graph with the measured profile attached to each module. It shows how latency, flops and parameters are spent in the model and which modules or layers could be the bottleneck. It also outputs the names of the top k modules in terms of aggregated latency, flops, and parameters at depth l with k and l specified by the user. The output profile is computed for each batch of input.
    The DeepSpeed flops profiler can be used with the DeepSpeed runtime or as a standalone package.
    When using DeepSpeed for model training, the flops profiler can be configured in the deepspeed_config file and no user code change is required.

    If using the profiler as a standalone package, one imports the flops_profiler package and use the APIs.

    Here is an example for usage in a typical training workflow:

        .. code-block:: python

            model = Model()
            prof = FlopsProfiler(model)

            for step, batch in enumerate(data_loader):
                if step == profile_step:
                    prof.start_profile()

                loss = model(batch)

                if step == profile_step:
                    flops = prof.get_total_flops(as_string=True)
                    params = prof.get_total_params(as_string=True)
                    prof.print_model_profile(profile_step=profile_step)
                    prof.end_profile()

                loss.backward()
                optimizer.step()

    To profile a trained model in inference, use the `get_model_profile` API.

    Args:
        object (torch.nn.Module): The PyTorch model to profile.
    """

    def __init__(self, model, ds_engine=None, recompute_fwd_factor=0.0):
        self.model = model
        self.ds_engine = ds_engine
        self.recompute_fwd_factor = recompute_fwd_factor
        self.started = False
        self.func_patched = False

    def start_profile(self, ignore_list=None):
        """Starts profiling.

        Extra attributes are added recursively to all the modules and the profiled torch.nn.functionals are monkey patched.

        Args:
            ignore_list (list, optional): the list of modules to ignore while profiling. Defaults to None.
        """
        logger.info("Flops profiler started")
        self.reset_profile()
        _patch_functionals()
        _patch_tensor_methods()

        def register_module_hooks(module, ignore_list):
            if ignore_list and type(module) in ignore_list:
                return

            # if computing the flops of a module directly
            if type(module) in MODULE_HOOK_MAPPING:
                if not hasattr(module, "__flops_handle__"):
                    module.__flops_handle__ = module.register_forward_hook(MODULE_HOOK_MAPPING[type(module)])
                return

            # if computing the flops of the functionals in a module
            def pre_hook(module, input):
                module_flop_count.append([])
                module_mac_count.append([])

            if not hasattr(module, "__pre_hook_handle__"):
                module.__pre_hook_handle__ = module.register_forward_pre_hook(pre_hook)

            def post_hook(module, input, output):
                if module_flop_count:
                    module.__flops__ += sum([elem[1] for elem in module_flop_count[-1]])
                    module_flop_count.pop()
                    module.__macs__ += sum([elem[1] for elem in module_mac_count[-1]])
                    module_mac_count.pop()

            if not hasattr(module, "__post_hook_handle__"):
                module.__post_hook_handle__ = module.register_forward_hook(post_hook)

            def start_time_hook(module, input):
                get_accelerator().synchronize()
                module.__start_time__ = time.time()

            if not hasattr(module, "__start_time_hook_handle"):
                module.__start_time_hook_handle__ = module.register_forward_pre_hook(start_time_hook)

            def end_time_hook(module, input, output):
                get_accelerator().synchronize()
                module.__duration__ += time.time() - module.__start_time__

            if not hasattr(module, "__end_time_hook_handle__"):
                module.__end_time_hook_handle__ = module.register_forward_hook(end_time_hook)

        self.model.apply(partial(register_module_hooks, ignore_list=ignore_list))
        self.started = True
        self.func_patched = True

    def stop_profile(self):
        """Stop profiling.

        All torch.nn.functionals are restored to their originals.
        """
        if self.started and self.func_patched:
            _reload_functionals()
            _reload_tensor_methods()
            self.func_patched = False

        def remove_profile_attrs(module):
            if hasattr(module, "__pre_hook_handle__"):
                module.__pre_hook_handle__.remove()
                del module.__pre_hook_handle__
            if hasattr(module, "__post_hook_handle__"):
                module.__post_hook_handle__.remove()
                del module.__post_hook_handle__
            if hasattr(module, "__flops_handle__"):
                module.__flops_handle__.remove()
                del module.__flops_handle__
            if hasattr(module, "__start_time_hook_handle__"):
                module.__start_time_hook_handle__.remove()
                del module.__start_time_hook_handle__
            if hasattr(module, "__end_time_hook_handle__"):
                module.__end_time_hook_handle__.remove()
                del module.__end_time_hook_handle__

        self.model.apply(remove_profile_attrs)

    def reset_profile(self):
        """Resets the profiling.

        Adds or resets the extra attributes.
        """

        def get_param_count_and_ep(param):
            """
            Return the number of parameters in the layer, whether the layer is an MoE layer,
            and its expert parallelism size if so
            """
            prefix = 'ep_size_'
            offset = len(prefix)
            expert_parallelism = 0
            if getattr(param, "group_name", "").startswith(prefix):
                try:
                    expert_parallelism = int(param.group_name[offset:])
                except ValueError:
                    pass
            return param.numel(), expert_parallelism, param.element_size()

        def add_or_reset_attrs(module):
            module.__flops__ = 0
            module.__macs__ = 0
            module.__params__ = module.__expert_params__ = module.__model_expert_params__ = 0
            parameters = (get_param_count_and_ep(p) for p in module.parameters())
            for num_params, expert_parallelism, per_param_size in parameters:
                params = num_params if not expert_parallelism else 0
                expert_params = num_params if expert_parallelism else 0
                # number of expert parameters taking into account other expert parallel groups
                model_expert_params = num_params * expert_parallelism
                module.__params__ += params
                module.__expert_params__ += expert_params
                module.__model_expert_params__ += model_expert_params
            module.__start_time__ = 0
            module.__duration__ = 0

        self.model.apply(add_or_reset_attrs)

    def end_profile(self):
        """Ends profiling.

        The added attributes and handles are removed recursively on all the modules.
        """
        if not self.started:
            return
        self.stop_profile()
        self.started = False

        def remove_profile_attrs(module):
            if hasattr(module, "__flops__"):
                del module.__flops__
            if hasattr(module, "__macs__"):
                del module.__macs__
            if hasattr(module, "__params__"):
                del module.__params__
            if hasattr(module, "__expert_params__"):
                del module.__expert_params__
            if hasattr(module, "__model_expert_params__"):
                del module.__model_expert_params__
            if hasattr(module, "__start_time__"):
                del module.__start_time__
            if hasattr(module, "__duration__"):
                del module.__duration__

        self.model.apply(remove_profile_attrs)
        logger.info("Flops profiler finished")

    def get_total_flops(self, as_string=False):
        """Returns the total flops of the model.

        Args:
            as_string (bool, optional): whether to output the flops as string. Defaults to False.

        Returns:
            The number of multiply-accumulate operations of the model forward pass.
        """
        total_flops = get_module_flops(self.model)
        return number_to_string(total_flops) if as_string else total_flops

    def get_total_macs(self, as_string=False):
        """Returns the total MACs of the model.

        Args:
            as_string (bool, optional): whether to output the flops as string. Defaults to False.

        Returns:
            The number of multiply-accumulate operations of the model forward pass.
        """
        total_macs = get_module_macs(self.model)
        return macs_to_string(total_macs) if as_string else total_macs

    def get_total_duration(self, as_string=False):
        """Returns the total duration of the model forward pass.

        Args:
            as_string (bool, optional): whether to output the duration as string. Defaults to False.

        Returns:
            The latency of the model forward pass.
        """
        total_duration = get_module_duration(self.model)
        return duration_to_string(total_duration) if as_string else total_duration

    def get_total_params(self, as_string=False):
        """Returns the total number of parameters stored per rank.

        Args:
            as_string (bool, optional): whether to output the parameters as string. Defaults to False.

        Returns:
            The total number of parameters stored per rank.
        """
        total_params = self.model.__expert_params__ + self.model.__params__
        return params_to_string(total_params) if as_string else total_params

    def is_expert_tensor_parallelism_enabled(self):
        for _, module in self.model.named_modules():
            if isinstance(module, MoE) and hasattr(module, 'enable_expert_tensor_parallelism'):
                return module.enable_expert_tensor_parallelism
        return False

    def print_model_profile(self, profile_step=1, module_depth=-1, top_modules=1, detailed=True, output_file=None):
        """Prints the model graph with the measured profile attached to each module.

        Args:
            profile_step (int, optional): The global training step at which to profile. Note that warm up steps are needed for accurate time measurement.
            module_depth (int, optional): The depth of the model to which to print the aggregated module information. When set to -1, it prints information from the top to the innermost modules (the maximum depth).
            top_modules (int, optional): Limits the aggregated profile output to the number of top modules specified.
            detailed (bool, optional): Whether to print the detailed model profile.
            output_file (str, optional): Path to the output file. If None, the profiler prints to stdout.
        """
        if not self.started:
            return
        import sys
        import os.path
        original_stdout = None
        f = None
        if output_file and output_file != "":
            dir_path = os.path.dirname(os.path.abspath(output_file))
            if not os.path.exists(dir_path):
                os.makedirs(dir_path)
            original_stdout = sys.stdout
            f = open(output_file, "w")
            sys.stdout = f

        total_flops = self.get_total_flops()
        total_macs = self.get_total_macs()
        total_duration = self.get_total_duration()
        total_params = self.get_total_params()
        expert_tensor_parallelism = None  # silence the linters
        total_model_expert_params = total_model_nonexpert_params = 0
        if self.ds_engine:
            total_model_nonexpert_params = self.model.__params__ * self.ds_engine.mp_world_size
            if self.ds_engine.has_moe_layers:
                expert_tensor_parallelism = self.ds_engine.mp_world_size if self.is_expert_tensor_parallelism_enabled(
                ) else 1
                total_model_expert_params = self.model.__model_expert_params__ * expert_tensor_parallelism

        self.flops = total_flops
        self.macs = total_macs
        self.params = total_params

        print("\n-------------------------- DeepSpeed Flops Profiler --------------------------")
        print(f'Profile Summary at step {profile_step}:')
        print("Notations:\n"
              "data parallel size (dp_size), model parallel size(mp_size),\n"
              "number of parameters (params), number of multiply-accumulate operations(MACs),\n"
              "number of floating-point operations (flops), floating-point operations per second (FLOPS),\n"
              "fwd latency (forward propagation latency), bwd latency (backward propagation latency),\n"
              "step (weights update latency), iter latency (sum of fwd, bwd and step latency)\n")
        line_fmt = '{:<70}  {:<8}'
        if self.ds_engine:
            print(line_fmt.format('world size: ', self.ds_engine.world_size))
            print(line_fmt.format('data parallel size: ', self.ds_engine.dp_world_size))
            print(line_fmt.format('model parallel size: ', self.ds_engine.mp_world_size))
            print(line_fmt.format('batch size per GPU: ', self.ds_engine.train_micro_batch_size_per_gpu()))
            if self.ds_engine.has_moe_layers:
                print(line_fmt.format('expert tensor parallelism enabled: ', expert_tensor_parallelism > 1))

        print(line_fmt.format('params per GPU: ', params_to_string(total_params)))
        if total_model_expert_params > 0:
            print(
                line_fmt.format('params of model: ',
                                params_to_string(total_model_nonexpert_params + total_model_expert_params)))
            print(line_fmt.format('   non-expert params of model: ', params_to_string(total_model_nonexpert_params)))
            print(line_fmt.format('   expert params of model: ', params_to_string(total_model_expert_params)))
        else:
            print(
                line_fmt.format('params of model = params per GPU * mp_size: ',
                                params_to_string(total_model_nonexpert_params)))

        print(line_fmt.format('fwd MACs per GPU: ', macs_to_string(total_macs)))

        print(line_fmt.format('fwd flops per GPU: ', number_to_string(total_flops)))

        print(
            line_fmt.format('fwd flops of model = fwd flops per GPU * mp_size: ',
                            number_to_string(total_flops * (self.ds_engine.mp_world_size if self.ds_engine else 1))))

        fwd_latency = self.get_total_duration()
        if self.ds_engine and self.ds_engine.wall_clock_breakdown():
            fwd_latency = self.ds_engine.timers(FORWARD_GLOBAL_TIMER).elapsed(False) / 1000.0
        print(line_fmt.format('fwd latency: ', duration_to_string(fwd_latency)))
        print(
            line_fmt.format('fwd FLOPS per GPU = fwd flops per GPU / fwd latency: ',
                            flops_to_string(total_flops / fwd_latency)))

        if self.ds_engine and self.ds_engine.wall_clock_breakdown():
            bwd_factor = 2 + self.recompute_fwd_factor
            bwd_latency = self.ds_engine.timers(BACKWARD_GLOBAL_TIMER).elapsed(False) / 1000.0
            step_latency = self.ds_engine.timers(STEP_GLOBAL_TIMER).elapsed(False) / 1000.0
            print(line_fmt.format('bwd latency: ', duration_to_string(bwd_latency)))
            print(
                line_fmt.format(f'bwd FLOPS per GPU = {bwd_factor:g} * fwd flops per GPU / bwd latency: ',
                                flops_to_string(bwd_factor * total_flops / bwd_latency)))
            print(
                line_fmt.format(
                    f'fwd+bwd FLOPS per GPU = {bwd_factor + 1:g} * fwd flops per GPU / (fwd+bwd latency): ',
                    flops_to_string((bwd_factor + 1) * total_flops / (fwd_latency + bwd_latency))))

            print(line_fmt.format('step latency: ', duration_to_string(step_latency)))

            iter_latency = fwd_latency + bwd_latency + step_latency
            print(line_fmt.format('iter latency: ', duration_to_string(iter_latency)))
            print(
                line_fmt.format(f'FLOPS per GPU = {bwd_factor + 1:g} * fwd flops per GPU / iter latency: ',
                                flops_to_string((bwd_factor + 1) * total_flops / iter_latency)))

            samples_per_iter = self.ds_engine.train_micro_batch_size_per_gpu() * self.ds_engine.world_size
            print(line_fmt.format('samples/second: ', round(samples_per_iter / iter_latency, DEFAULT_PRECISION)))

        def flops_repr(module):
            params = module.__params__ + module.__expert_params__
            flops = get_module_flops(module)
            macs = get_module_macs(module)
            duration = get_module_duration(module)
            items = [
                "{} = {:g}% Params".format(
                    params_to_string(params),
                    round(100 * params / total_params, DEFAULT_PRECISION) if total_params else 0),
                "{} = {:g}% MACs".format(macs_to_string(macs),
                                         round(100 * macs / total_macs, DEFAULT_PRECISION) if total_macs else 0),
                "{} = {:g}% latency".format(
                    duration_to_string(duration),
                    round(100 * duration / total_duration, DEFAULT_PRECISION) if total_duration else 0),
                flops_to_string(round(flops / duration, DEFAULT_PRECISION) if duration else 0),
            ]
            original_extra_repr = module.original_extra_repr()
            if original_extra_repr:
                items.append(original_extra_repr)
            return ", ".join(items)

        def add_extra_repr(module):
            flops_extra_repr = flops_repr.__get__(module)
            if module.extra_repr != flops_extra_repr:
                module.original_extra_repr = module.extra_repr
                module.extra_repr = flops_extra_repr
                assert module.extra_repr != module.original_extra_repr

        def del_extra_repr(module):
            if hasattr(module, "original_extra_repr"):
                module.extra_repr = module.original_extra_repr
                del module.original_extra_repr

        self.model.apply(add_extra_repr)

        print("\n----------------------------- Aggregated Profile per GPU -----------------------------")
        self.print_model_aggregated_profile(module_depth=module_depth, top_modules=top_modules)

        if detailed:
            print("\n------------------------------ Detailed Profile per GPU ------------------------------")
            print(
                "Each module profile is listed after its name in the following order: \nparams, percentage of total params, MACs, percentage of total MACs, fwd latency, percentage of total fwd latency, fwd FLOPS"
            )
            print(
                "\nNote: 1. A module can have torch.nn.module or torch.nn.functional to compute logits (e.g. CrossEntropyLoss). They are not counted as submodules, thus not to be printed out. However they make up the difference between a parent's MACs (or latency) and the sum of its submodules'.\n2. Number of floating-point operations is a theoretical estimation, thus FLOPS computed using that could be larger than the maximum system throughput.\n3. The fwd latency listed in the top module's profile is directly captured at the module forward function in PyTorch, thus it's less than the fwd latency shown above which is captured in DeepSpeed.\n"
            )
            print(self.model)

        self.model.apply(del_extra_repr)

        print("------------------------------------------------------------------------------")

        if output_file:
            sys.stdout = original_stdout
            f.close()

    def print_model_aggregated_profile(self, module_depth=-1, top_modules=1):
        """Prints the names of the top top_modules modules in terms of aggregated time, flops, and parameters at depth module_depth.

        Args:
            module_depth (int, optional): the depth of the modules to show. Defaults to -1 (the innermost modules).
            top_modules (int, optional): the number of top modules to show. Defaults to 1.
        """
        info = {}
        if not hasattr(self.model, "__flops__"):
            print("no __flops__ attribute in the model, call this function after start_profile and before end_profile")
            return

        def walk_module(module, curr_depth, info):
            if curr_depth not in info:
                info[curr_depth] = {}
            if module.__class__.__name__ not in info[curr_depth]:
                info[curr_depth][module.__class__.__name__] = [
                    0,
                    0,
                    0,
                ]  # macs, params, time
            info[curr_depth][module.__class__.__name__][0] += get_module_macs(module)
            info[curr_depth][module.__class__.__name__][1] += module.__params__ + module.__expert_params__
            info[curr_depth][module.__class__.__name__][2] += get_module_duration(module)
            has_children = len(module._modules.items()) != 0
            if has_children:
                for child in module.children():
                    walk_module(child, curr_depth + 1, info)

        walk_module(self.model, 0, info)

        depth = module_depth
        if module_depth == -1:
            depth = len(info) - 1

        print(f'Top {top_modules} modules in terms of params, MACs or fwd latency at different model depths:')

        for d in range(depth):
            num_items = min(top_modules, len(info[d]))

            sort_macs = {
                k: macs_to_string(v[0])
                for k, v in sorted(info[d].items(), key=lambda item: item[1][0], reverse=True)[:num_items]
            }
            sort_params = {
                k: params_to_string(v[1])
                for k, v in sorted(info[d].items(), key=lambda item: item[1][1], reverse=True)[:num_items]
            }
            sort_time = {
                k: duration_to_string(v[2])
                for k, v in sorted(info[d].items(), key=lambda item: item[1][2], reverse=True)[:num_items]
            }

            print(f"depth {d}:")
            print(f"    params      - {sort_params}")
            print(f"    MACs        - {sort_macs}")
            print(f"    fwd latency - {sort_time}")


def _prod(dims):
    p = 1
    for v in dims:
        p *= v
    return p


def _linear_flops_compute(input, weight, bias=None):
    out_features = weight.shape[0]
    macs = input.numel() * out_features
    return 2 * macs, macs


def _relu_flops_compute(input, inplace=False):
    return input.numel(), 0


def _prelu_flops_compute(input: Tensor, weight: Tensor):
    return input.numel(), 0


def _elu_flops_compute(input: Tensor, alpha: float = 1.0, inplace: bool = False):
    return input.numel(), 0


def _leaky_relu_flops_compute(input: Tensor, negative_slope: float = 0.01, inplace: bool = False):
    return input.numel(), 0


def _relu6_flops_compute(input: Tensor, inplace: bool = False):
    return input.numel(), 0


def _silu_flops_compute(input: Tensor, inplace: bool = False):
    return input.numel(), 0


def _gelu_flops_compute(input, **kwargs):
    return input.numel(), 0


def _pool_flops_compute(input,
                        kernel_size,
                        stride=None,
                        padding=0,
                        dilation=None,
                        ceil_mode=False,
                        count_include_pad=True,
                        divisor_override=None,
                        return_indices=None):
    return input.numel(), 0


def _conv_flops_compute(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
    assert weight.shape[1] * groups == input.shape[1]

    batch_size = input.shape[0]
    in_channels = input.shape[1]
    out_channels = weight.shape[0]
    kernel_dims = list(weight.shape[2:])
    input_dims = list(input.shape[2:])

    length = len(input_dims)

    strides = stride if type(stride) is tuple else (stride, ) * length
    dilations = dilation if type(dilation) is tuple else (dilation, ) * length
    if isinstance(padding, str):
        if padding == 'valid':
            paddings = (0, ) * length
        elif padding == 'same':
            paddings = ()
            for d, k in zip(dilations, kernel_dims):
                total_padding = d * (k - 1)
                paddings += (total_padding // 2, )
    elif isinstance(padding, tuple):
        paddings = padding
    else:
        paddings = (padding, ) * length

    output_dims = []
    for idx, input_dim in enumerate(input_dims):
        output_dim = (input_dim + 2 * paddings[idx] - (dilations[idx] *
                                                       (kernel_dims[idx] - 1) + 1)) // strides[idx] + 1
        output_dims.append(output_dim)

    filters_per_channel = out_channels // groups
    conv_per_position_macs = int(_prod(kernel_dims)) * in_channels * filters_per_channel
    active_elements_count = batch_size * int(_prod(output_dims))
    overall_conv_macs = conv_per_position_macs * active_elements_count
    overall_conv_flops = 2 * overall_conv_macs

    bias_flops = 0
    if bias is not None:
        bias_flops = out_channels * active_elements_count

    return int(overall_conv_flops + bias_flops), int(overall_conv_macs)


def _conv_trans_flops_compute(
    input,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
):
    batch_size = input.shape[0]
    in_channels = input.shape[1]
    out_channels = weight.shape[1]
    kernel_dims = list(weight.shape[2:])
    input_dims = list(input.shape[2:])

    length = len(input_dims)

    paddings = padding if type(padding) is tuple else (padding, ) * length
    strides = stride if type(stride) is tuple else (stride, ) * length
    dilations = dilation if type(dilation) is tuple else (dilation, ) * length

    output_dims = []
    for idx, input_dim in enumerate(input_dims):

        output_dim = (input_dim + 2 * paddings[idx] - (dilations[idx] *
                                                       (kernel_dims[idx] - 1) + 1)) // strides[idx] + 1
        output_dims.append(output_dim)

    paddings = padding if type(padding) is tuple else (padding, padding)
    strides = stride if type(stride) is tuple else (stride, stride)
    dilations = dilation if type(dilation) is tuple else (dilation, dilation)

    filters_per_channel = out_channels // groups
    conv_per_position_macs = int(_prod(kernel_dims)) * in_channels * filters_per_channel
    active_elements_count = batch_size * int(_prod(input_dims))
    overall_conv_macs = conv_per_position_macs * active_elements_count
    overall_conv_flops = 2 * overall_conv_macs

    bias_flops = 0
    if bias is not None:
        bias_flops = out_channels * batch_size * int(_prod(output_dims))

    return int(overall_conv_flops + bias_flops), int(overall_conv_macs)


def _batch_norm_flops_compute(
    input,
    running_mean,
    running_var,
    weight=None,
    bias=None,
    training=False,
    momentum=0.1,
    eps=1e-05,
):
    has_affine = weight is not None
    if training:
        # estimation
        return input.numel() * (5 if has_affine else 4), 0
    flops = input.numel() * (2 if has_affine else 1)
    return flops, 0


def _layer_norm_flops_compute(
    input: Tensor,
    normalized_shape: List[int],
    weight: Optional[Tensor] = None,
    bias: Optional[Tensor] = None,
    eps: float = 1e-5,
):
    has_affine = weight is not None
    # estimation
    return input.numel() * (5 if has_affine else 4), 0


def _group_norm_flops_compute(input: Tensor,
                              num_groups: int,
                              weight: Optional[Tensor] = None,
                              bias: Optional[Tensor] = None,
                              eps: float = 1e-5):
    has_affine = weight is not None
    # estimation
    return input.numel() * (5 if has_affine else 4), 0


def _instance_norm_flops_compute(
    input: Tensor,
    running_mean: Optional[Tensor] = None,
    running_var: Optional[Tensor] = None,
    weight: Optional[Tensor] = None,
    bias: Optional[Tensor] = None,
    use_input_stats: bool = True,
    momentum: float = 0.1,
    eps: float = 1e-5,
):
    has_affine = weight is not None
    # estimation
    return input.numel() * (5 if has_affine else 4), 0


def _upsample_flops_compute(*args, **kwargs):
    input = args[0]
    size = kwargs.get('size', None)
    if size is None and len(args) > 1:
        size = args[1]

    if size is not None:
        if isinstance(size, tuple) or isinstance(size, list):
            return int(_prod(size)), 0
        else:
            return int(size), 0

    scale_factor = kwargs.get('scale_factor', None)
    if scale_factor is None and len(args) > 2:
        scale_factor = args[2]
    assert scale_factor is not None, "either size or scale_factor should be defined"

    flops = input.numel()
    if isinstance(scale_factor, tuple) and len(scale_factor) == len(input):
        flops *= int(_prod(scale_factor))
    else:
        flops *= scale_factor**len(input)
    return flops, 0


def _softmax_flops_compute(input, dim=None, _stacklevel=3, dtype=None):
    return input.numel(), 0


def _embedding_flops_compute(
    input,
    weight,
    padding_idx=None,
    max_norm=None,
    norm_type=2.0,
    scale_grad_by_freq=False,
    sparse=False,
):
    return 0, 0


def _dropout_flops_compute(input, p=0.5, training=True, inplace=False):
    return 0, 0


def _matmul_flops_compute(input, other, *, out=None):
    """
    Count flops for the matmul operation.
    """
    macs = _prod(input.shape) * other.shape[-1]
    return 2 * macs, macs


def _addmm_flops_compute(input, mat1, mat2, *, beta=1, alpha=1, out=None):
    """
    Count flops for the addmm operation.
    """
    macs = _prod(mat1.shape) * mat2.shape[-1]
    return 2 * macs + _prod(input.shape), macs


def _einsum_flops_compute(equation, *operands):
    """
    Count flops for the einsum operation.
    """
    equation = equation.replace(" ", "")
    input_shapes = [o.shape for o in operands]

    # Re-map equation so that same equation with different alphabet
    # representations will look the same.
    letter_order = OrderedDict((k, 0) for k in equation if k.isalpha()).keys()
    mapping = {ord(x): 97 + i for i, x in enumerate(letter_order)}
    equation = equation.translate(mapping)

    np_arrs = [np.zeros(s) for s in input_shapes]
    optim = np.einsum_path(equation, *np_arrs, optimize="optimal")[1]
    for line in optim.split("\n"):
        if "optimized flop" in line.lower():
            flop = int(float(line.split(":")[-1]))
            return flop, 0
    raise NotImplementedError("Unsupported einsum operation.")


def _tensor_addmm_flops_compute(self, mat1, mat2, *, beta=1, alpha=1, out=None):
    """
    Count flops for the tensor addmm operation.
    """
    macs = _prod(mat1.shape) * mat2.shape[-1]
    return 2 * macs + _prod(self.shape), macs


def _mul_flops_compute(input, other, *, out=None):
    return _elementwise_flops_compute(input, other)


def _add_flops_compute(input, other, *, alpha=1, out=None):
    return _elementwise_flops_compute(input, other)


def _elementwise_flops_compute(input, other):
    if not torch.is_tensor(input):
        if torch.is_tensor(other):
            return _prod(other.shape), 0
        else:
            return 1, 0
    elif not torch.is_tensor(other):
        return _prod(input.shape), 0
    else:
        dim_input = len(input.shape)
        dim_other = len(other.shape)
        max_dim = max(dim_input, dim_other)

        final_shape = []
        for i in range(max_dim):
            in_i = input.shape[i] if i < dim_input else 1
            ot_i = other.shape[i] if i < dim_other else 1
            if in_i > ot_i:
                final_shape.append(in_i)
            else:
                final_shape.append(ot_i)
        flops = _prod(final_shape)
        return flops, 0


def _attn_flops_compute(q, k, v, *args, **kwargs):
    """
    Count flops for the scaled_dot_product_attention operation.
    """
    macs = _prod(q.shape) * k.shape[-2]
    macs += _prod(q.shape[:-1]) * k.shape[-2] * v.shape[-1]
    return 2 * macs, macs


def wrapFunc(func, funcFlopCompute):
    oldFunc = func
    name = func.__str__
    old_functions[name] = oldFunc

    def newFunc(*args, **kwds):
        flops, macs = funcFlopCompute(*args, **kwds)
        if module_flop_count:
            module_flop_count[-1].append((name, flops))
        if module_mac_count and macs:
            module_mac_count[-1].append((name, macs))
        return oldFunc(*args, **kwds)

    newFunc.__str__ = func.__str__

    return newFunc


def _patch_functionals():
    # FC
    F.linear = wrapFunc(F.linear, _linear_flops_compute)

    # convolutions
    F.conv1d = wrapFunc(F.conv1d, _conv_flops_compute)
    F.conv2d = wrapFunc(F.conv2d, _conv_flops_compute)
    F.conv3d = wrapFunc(F.conv3d, _conv_flops_compute)

    # conv transposed
    F.conv_transpose1d = wrapFunc(F.conv_transpose1d, _conv_trans_flops_compute)
    F.conv_transpose2d = wrapFunc(F.conv_transpose2d, _conv_trans_flops_compute)
    F.conv_transpose3d = wrapFunc(F.conv_transpose3d, _conv_trans_flops_compute)

    # activations
    F.relu = wrapFunc(F.relu, _relu_flops_compute)
    F.prelu = wrapFunc(F.prelu, _prelu_flops_compute)
    F.elu = wrapFunc(F.elu, _elu_flops_compute)
    F.leaky_relu = wrapFunc(F.leaky_relu, _leaky_relu_flops_compute)
    F.relu6 = wrapFunc(F.relu6, _relu6_flops_compute)
    if hasattr(F, "silu"):
        F.silu = wrapFunc(F.silu, _silu_flops_compute)
    F.gelu = wrapFunc(F.gelu, _gelu_flops_compute)

    # Normalizations
    F.batch_norm = wrapFunc(F.batch_norm, _batch_norm_flops_compute)
    F.layer_norm = wrapFunc(F.layer_norm, _layer_norm_flops_compute)
    F.instance_norm = wrapFunc(F.instance_norm, _instance_norm_flops_compute)
    F.group_norm = wrapFunc(F.group_norm, _group_norm_flops_compute)

    # poolings
    F.avg_pool1d = wrapFunc(F.avg_pool1d, _pool_flops_compute)
    F.avg_pool2d = wrapFunc(F.avg_pool2d, _pool_flops_compute)
    F.avg_pool3d = wrapFunc(F.avg_pool3d, _pool_flops_compute)
    F.max_pool1d = wrapFunc(F.max_pool1d, _pool_flops_compute)
    F.max_pool2d = wrapFunc(F.max_pool2d, _pool_flops_compute)
    F.max_pool3d = wrapFunc(F.max_pool3d, _pool_flops_compute)
    F.adaptive_avg_pool1d = wrapFunc(F.adaptive_avg_pool1d, _pool_flops_compute)
    F.adaptive_avg_pool2d = wrapFunc(F.adaptive_avg_pool2d, _pool_flops_compute)
    F.adaptive_avg_pool3d = wrapFunc(F.adaptive_avg_pool3d, _pool_flops_compute)
    F.adaptive_max_pool1d = wrapFunc(F.adaptive_max_pool1d, _pool_flops_compute)
    F.adaptive_max_pool2d = wrapFunc(F.adaptive_max_pool2d, _pool_flops_compute)
    F.adaptive_max_pool3d = wrapFunc(F.adaptive_max_pool3d, _pool_flops_compute)

    # upsample
    F.upsample = wrapFunc(F.upsample, _upsample_flops_compute)
    F.interpolate = wrapFunc(F.interpolate, _upsample_flops_compute)

    # softmax
    F.softmax = wrapFunc(F.softmax, _softmax_flops_compute)

    # embedding
    F.embedding = wrapFunc(F.embedding, _embedding_flops_compute)

    # attn
    F.scaled_dot_product_attention = wrapFunc(F.scaled_dot_product_attention, _attn_flops_compute)


def _patch_tensor_methods():
    torch.matmul = wrapFunc(torch.matmul, _matmul_flops_compute)
    torch.Tensor.matmul = wrapFunc(torch.Tensor.matmul, _matmul_flops_compute)
    torch.Tensor.__matmul__ = wrapFunc(torch.Tensor.__matmul__, _matmul_flops_compute)
    torch.mm = wrapFunc(torch.mm, _matmul_flops_compute)
    torch.Tensor.mm = wrapFunc(torch.Tensor.mm, _matmul_flops_compute)
    torch.bmm = wrapFunc(torch.bmm, _matmul_flops_compute)
    torch.Tensor.bmm = wrapFunc(torch.Tensor.bmm, _matmul_flops_compute)

    torch.addmm = wrapFunc(torch.addmm, _addmm_flops_compute)
    torch.Tensor.addmm = wrapFunc(torch.Tensor.addmm, _tensor_addmm_flops_compute)

    torch.mul = wrapFunc(torch.mul, _mul_flops_compute)
    torch.Tensor.mul = wrapFunc(torch.Tensor.mul, _mul_flops_compute)

    torch.add = wrapFunc(torch.add, _add_flops_compute)
    torch.Tensor.add = wrapFunc(torch.Tensor.add, _add_flops_compute)

    torch.einsum = wrapFunc(torch.einsum, _einsum_flops_compute)

    torch.baddbmm = wrapFunc(torch.baddbmm, _tensor_addmm_flops_compute)


def _reload_functionals():
    # torch.nn.functional does not support importlib.reload()
    F.linear = old_functions[F.linear.__str__]
    F.conv1d = old_functions[F.conv1d.__str__]
    F.conv2d = old_functions[F.conv2d.__str__]
    F.conv3d = old_functions[F.conv3d.__str__]
    F.conv_transpose1d = old_functions[F.conv_transpose1d.__str__]
    F.conv_transpose2d = old_functions[F.conv_transpose2d.__str__]
    F.conv_transpose3d = old_functions[F.conv_transpose3d.__str__]
    F.relu = old_functions[F.relu.__str__]
    F.prelu = old_functions[F.prelu.__str__]
    F.elu = old_functions[F.elu.__str__]
    F.leaky_relu = old_functions[F.leaky_relu.__str__]
    F.relu6 = old_functions[F.relu6.__str__]
    if hasattr(F, "silu"):
        F.silu = old_functions[F.silu.__str__]
    F.gelu = old_functions[F.gelu.__str__]
    F.batch_norm = old_functions[F.batch_norm.__str__]
    F.layer_norm = old_functions[F.layer_norm.__str__]
    F.instance_norm = old_functions[F.instance_norm.__str__]
    F.group_norm = old_functions[F.group_norm.__str__]
    F.avg_pool1d = old_functions[F.avg_pool1d.__str__]
    F.avg_pool2d = old_functions[F.avg_pool2d.__str__]
    F.avg_pool3d = old_functions[F.avg_pool3d.__str__]
    F.max_pool1d = old_functions[F.max_pool1d.__str__]
    F.max_pool2d = old_functions[F.max_pool2d.__str__]
    F.max_pool3d = old_functions[F.max_pool3d.__str__]
    F.adaptive_avg_pool1d = old_functions[F.adaptive_avg_pool1d.__str__]
    F.adaptive_avg_pool2d = old_functions[F.adaptive_avg_pool2d.__str__]
    F.adaptive_avg_pool3d = old_functions[F.adaptive_avg_pool3d.__str__]
    F.adaptive_max_pool1d = old_functions[F.adaptive_max_pool1d.__str__]
    F.adaptive_max_pool2d = old_functions[F.adaptive_max_pool2d.__str__]
    F.adaptive_max_pool3d = old_functions[F.adaptive_max_pool3d.__str__]
    F.upsample = old_functions[F.upsample.__str__]
    F.interpolate = old_functions[F.interpolate.__str__]
    F.softmax = old_functions[F.softmax.__str__]
    F.embedding = old_functions[F.embedding.__str__]


def _reload_tensor_methods():
    torch.matmul = old_functions[torch.matmul.__str__]
    torch.Tensor.matmul = old_functions[torch.Tensor.matmul.__str__]
    torch.mm = old_functions[torch.mm.__str__]
    torch.Tensor.mm = old_functions[torch.Tensor.mm.__str__]
    torch.bmm = old_functions[torch.matmul.__str__]
    torch.Tensor.bmm = old_functions[torch.Tensor.bmm.__str__]
    torch.addmm = old_functions[torch.addmm.__str__]
    torch.Tensor.addmm = old_functions[torch.Tensor.addmm.__str__]
    torch.mul = old_functions[torch.mul.__str__]
    torch.Tensor.mul = old_functions[torch.Tensor.mul.__str__]
    torch.add = old_functions[torch.add.__str__]
    torch.Tensor.add = old_functions[torch.Tensor.add.__str__]

    torch.einsum = old_functions[torch.einsum.__str__]

    torch.baddbmm = old_functions[torch.baddbmm.__str__]


def _rnn_flops(flops, rnn_module, w_ih, w_hh, input_size):
    gates_size = w_ih.shape[0]
    # matrix matrix mult ih state and internal state
    flops += 2 * w_ih.shape[0] * w_ih.shape[1] - gates_size
    # matrix matrix mult hh state and internal state
    flops += 2 * w_hh.shape[0] * w_hh.shape[1] - gates_size
    if isinstance(rnn_module, (nn.RNN, nn.RNNCell)):
        # add both operations
        flops += rnn_module.hidden_size
    elif isinstance(rnn_module, (nn.GRU, nn.GRUCell)):
        # hadamard of r
        flops += rnn_module.hidden_size
        # adding operations from both states
        flops += rnn_module.hidden_size * 3
        # last two hadamard _product and add
        flops += rnn_module.hidden_size * 3
    elif isinstance(rnn_module, (nn.LSTM, nn.LSTMCell)):
        # adding operations from both states
        flops += rnn_module.hidden_size * 4
        # two hadamard _product and add for C state
        flops += rnn_module.hidden_size + rnn_module.hidden_size + rnn_module.hidden_size
        # final hadamard
        flops += rnn_module.hidden_size + rnn_module.hidden_size + rnn_module.hidden_size
    return flops


def _rnn_forward_hook(rnn_module, input, output):
    flops = 0
    # input is a tuple containing a sequence to process and (optionally) hidden state
    inp = input[0]
    batch_size = inp.shape[0]
    seq_length = inp.shape[1]
    num_layers = rnn_module.num_layers

    for i in range(num_layers):
        w_ih = rnn_module.__getattr__("weight_ih_l" + str(i))
        w_hh = rnn_module.__getattr__("weight_hh_l" + str(i))
        if i == 0:
            input_size = rnn_module.input_size
        else:
            input_size = rnn_module.hidden_size
        flops = _rnn_flops(flops, rnn_module, w_ih, w_hh, input_size)
        if rnn_module.bias:
            b_ih = rnn_module.__getattr__("bias_ih_l" + str(i))
            b_hh = rnn_module.__getattr__("bias_hh_l" + str(i))
            flops += b_ih.shape[0] + b_hh.shape[0]

    flops *= batch_size
    flops *= seq_length
    if rnn_module.bidirectional:
        flops *= 2
    rnn_module.__flops__ += int(flops)


def _rnn_cell_forward_hook(rnn_cell_module, input, output):
    flops = 0
    inp = input[0]
    batch_size = inp.shape[0]
    w_ih = rnn_cell_module.__getattr__("weight_ih")
    w_hh = rnn_cell_module.__getattr__("weight_hh")
    input_size = inp.shape[1]
    flops = _rnn_flops(flops, rnn_cell_module, w_ih, w_hh, input_size)
    if rnn_cell_module.bias:
        b_ih = rnn_cell_module.__getattr__("bias_ih")
        b_hh = rnn_cell_module.__getattr__("bias_hh")
        flops += b_ih.shape[0] + b_hh.shape[0]

    flops *= batch_size
    rnn_cell_module.__flops__ += int(flops)


MODULE_HOOK_MAPPING = {
    # RNN
    nn.RNN: _rnn_forward_hook,
    nn.GRU: _rnn_forward_hook,
    nn.LSTM: _rnn_forward_hook,
    nn.RNNCell: _rnn_cell_forward_hook,
    nn.LSTMCell: _rnn_cell_forward_hook,
    nn.GRUCell: _rnn_cell_forward_hook,
}


def macs_to_string(macs, units=None, precision=DEFAULT_PRECISION):
    return f"{number_to_string(macs, units=units, precision=precision)}MACs"


def number_to_string(num, units=None, precision=DEFAULT_PRECISION):
    if units is None:
        if num >= 1e12:
            magnitude, units = 1e12, "T"
        elif num >= 1e9:
            magnitude, units = 1e9, "G"
        elif num >= 1e6:
            magnitude, units = 1e6, "M"
        elif num >= 1e3:
            magnitude, units = 1e3, "K"
        elif num >= 1 or num == 0:
            magnitude, units = 1, ""
        elif num >= 1e-3:
            magnitude, units = 1e-3, "m"
        else:
            magnitude, units = 1e-6, "u"
    else:
        if units == "T":
            magnitude = 1e12
        elif units == "G":
            magnitude = 1e9
        elif units == "M":
            magnitude = 1e6
        elif units == "K":
            magnitude = 1e3
        elif units == "m":
            magnitude = 1e-3
        elif units == "u":
            magnitude = 1e-6
        else:
            magnitude = 1
    return f"{round(num / magnitude, precision):g} {units}"


def flops_to_string(flops, units=None, precision=DEFAULT_PRECISION):
    return f"{number_to_string(flops, units=units, precision=precision)}FLOPS"


def bytes_to_string(b, units=None, precision=DEFAULT_PRECISION):
    return f"{number_to_string(b, units=units, precision=precision)}B"


def params_to_string(params_num, units=None, precision=DEFAULT_PRECISION):
    units = units.replace("B", "G") if units else units
    return number_to_string(params_num, units=units, precision=precision).replace("G", "B").strip()


def duration_to_string(duration, units=None, precision=DEFAULT_PRECISION):
    return f"{number_to_string(duration, units=units, precision=precision)}s"


    # can not iterate over all submodules using self.model.modules()
    # since modules() returns duplicate modules only once
def get_module_flops(module):
    sum = module.__flops__
    # iterate over immediate children modules
    for child in module.children():
        sum += get_module_flops(child)
    return sum


def get_module_macs(module):
    sum = module.__macs__
    # iterate over immediate children modules
    for child in module.children():
        sum += get_module_macs(child)
    return sum


def get_module_duration(module):
    duration = module.__duration__
    if duration == 0:  # e.g. ModuleList
        for m in module.children():
            duration += get_module_duration(m)
    return duration


def get_model_profile(model,
                      input_shape=None,
                      args=[],
                      kwargs={},
                      print_profile=True,
                      detailed=True,
                      module_depth=-1,
                      top_modules=1,
                      warm_up=1,
                      as_string=True,
                      output_file=None,
                      ignore_modules=None,
                      mode='forward'):
    """Returns the total floating-point operations, MACs, and parameters of a model.

    Example:

    .. code-block:: python

        model = torchvision.models.alexnet()
        batch_size = 256
        flops, macs, params = get_model_profile(model=model, input_shape=(batch_size, 3, 224, 224)))

    Args:
        model ([torch.nn.Module]): the PyTorch model to be profiled.
        input_shape (tuple): input shape to the model. If specified, the model takes a tensor with this shape as the only positional argument.
        args (list): list of positional arguments to the model.
        kwargs (dict): dictionary of keyword arguments to the model.
        print_profile (bool, optional): whether to print the model profile. Defaults to True.
        detailed (bool, optional): whether to print the detailed model profile. Defaults to True.
        module_depth (int, optional): the depth into the nested modules. Defaults to -1 (the inner most modules).
        top_modules (int, optional): the number of top modules to print in the aggregated profile. Defaults to 3.
        warm_up (int, optional): the number of warm-up steps before measuring the latency of each module. Defaults to 1.
        as_string (bool, optional): whether to print the output as string. Defaults to True.
        output_file (str, optional): path to the output file. If None, the profiler prints to stdout.
        ignore_modules ([type], optional): the list of modules to ignore during profiling. Defaults to None.

    Returns:
        The number of floating-point operations, multiply-accumulate operations (MACs), and parameters in the model.
    """
    assert isinstance(model, nn.Module), "model must be a PyTorch module"
    prof = FlopsProfiler(model)
    model.eval()

    if input_shape is not None:
        assert type(input_shape) is tuple, "input_shape must be a tuple"
        assert len(input_shape) >= 1, "input_shape must have at least one element"
        try:
            input = torch.ones(()).new_empty(
                (*input_shape, ),
                dtype=next(model.parameters()).dtype,
                device=next(model.parameters()).device,
            )
        except StopIteration:
            input = torch.ones(()).new_empty((*input_shape, ))

        args = [input]
    assert (len(args) > 0) or (len(kwargs) > 0), "args and/or kwargs must be specified if input_shape is None"

    logger.info("Flops profiler warming-up...")
    for _ in range(warm_up):
        if kwargs:
            if mode == 'forward':
                _ = model(*args, **kwargs)
            if mode == 'generate':
                _ = model.generate(*args, **kwargs)
        else:
            if mode == 'forward':
                _ = model(*args)
            if mode == 'generate':
                _ = model.generate(*args)
    prof.start_profile(ignore_list=ignore_modules)

    if kwargs:
        if mode == 'forward':
            _ = model(*args, **kwargs)
        if mode == 'generate':
            _ = model.generate(*args, **kwargs)
    else:
        if mode == 'forward':
            _ = model(*args)
        if mode == 'generate':
            _ = model.generate(*args)

    flops = prof.get_total_flops()
    macs = prof.get_total_macs()
    params = prof.get_total_params()
    if print_profile:
        prof.print_model_profile(profile_step=warm_up,
                                 module_depth=module_depth,
                                 top_modules=top_modules,
                                 detailed=detailed,
                                 output_file=output_file)

    prof.end_profile()
    if as_string:
        return number_to_string(flops), macs_to_string(macs), params_to_string(params)

    return flops, macs, params