File size: 50,350 Bytes
dd3126b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from typing import List, Optional
from collections import OrderedDict
import numpy as np
from deepspeed.accelerator import get_accelerator
from deepspeed.utils import logger
from deepspeed.moe.layer import MoE
from deepspeed.utils.timer import FORWARD_GLOBAL_TIMER, BACKWARD_GLOBAL_TIMER, STEP_GLOBAL_TIMER
Tensor = torch.Tensor
module_flop_count = []
module_mac_count = []
old_functions = {}
DEFAULT_PRECISION = 2
class FlopsProfiler(object):
"""Measures the latency, number of estimated floating-point operations and parameters of each module in a PyTorch model.
The flops-profiler profiles the forward pass of a PyTorch model and prints the model graph with the measured profile attached to each module. It shows how latency, flops and parameters are spent in the model and which modules or layers could be the bottleneck. It also outputs the names of the top k modules in terms of aggregated latency, flops, and parameters at depth l with k and l specified by the user. The output profile is computed for each batch of input.
The DeepSpeed flops profiler can be used with the DeepSpeed runtime or as a standalone package.
When using DeepSpeed for model training, the flops profiler can be configured in the deepspeed_config file and no user code change is required.
If using the profiler as a standalone package, one imports the flops_profiler package and use the APIs.
Here is an example for usage in a typical training workflow:
.. code-block:: python
model = Model()
prof = FlopsProfiler(model)
for step, batch in enumerate(data_loader):
if step == profile_step:
prof.start_profile()
loss = model(batch)
if step == profile_step:
flops = prof.get_total_flops(as_string=True)
params = prof.get_total_params(as_string=True)
prof.print_model_profile(profile_step=profile_step)
prof.end_profile()
loss.backward()
optimizer.step()
To profile a trained model in inference, use the `get_model_profile` API.
Args:
object (torch.nn.Module): The PyTorch model to profile.
"""
def __init__(self, model, ds_engine=None, recompute_fwd_factor=0.0):
self.model = model
self.ds_engine = ds_engine
self.recompute_fwd_factor = recompute_fwd_factor
self.started = False
self.func_patched = False
def start_profile(self, ignore_list=None):
"""Starts profiling.
Extra attributes are added recursively to all the modules and the profiled torch.nn.functionals are monkey patched.
Args:
ignore_list (list, optional): the list of modules to ignore while profiling. Defaults to None.
"""
logger.info("Flops profiler started")
self.reset_profile()
_patch_functionals()
_patch_tensor_methods()
def register_module_hooks(module, ignore_list):
if ignore_list and type(module) in ignore_list:
return
# if computing the flops of a module directly
if type(module) in MODULE_HOOK_MAPPING:
if not hasattr(module, "__flops_handle__"):
module.__flops_handle__ = module.register_forward_hook(MODULE_HOOK_MAPPING[type(module)])
return
# if computing the flops of the functionals in a module
def pre_hook(module, input):
module_flop_count.append([])
module_mac_count.append([])
if not hasattr(module, "__pre_hook_handle__"):
module.__pre_hook_handle__ = module.register_forward_pre_hook(pre_hook)
def post_hook(module, input, output):
if module_flop_count:
module.__flops__ += sum([elem[1] for elem in module_flop_count[-1]])
module_flop_count.pop()
module.__macs__ += sum([elem[1] for elem in module_mac_count[-1]])
module_mac_count.pop()
if not hasattr(module, "__post_hook_handle__"):
module.__post_hook_handle__ = module.register_forward_hook(post_hook)
def start_time_hook(module, input):
get_accelerator().synchronize()
module.__start_time__ = time.time()
if not hasattr(module, "__start_time_hook_handle"):
module.__start_time_hook_handle__ = module.register_forward_pre_hook(start_time_hook)
def end_time_hook(module, input, output):
get_accelerator().synchronize()
module.__duration__ += time.time() - module.__start_time__
if not hasattr(module, "__end_time_hook_handle__"):
module.__end_time_hook_handle__ = module.register_forward_hook(end_time_hook)
self.model.apply(partial(register_module_hooks, ignore_list=ignore_list))
self.started = True
self.func_patched = True
def stop_profile(self):
"""Stop profiling.
All torch.nn.functionals are restored to their originals.
"""
if self.started and self.func_patched:
_reload_functionals()
_reload_tensor_methods()
self.func_patched = False
def remove_profile_attrs(module):
if hasattr(module, "__pre_hook_handle__"):
module.__pre_hook_handle__.remove()
del module.__pre_hook_handle__
if hasattr(module, "__post_hook_handle__"):
module.__post_hook_handle__.remove()
del module.__post_hook_handle__
if hasattr(module, "__flops_handle__"):
module.__flops_handle__.remove()
del module.__flops_handle__
if hasattr(module, "__start_time_hook_handle__"):
module.__start_time_hook_handle__.remove()
del module.__start_time_hook_handle__
if hasattr(module, "__end_time_hook_handle__"):
module.__end_time_hook_handle__.remove()
del module.__end_time_hook_handle__
self.model.apply(remove_profile_attrs)
def reset_profile(self):
"""Resets the profiling.
Adds or resets the extra attributes.
"""
def get_param_count_and_ep(param):
"""
Return the number of parameters in the layer, whether the layer is an MoE layer,
and its expert parallelism size if so
"""
prefix = 'ep_size_'
offset = len(prefix)
expert_parallelism = 0
if getattr(param, "group_name", "").startswith(prefix):
try:
expert_parallelism = int(param.group_name[offset:])
except ValueError:
pass
return param.numel(), expert_parallelism, param.element_size()
def add_or_reset_attrs(module):
module.__flops__ = 0
module.__macs__ = 0
module.__params__ = module.__expert_params__ = module.__model_expert_params__ = 0
parameters = (get_param_count_and_ep(p) for p in module.parameters())
for num_params, expert_parallelism, per_param_size in parameters:
params = num_params if not expert_parallelism else 0
expert_params = num_params if expert_parallelism else 0
# number of expert parameters taking into account other expert parallel groups
model_expert_params = num_params * expert_parallelism
module.__params__ += params
module.__expert_params__ += expert_params
module.__model_expert_params__ += model_expert_params
module.__start_time__ = 0
module.__duration__ = 0
self.model.apply(add_or_reset_attrs)
def end_profile(self):
"""Ends profiling.
The added attributes and handles are removed recursively on all the modules.
"""
if not self.started:
return
self.stop_profile()
self.started = False
def remove_profile_attrs(module):
if hasattr(module, "__flops__"):
del module.__flops__
if hasattr(module, "__macs__"):
del module.__macs__
if hasattr(module, "__params__"):
del module.__params__
if hasattr(module, "__expert_params__"):
del module.__expert_params__
if hasattr(module, "__model_expert_params__"):
del module.__model_expert_params__
if hasattr(module, "__start_time__"):
del module.__start_time__
if hasattr(module, "__duration__"):
del module.__duration__
self.model.apply(remove_profile_attrs)
logger.info("Flops profiler finished")
def get_total_flops(self, as_string=False):
"""Returns the total flops of the model.
Args:
as_string (bool, optional): whether to output the flops as string. Defaults to False.
Returns:
The number of multiply-accumulate operations of the model forward pass.
"""
total_flops = get_module_flops(self.model)
return number_to_string(total_flops) if as_string else total_flops
def get_total_macs(self, as_string=False):
"""Returns the total MACs of the model.
Args:
as_string (bool, optional): whether to output the flops as string. Defaults to False.
Returns:
The number of multiply-accumulate operations of the model forward pass.
"""
total_macs = get_module_macs(self.model)
return macs_to_string(total_macs) if as_string else total_macs
def get_total_duration(self, as_string=False):
"""Returns the total duration of the model forward pass.
Args:
as_string (bool, optional): whether to output the duration as string. Defaults to False.
Returns:
The latency of the model forward pass.
"""
total_duration = get_module_duration(self.model)
return duration_to_string(total_duration) if as_string else total_duration
def get_total_params(self, as_string=False):
"""Returns the total number of parameters stored per rank.
Args:
as_string (bool, optional): whether to output the parameters as string. Defaults to False.
Returns:
The total number of parameters stored per rank.
"""
total_params = self.model.__expert_params__ + self.model.__params__
return params_to_string(total_params) if as_string else total_params
def is_expert_tensor_parallelism_enabled(self):
for _, module in self.model.named_modules():
if isinstance(module, MoE) and hasattr(module, 'enable_expert_tensor_parallelism'):
return module.enable_expert_tensor_parallelism
return False
def print_model_profile(self, profile_step=1, module_depth=-1, top_modules=1, detailed=True, output_file=None):
"""Prints the model graph with the measured profile attached to each module.
Args:
profile_step (int, optional): The global training step at which to profile. Note that warm up steps are needed for accurate time measurement.
module_depth (int, optional): The depth of the model to which to print the aggregated module information. When set to -1, it prints information from the top to the innermost modules (the maximum depth).
top_modules (int, optional): Limits the aggregated profile output to the number of top modules specified.
detailed (bool, optional): Whether to print the detailed model profile.
output_file (str, optional): Path to the output file. If None, the profiler prints to stdout.
"""
if not self.started:
return
import sys
import os.path
original_stdout = None
f = None
if output_file and output_file != "":
dir_path = os.path.dirname(os.path.abspath(output_file))
if not os.path.exists(dir_path):
os.makedirs(dir_path)
original_stdout = sys.stdout
f = open(output_file, "w")
sys.stdout = f
total_flops = self.get_total_flops()
total_macs = self.get_total_macs()
total_duration = self.get_total_duration()
total_params = self.get_total_params()
expert_tensor_parallelism = None # silence the linters
total_model_expert_params = total_model_nonexpert_params = 0
if self.ds_engine:
total_model_nonexpert_params = self.model.__params__ * self.ds_engine.mp_world_size
if self.ds_engine.has_moe_layers:
expert_tensor_parallelism = self.ds_engine.mp_world_size if self.is_expert_tensor_parallelism_enabled(
) else 1
total_model_expert_params = self.model.__model_expert_params__ * expert_tensor_parallelism
self.flops = total_flops
self.macs = total_macs
self.params = total_params
print("\n-------------------------- DeepSpeed Flops Profiler --------------------------")
print(f'Profile Summary at step {profile_step}:')
print("Notations:\n"
"data parallel size (dp_size), model parallel size(mp_size),\n"
"number of parameters (params), number of multiply-accumulate operations(MACs),\n"
"number of floating-point operations (flops), floating-point operations per second (FLOPS),\n"
"fwd latency (forward propagation latency), bwd latency (backward propagation latency),\n"
"step (weights update latency), iter latency (sum of fwd, bwd and step latency)\n")
line_fmt = '{:<70} {:<8}'
if self.ds_engine:
print(line_fmt.format('world size: ', self.ds_engine.world_size))
print(line_fmt.format('data parallel size: ', self.ds_engine.dp_world_size))
print(line_fmt.format('model parallel size: ', self.ds_engine.mp_world_size))
print(line_fmt.format('batch size per GPU: ', self.ds_engine.train_micro_batch_size_per_gpu()))
if self.ds_engine.has_moe_layers:
print(line_fmt.format('expert tensor parallelism enabled: ', expert_tensor_parallelism > 1))
print(line_fmt.format('params per GPU: ', params_to_string(total_params)))
if total_model_expert_params > 0:
print(
line_fmt.format('params of model: ',
params_to_string(total_model_nonexpert_params + total_model_expert_params)))
print(line_fmt.format(' non-expert params of model: ', params_to_string(total_model_nonexpert_params)))
print(line_fmt.format(' expert params of model: ', params_to_string(total_model_expert_params)))
else:
print(
line_fmt.format('params of model = params per GPU * mp_size: ',
params_to_string(total_model_nonexpert_params)))
print(line_fmt.format('fwd MACs per GPU: ', macs_to_string(total_macs)))
print(line_fmt.format('fwd flops per GPU: ', number_to_string(total_flops)))
print(
line_fmt.format('fwd flops of model = fwd flops per GPU * mp_size: ',
number_to_string(total_flops * (self.ds_engine.mp_world_size if self.ds_engine else 1))))
fwd_latency = self.get_total_duration()
if self.ds_engine and self.ds_engine.wall_clock_breakdown():
fwd_latency = self.ds_engine.timers(FORWARD_GLOBAL_TIMER).elapsed(False) / 1000.0
print(line_fmt.format('fwd latency: ', duration_to_string(fwd_latency)))
print(
line_fmt.format('fwd FLOPS per GPU = fwd flops per GPU / fwd latency: ',
flops_to_string(total_flops / fwd_latency)))
if self.ds_engine and self.ds_engine.wall_clock_breakdown():
bwd_factor = 2 + self.recompute_fwd_factor
bwd_latency = self.ds_engine.timers(BACKWARD_GLOBAL_TIMER).elapsed(False) / 1000.0
step_latency = self.ds_engine.timers(STEP_GLOBAL_TIMER).elapsed(False) / 1000.0
print(line_fmt.format('bwd latency: ', duration_to_string(bwd_latency)))
print(
line_fmt.format(f'bwd FLOPS per GPU = {bwd_factor:g} * fwd flops per GPU / bwd latency: ',
flops_to_string(bwd_factor * total_flops / bwd_latency)))
print(
line_fmt.format(
f'fwd+bwd FLOPS per GPU = {bwd_factor + 1:g} * fwd flops per GPU / (fwd+bwd latency): ',
flops_to_string((bwd_factor + 1) * total_flops / (fwd_latency + bwd_latency))))
print(line_fmt.format('step latency: ', duration_to_string(step_latency)))
iter_latency = fwd_latency + bwd_latency + step_latency
print(line_fmt.format('iter latency: ', duration_to_string(iter_latency)))
print(
line_fmt.format(f'FLOPS per GPU = {bwd_factor + 1:g} * fwd flops per GPU / iter latency: ',
flops_to_string((bwd_factor + 1) * total_flops / iter_latency)))
samples_per_iter = self.ds_engine.train_micro_batch_size_per_gpu() * self.ds_engine.world_size
print(line_fmt.format('samples/second: ', round(samples_per_iter / iter_latency, DEFAULT_PRECISION)))
def flops_repr(module):
params = module.__params__ + module.__expert_params__
flops = get_module_flops(module)
macs = get_module_macs(module)
duration = get_module_duration(module)
items = [
"{} = {:g}% Params".format(
params_to_string(params),
round(100 * params / total_params, DEFAULT_PRECISION) if total_params else 0),
"{} = {:g}% MACs".format(macs_to_string(macs),
round(100 * macs / total_macs, DEFAULT_PRECISION) if total_macs else 0),
"{} = {:g}% latency".format(
duration_to_string(duration),
round(100 * duration / total_duration, DEFAULT_PRECISION) if total_duration else 0),
flops_to_string(round(flops / duration, DEFAULT_PRECISION) if duration else 0),
]
original_extra_repr = module.original_extra_repr()
if original_extra_repr:
items.append(original_extra_repr)
return ", ".join(items)
def add_extra_repr(module):
flops_extra_repr = flops_repr.__get__(module)
if module.extra_repr != flops_extra_repr:
module.original_extra_repr = module.extra_repr
module.extra_repr = flops_extra_repr
assert module.extra_repr != module.original_extra_repr
def del_extra_repr(module):
if hasattr(module, "original_extra_repr"):
module.extra_repr = module.original_extra_repr
del module.original_extra_repr
self.model.apply(add_extra_repr)
print("\n----------------------------- Aggregated Profile per GPU -----------------------------")
self.print_model_aggregated_profile(module_depth=module_depth, top_modules=top_modules)
if detailed:
print("\n------------------------------ Detailed Profile per GPU ------------------------------")
print(
"Each module profile is listed after its name in the following order: \nparams, percentage of total params, MACs, percentage of total MACs, fwd latency, percentage of total fwd latency, fwd FLOPS"
)
print(
"\nNote: 1. A module can have torch.nn.module or torch.nn.functional to compute logits (e.g. CrossEntropyLoss). They are not counted as submodules, thus not to be printed out. However they make up the difference between a parent's MACs (or latency) and the sum of its submodules'.\n2. Number of floating-point operations is a theoretical estimation, thus FLOPS computed using that could be larger than the maximum system throughput.\n3. The fwd latency listed in the top module's profile is directly captured at the module forward function in PyTorch, thus it's less than the fwd latency shown above which is captured in DeepSpeed.\n"
)
print(self.model)
self.model.apply(del_extra_repr)
print("------------------------------------------------------------------------------")
if output_file:
sys.stdout = original_stdout
f.close()
def print_model_aggregated_profile(self, module_depth=-1, top_modules=1):
"""Prints the names of the top top_modules modules in terms of aggregated time, flops, and parameters at depth module_depth.
Args:
module_depth (int, optional): the depth of the modules to show. Defaults to -1 (the innermost modules).
top_modules (int, optional): the number of top modules to show. Defaults to 1.
"""
info = {}
if not hasattr(self.model, "__flops__"):
print("no __flops__ attribute in the model, call this function after start_profile and before end_profile")
return
def walk_module(module, curr_depth, info):
if curr_depth not in info:
info[curr_depth] = {}
if module.__class__.__name__ not in info[curr_depth]:
info[curr_depth][module.__class__.__name__] = [
0,
0,
0,
] # macs, params, time
info[curr_depth][module.__class__.__name__][0] += get_module_macs(module)
info[curr_depth][module.__class__.__name__][1] += module.__params__ + module.__expert_params__
info[curr_depth][module.__class__.__name__][2] += get_module_duration(module)
has_children = len(module._modules.items()) != 0
if has_children:
for child in module.children():
walk_module(child, curr_depth + 1, info)
walk_module(self.model, 0, info)
depth = module_depth
if module_depth == -1:
depth = len(info) - 1
print(f'Top {top_modules} modules in terms of params, MACs or fwd latency at different model depths:')
for d in range(depth):
num_items = min(top_modules, len(info[d]))
sort_macs = {
k: macs_to_string(v[0])
for k, v in sorted(info[d].items(), key=lambda item: item[1][0], reverse=True)[:num_items]
}
sort_params = {
k: params_to_string(v[1])
for k, v in sorted(info[d].items(), key=lambda item: item[1][1], reverse=True)[:num_items]
}
sort_time = {
k: duration_to_string(v[2])
for k, v in sorted(info[d].items(), key=lambda item: item[1][2], reverse=True)[:num_items]
}
print(f"depth {d}:")
print(f" params - {sort_params}")
print(f" MACs - {sort_macs}")
print(f" fwd latency - {sort_time}")
def _prod(dims):
p = 1
for v in dims:
p *= v
return p
def _linear_flops_compute(input, weight, bias=None):
out_features = weight.shape[0]
macs = input.numel() * out_features
return 2 * macs, macs
def _relu_flops_compute(input, inplace=False):
return input.numel(), 0
def _prelu_flops_compute(input: Tensor, weight: Tensor):
return input.numel(), 0
def _elu_flops_compute(input: Tensor, alpha: float = 1.0, inplace: bool = False):
return input.numel(), 0
def _leaky_relu_flops_compute(input: Tensor, negative_slope: float = 0.01, inplace: bool = False):
return input.numel(), 0
def _relu6_flops_compute(input: Tensor, inplace: bool = False):
return input.numel(), 0
def _silu_flops_compute(input: Tensor, inplace: bool = False):
return input.numel(), 0
def _gelu_flops_compute(input, **kwargs):
return input.numel(), 0
def _pool_flops_compute(input,
kernel_size,
stride=None,
padding=0,
dilation=None,
ceil_mode=False,
count_include_pad=True,
divisor_override=None,
return_indices=None):
return input.numel(), 0
def _conv_flops_compute(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
assert weight.shape[1] * groups == input.shape[1]
batch_size = input.shape[0]
in_channels = input.shape[1]
out_channels = weight.shape[0]
kernel_dims = list(weight.shape[2:])
input_dims = list(input.shape[2:])
length = len(input_dims)
strides = stride if type(stride) is tuple else (stride, ) * length
dilations = dilation if type(dilation) is tuple else (dilation, ) * length
if isinstance(padding, str):
if padding == 'valid':
paddings = (0, ) * length
elif padding == 'same':
paddings = ()
for d, k in zip(dilations, kernel_dims):
total_padding = d * (k - 1)
paddings += (total_padding // 2, )
elif isinstance(padding, tuple):
paddings = padding
else:
paddings = (padding, ) * length
output_dims = []
for idx, input_dim in enumerate(input_dims):
output_dim = (input_dim + 2 * paddings[idx] - (dilations[idx] *
(kernel_dims[idx] - 1) + 1)) // strides[idx] + 1
output_dims.append(output_dim)
filters_per_channel = out_channels // groups
conv_per_position_macs = int(_prod(kernel_dims)) * in_channels * filters_per_channel
active_elements_count = batch_size * int(_prod(output_dims))
overall_conv_macs = conv_per_position_macs * active_elements_count
overall_conv_flops = 2 * overall_conv_macs
bias_flops = 0
if bias is not None:
bias_flops = out_channels * active_elements_count
return int(overall_conv_flops + bias_flops), int(overall_conv_macs)
def _conv_trans_flops_compute(
input,
weight,
bias=None,
stride=1,
padding=0,
output_padding=0,
groups=1,
dilation=1,
):
batch_size = input.shape[0]
in_channels = input.shape[1]
out_channels = weight.shape[1]
kernel_dims = list(weight.shape[2:])
input_dims = list(input.shape[2:])
length = len(input_dims)
paddings = padding if type(padding) is tuple else (padding, ) * length
strides = stride if type(stride) is tuple else (stride, ) * length
dilations = dilation if type(dilation) is tuple else (dilation, ) * length
output_dims = []
for idx, input_dim in enumerate(input_dims):
output_dim = (input_dim + 2 * paddings[idx] - (dilations[idx] *
(kernel_dims[idx] - 1) + 1)) // strides[idx] + 1
output_dims.append(output_dim)
paddings = padding if type(padding) is tuple else (padding, padding)
strides = stride if type(stride) is tuple else (stride, stride)
dilations = dilation if type(dilation) is tuple else (dilation, dilation)
filters_per_channel = out_channels // groups
conv_per_position_macs = int(_prod(kernel_dims)) * in_channels * filters_per_channel
active_elements_count = batch_size * int(_prod(input_dims))
overall_conv_macs = conv_per_position_macs * active_elements_count
overall_conv_flops = 2 * overall_conv_macs
bias_flops = 0
if bias is not None:
bias_flops = out_channels * batch_size * int(_prod(output_dims))
return int(overall_conv_flops + bias_flops), int(overall_conv_macs)
def _batch_norm_flops_compute(
input,
running_mean,
running_var,
weight=None,
bias=None,
training=False,
momentum=0.1,
eps=1e-05,
):
has_affine = weight is not None
if training:
# estimation
return input.numel() * (5 if has_affine else 4), 0
flops = input.numel() * (2 if has_affine else 1)
return flops, 0
def _layer_norm_flops_compute(
input: Tensor,
normalized_shape: List[int],
weight: Optional[Tensor] = None,
bias: Optional[Tensor] = None,
eps: float = 1e-5,
):
has_affine = weight is not None
# estimation
return input.numel() * (5 if has_affine else 4), 0
def _group_norm_flops_compute(input: Tensor,
num_groups: int,
weight: Optional[Tensor] = None,
bias: Optional[Tensor] = None,
eps: float = 1e-5):
has_affine = weight is not None
# estimation
return input.numel() * (5 if has_affine else 4), 0
def _instance_norm_flops_compute(
input: Tensor,
running_mean: Optional[Tensor] = None,
running_var: Optional[Tensor] = None,
weight: Optional[Tensor] = None,
bias: Optional[Tensor] = None,
use_input_stats: bool = True,
momentum: float = 0.1,
eps: float = 1e-5,
):
has_affine = weight is not None
# estimation
return input.numel() * (5 if has_affine else 4), 0
def _upsample_flops_compute(*args, **kwargs):
input = args[0]
size = kwargs.get('size', None)
if size is None and len(args) > 1:
size = args[1]
if size is not None:
if isinstance(size, tuple) or isinstance(size, list):
return int(_prod(size)), 0
else:
return int(size), 0
scale_factor = kwargs.get('scale_factor', None)
if scale_factor is None and len(args) > 2:
scale_factor = args[2]
assert scale_factor is not None, "either size or scale_factor should be defined"
flops = input.numel()
if isinstance(scale_factor, tuple) and len(scale_factor) == len(input):
flops *= int(_prod(scale_factor))
else:
flops *= scale_factor**len(input)
return flops, 0
def _softmax_flops_compute(input, dim=None, _stacklevel=3, dtype=None):
return input.numel(), 0
def _embedding_flops_compute(
input,
weight,
padding_idx=None,
max_norm=None,
norm_type=2.0,
scale_grad_by_freq=False,
sparse=False,
):
return 0, 0
def _dropout_flops_compute(input, p=0.5, training=True, inplace=False):
return 0, 0
def _matmul_flops_compute(input, other, *, out=None):
"""
Count flops for the matmul operation.
"""
macs = _prod(input.shape) * other.shape[-1]
return 2 * macs, macs
def _addmm_flops_compute(input, mat1, mat2, *, beta=1, alpha=1, out=None):
"""
Count flops for the addmm operation.
"""
macs = _prod(mat1.shape) * mat2.shape[-1]
return 2 * macs + _prod(input.shape), macs
def _einsum_flops_compute(equation, *operands):
"""
Count flops for the einsum operation.
"""
equation = equation.replace(" ", "")
input_shapes = [o.shape for o in operands]
# Re-map equation so that same equation with different alphabet
# representations will look the same.
letter_order = OrderedDict((k, 0) for k in equation if k.isalpha()).keys()
mapping = {ord(x): 97 + i for i, x in enumerate(letter_order)}
equation = equation.translate(mapping)
np_arrs = [np.zeros(s) for s in input_shapes]
optim = np.einsum_path(equation, *np_arrs, optimize="optimal")[1]
for line in optim.split("\n"):
if "optimized flop" in line.lower():
flop = int(float(line.split(":")[-1]))
return flop, 0
raise NotImplementedError("Unsupported einsum operation.")
def _tensor_addmm_flops_compute(self, mat1, mat2, *, beta=1, alpha=1, out=None):
"""
Count flops for the tensor addmm operation.
"""
macs = _prod(mat1.shape) * mat2.shape[-1]
return 2 * macs + _prod(self.shape), macs
def _mul_flops_compute(input, other, *, out=None):
return _elementwise_flops_compute(input, other)
def _add_flops_compute(input, other, *, alpha=1, out=None):
return _elementwise_flops_compute(input, other)
def _elementwise_flops_compute(input, other):
if not torch.is_tensor(input):
if torch.is_tensor(other):
return _prod(other.shape), 0
else:
return 1, 0
elif not torch.is_tensor(other):
return _prod(input.shape), 0
else:
dim_input = len(input.shape)
dim_other = len(other.shape)
max_dim = max(dim_input, dim_other)
final_shape = []
for i in range(max_dim):
in_i = input.shape[i] if i < dim_input else 1
ot_i = other.shape[i] if i < dim_other else 1
if in_i > ot_i:
final_shape.append(in_i)
else:
final_shape.append(ot_i)
flops = _prod(final_shape)
return flops, 0
def _attn_flops_compute(q, k, v, *args, **kwargs):
"""
Count flops for the scaled_dot_product_attention operation.
"""
macs = _prod(q.shape) * k.shape[-2]
macs += _prod(q.shape[:-1]) * k.shape[-2] * v.shape[-1]
return 2 * macs, macs
def wrapFunc(func, funcFlopCompute):
oldFunc = func
name = func.__str__
old_functions[name] = oldFunc
def newFunc(*args, **kwds):
flops, macs = funcFlopCompute(*args, **kwds)
if module_flop_count:
module_flop_count[-1].append((name, flops))
if module_mac_count and macs:
module_mac_count[-1].append((name, macs))
return oldFunc(*args, **kwds)
newFunc.__str__ = func.__str__
return newFunc
def _patch_functionals():
# FC
F.linear = wrapFunc(F.linear, _linear_flops_compute)
# convolutions
F.conv1d = wrapFunc(F.conv1d, _conv_flops_compute)
F.conv2d = wrapFunc(F.conv2d, _conv_flops_compute)
F.conv3d = wrapFunc(F.conv3d, _conv_flops_compute)
# conv transposed
F.conv_transpose1d = wrapFunc(F.conv_transpose1d, _conv_trans_flops_compute)
F.conv_transpose2d = wrapFunc(F.conv_transpose2d, _conv_trans_flops_compute)
F.conv_transpose3d = wrapFunc(F.conv_transpose3d, _conv_trans_flops_compute)
# activations
F.relu = wrapFunc(F.relu, _relu_flops_compute)
F.prelu = wrapFunc(F.prelu, _prelu_flops_compute)
F.elu = wrapFunc(F.elu, _elu_flops_compute)
F.leaky_relu = wrapFunc(F.leaky_relu, _leaky_relu_flops_compute)
F.relu6 = wrapFunc(F.relu6, _relu6_flops_compute)
if hasattr(F, "silu"):
F.silu = wrapFunc(F.silu, _silu_flops_compute)
F.gelu = wrapFunc(F.gelu, _gelu_flops_compute)
# Normalizations
F.batch_norm = wrapFunc(F.batch_norm, _batch_norm_flops_compute)
F.layer_norm = wrapFunc(F.layer_norm, _layer_norm_flops_compute)
F.instance_norm = wrapFunc(F.instance_norm, _instance_norm_flops_compute)
F.group_norm = wrapFunc(F.group_norm, _group_norm_flops_compute)
# poolings
F.avg_pool1d = wrapFunc(F.avg_pool1d, _pool_flops_compute)
F.avg_pool2d = wrapFunc(F.avg_pool2d, _pool_flops_compute)
F.avg_pool3d = wrapFunc(F.avg_pool3d, _pool_flops_compute)
F.max_pool1d = wrapFunc(F.max_pool1d, _pool_flops_compute)
F.max_pool2d = wrapFunc(F.max_pool2d, _pool_flops_compute)
F.max_pool3d = wrapFunc(F.max_pool3d, _pool_flops_compute)
F.adaptive_avg_pool1d = wrapFunc(F.adaptive_avg_pool1d, _pool_flops_compute)
F.adaptive_avg_pool2d = wrapFunc(F.adaptive_avg_pool2d, _pool_flops_compute)
F.adaptive_avg_pool3d = wrapFunc(F.adaptive_avg_pool3d, _pool_flops_compute)
F.adaptive_max_pool1d = wrapFunc(F.adaptive_max_pool1d, _pool_flops_compute)
F.adaptive_max_pool2d = wrapFunc(F.adaptive_max_pool2d, _pool_flops_compute)
F.adaptive_max_pool3d = wrapFunc(F.adaptive_max_pool3d, _pool_flops_compute)
# upsample
F.upsample = wrapFunc(F.upsample, _upsample_flops_compute)
F.interpolate = wrapFunc(F.interpolate, _upsample_flops_compute)
# softmax
F.softmax = wrapFunc(F.softmax, _softmax_flops_compute)
# embedding
F.embedding = wrapFunc(F.embedding, _embedding_flops_compute)
# attn
F.scaled_dot_product_attention = wrapFunc(F.scaled_dot_product_attention, _attn_flops_compute)
def _patch_tensor_methods():
torch.matmul = wrapFunc(torch.matmul, _matmul_flops_compute)
torch.Tensor.matmul = wrapFunc(torch.Tensor.matmul, _matmul_flops_compute)
torch.Tensor.__matmul__ = wrapFunc(torch.Tensor.__matmul__, _matmul_flops_compute)
torch.mm = wrapFunc(torch.mm, _matmul_flops_compute)
torch.Tensor.mm = wrapFunc(torch.Tensor.mm, _matmul_flops_compute)
torch.bmm = wrapFunc(torch.bmm, _matmul_flops_compute)
torch.Tensor.bmm = wrapFunc(torch.Tensor.bmm, _matmul_flops_compute)
torch.addmm = wrapFunc(torch.addmm, _addmm_flops_compute)
torch.Tensor.addmm = wrapFunc(torch.Tensor.addmm, _tensor_addmm_flops_compute)
torch.mul = wrapFunc(torch.mul, _mul_flops_compute)
torch.Tensor.mul = wrapFunc(torch.Tensor.mul, _mul_flops_compute)
torch.add = wrapFunc(torch.add, _add_flops_compute)
torch.Tensor.add = wrapFunc(torch.Tensor.add, _add_flops_compute)
torch.einsum = wrapFunc(torch.einsum, _einsum_flops_compute)
torch.baddbmm = wrapFunc(torch.baddbmm, _tensor_addmm_flops_compute)
def _reload_functionals():
# torch.nn.functional does not support importlib.reload()
F.linear = old_functions[F.linear.__str__]
F.conv1d = old_functions[F.conv1d.__str__]
F.conv2d = old_functions[F.conv2d.__str__]
F.conv3d = old_functions[F.conv3d.__str__]
F.conv_transpose1d = old_functions[F.conv_transpose1d.__str__]
F.conv_transpose2d = old_functions[F.conv_transpose2d.__str__]
F.conv_transpose3d = old_functions[F.conv_transpose3d.__str__]
F.relu = old_functions[F.relu.__str__]
F.prelu = old_functions[F.prelu.__str__]
F.elu = old_functions[F.elu.__str__]
F.leaky_relu = old_functions[F.leaky_relu.__str__]
F.relu6 = old_functions[F.relu6.__str__]
if hasattr(F, "silu"):
F.silu = old_functions[F.silu.__str__]
F.gelu = old_functions[F.gelu.__str__]
F.batch_norm = old_functions[F.batch_norm.__str__]
F.layer_norm = old_functions[F.layer_norm.__str__]
F.instance_norm = old_functions[F.instance_norm.__str__]
F.group_norm = old_functions[F.group_norm.__str__]
F.avg_pool1d = old_functions[F.avg_pool1d.__str__]
F.avg_pool2d = old_functions[F.avg_pool2d.__str__]
F.avg_pool3d = old_functions[F.avg_pool3d.__str__]
F.max_pool1d = old_functions[F.max_pool1d.__str__]
F.max_pool2d = old_functions[F.max_pool2d.__str__]
F.max_pool3d = old_functions[F.max_pool3d.__str__]
F.adaptive_avg_pool1d = old_functions[F.adaptive_avg_pool1d.__str__]
F.adaptive_avg_pool2d = old_functions[F.adaptive_avg_pool2d.__str__]
F.adaptive_avg_pool3d = old_functions[F.adaptive_avg_pool3d.__str__]
F.adaptive_max_pool1d = old_functions[F.adaptive_max_pool1d.__str__]
F.adaptive_max_pool2d = old_functions[F.adaptive_max_pool2d.__str__]
F.adaptive_max_pool3d = old_functions[F.adaptive_max_pool3d.__str__]
F.upsample = old_functions[F.upsample.__str__]
F.interpolate = old_functions[F.interpolate.__str__]
F.softmax = old_functions[F.softmax.__str__]
F.embedding = old_functions[F.embedding.__str__]
def _reload_tensor_methods():
torch.matmul = old_functions[torch.matmul.__str__]
torch.Tensor.matmul = old_functions[torch.Tensor.matmul.__str__]
torch.mm = old_functions[torch.mm.__str__]
torch.Tensor.mm = old_functions[torch.Tensor.mm.__str__]
torch.bmm = old_functions[torch.matmul.__str__]
torch.Tensor.bmm = old_functions[torch.Tensor.bmm.__str__]
torch.addmm = old_functions[torch.addmm.__str__]
torch.Tensor.addmm = old_functions[torch.Tensor.addmm.__str__]
torch.mul = old_functions[torch.mul.__str__]
torch.Tensor.mul = old_functions[torch.Tensor.mul.__str__]
torch.add = old_functions[torch.add.__str__]
torch.Tensor.add = old_functions[torch.Tensor.add.__str__]
torch.einsum = old_functions[torch.einsum.__str__]
torch.baddbmm = old_functions[torch.baddbmm.__str__]
def _rnn_flops(flops, rnn_module, w_ih, w_hh, input_size):
gates_size = w_ih.shape[0]
# matrix matrix mult ih state and internal state
flops += 2 * w_ih.shape[0] * w_ih.shape[1] - gates_size
# matrix matrix mult hh state and internal state
flops += 2 * w_hh.shape[0] * w_hh.shape[1] - gates_size
if isinstance(rnn_module, (nn.RNN, nn.RNNCell)):
# add both operations
flops += rnn_module.hidden_size
elif isinstance(rnn_module, (nn.GRU, nn.GRUCell)):
# hadamard of r
flops += rnn_module.hidden_size
# adding operations from both states
flops += rnn_module.hidden_size * 3
# last two hadamard _product and add
flops += rnn_module.hidden_size * 3
elif isinstance(rnn_module, (nn.LSTM, nn.LSTMCell)):
# adding operations from both states
flops += rnn_module.hidden_size * 4
# two hadamard _product and add for C state
flops += rnn_module.hidden_size + rnn_module.hidden_size + rnn_module.hidden_size
# final hadamard
flops += rnn_module.hidden_size + rnn_module.hidden_size + rnn_module.hidden_size
return flops
def _rnn_forward_hook(rnn_module, input, output):
flops = 0
# input is a tuple containing a sequence to process and (optionally) hidden state
inp = input[0]
batch_size = inp.shape[0]
seq_length = inp.shape[1]
num_layers = rnn_module.num_layers
for i in range(num_layers):
w_ih = rnn_module.__getattr__("weight_ih_l" + str(i))
w_hh = rnn_module.__getattr__("weight_hh_l" + str(i))
if i == 0:
input_size = rnn_module.input_size
else:
input_size = rnn_module.hidden_size
flops = _rnn_flops(flops, rnn_module, w_ih, w_hh, input_size)
if rnn_module.bias:
b_ih = rnn_module.__getattr__("bias_ih_l" + str(i))
b_hh = rnn_module.__getattr__("bias_hh_l" + str(i))
flops += b_ih.shape[0] + b_hh.shape[0]
flops *= batch_size
flops *= seq_length
if rnn_module.bidirectional:
flops *= 2
rnn_module.__flops__ += int(flops)
def _rnn_cell_forward_hook(rnn_cell_module, input, output):
flops = 0
inp = input[0]
batch_size = inp.shape[0]
w_ih = rnn_cell_module.__getattr__("weight_ih")
w_hh = rnn_cell_module.__getattr__("weight_hh")
input_size = inp.shape[1]
flops = _rnn_flops(flops, rnn_cell_module, w_ih, w_hh, input_size)
if rnn_cell_module.bias:
b_ih = rnn_cell_module.__getattr__("bias_ih")
b_hh = rnn_cell_module.__getattr__("bias_hh")
flops += b_ih.shape[0] + b_hh.shape[0]
flops *= batch_size
rnn_cell_module.__flops__ += int(flops)
MODULE_HOOK_MAPPING = {
# RNN
nn.RNN: _rnn_forward_hook,
nn.GRU: _rnn_forward_hook,
nn.LSTM: _rnn_forward_hook,
nn.RNNCell: _rnn_cell_forward_hook,
nn.LSTMCell: _rnn_cell_forward_hook,
nn.GRUCell: _rnn_cell_forward_hook,
}
def macs_to_string(macs, units=None, precision=DEFAULT_PRECISION):
return f"{number_to_string(macs, units=units, precision=precision)}MACs"
def number_to_string(num, units=None, precision=DEFAULT_PRECISION):
if units is None:
if num >= 1e12:
magnitude, units = 1e12, "T"
elif num >= 1e9:
magnitude, units = 1e9, "G"
elif num >= 1e6:
magnitude, units = 1e6, "M"
elif num >= 1e3:
magnitude, units = 1e3, "K"
elif num >= 1 or num == 0:
magnitude, units = 1, ""
elif num >= 1e-3:
magnitude, units = 1e-3, "m"
else:
magnitude, units = 1e-6, "u"
else:
if units == "T":
magnitude = 1e12
elif units == "G":
magnitude = 1e9
elif units == "M":
magnitude = 1e6
elif units == "K":
magnitude = 1e3
elif units == "m":
magnitude = 1e-3
elif units == "u":
magnitude = 1e-6
else:
magnitude = 1
return f"{round(num / magnitude, precision):g} {units}"
def flops_to_string(flops, units=None, precision=DEFAULT_PRECISION):
return f"{number_to_string(flops, units=units, precision=precision)}FLOPS"
def bytes_to_string(b, units=None, precision=DEFAULT_PRECISION):
return f"{number_to_string(b, units=units, precision=precision)}B"
def params_to_string(params_num, units=None, precision=DEFAULT_PRECISION):
units = units.replace("B", "G") if units else units
return number_to_string(params_num, units=units, precision=precision).replace("G", "B").strip()
def duration_to_string(duration, units=None, precision=DEFAULT_PRECISION):
return f"{number_to_string(duration, units=units, precision=precision)}s"
# can not iterate over all submodules using self.model.modules()
# since modules() returns duplicate modules only once
def get_module_flops(module):
sum = module.__flops__
# iterate over immediate children modules
for child in module.children():
sum += get_module_flops(child)
return sum
def get_module_macs(module):
sum = module.__macs__
# iterate over immediate children modules
for child in module.children():
sum += get_module_macs(child)
return sum
def get_module_duration(module):
duration = module.__duration__
if duration == 0: # e.g. ModuleList
for m in module.children():
duration += get_module_duration(m)
return duration
def get_model_profile(model,
input_shape=None,
args=[],
kwargs={},
print_profile=True,
detailed=True,
module_depth=-1,
top_modules=1,
warm_up=1,
as_string=True,
output_file=None,
ignore_modules=None,
mode='forward'):
"""Returns the total floating-point operations, MACs, and parameters of a model.
Example:
.. code-block:: python
model = torchvision.models.alexnet()
batch_size = 256
flops, macs, params = get_model_profile(model=model, input_shape=(batch_size, 3, 224, 224)))
Args:
model ([torch.nn.Module]): the PyTorch model to be profiled.
input_shape (tuple): input shape to the model. If specified, the model takes a tensor with this shape as the only positional argument.
args (list): list of positional arguments to the model.
kwargs (dict): dictionary of keyword arguments to the model.
print_profile (bool, optional): whether to print the model profile. Defaults to True.
detailed (bool, optional): whether to print the detailed model profile. Defaults to True.
module_depth (int, optional): the depth into the nested modules. Defaults to -1 (the inner most modules).
top_modules (int, optional): the number of top modules to print in the aggregated profile. Defaults to 3.
warm_up (int, optional): the number of warm-up steps before measuring the latency of each module. Defaults to 1.
as_string (bool, optional): whether to print the output as string. Defaults to True.
output_file (str, optional): path to the output file. If None, the profiler prints to stdout.
ignore_modules ([type], optional): the list of modules to ignore during profiling. Defaults to None.
Returns:
The number of floating-point operations, multiply-accumulate operations (MACs), and parameters in the model.
"""
assert isinstance(model, nn.Module), "model must be a PyTorch module"
prof = FlopsProfiler(model)
model.eval()
if input_shape is not None:
assert type(input_shape) is tuple, "input_shape must be a tuple"
assert len(input_shape) >= 1, "input_shape must have at least one element"
try:
input = torch.ones(()).new_empty(
(*input_shape, ),
dtype=next(model.parameters()).dtype,
device=next(model.parameters()).device,
)
except StopIteration:
input = torch.ones(()).new_empty((*input_shape, ))
args = [input]
assert (len(args) > 0) or (len(kwargs) > 0), "args and/or kwargs must be specified if input_shape is None"
logger.info("Flops profiler warming-up...")
for _ in range(warm_up):
if kwargs:
if mode == 'forward':
_ = model(*args, **kwargs)
if mode == 'generate':
_ = model.generate(*args, **kwargs)
else:
if mode == 'forward':
_ = model(*args)
if mode == 'generate':
_ = model.generate(*args)
prof.start_profile(ignore_list=ignore_modules)
if kwargs:
if mode == 'forward':
_ = model(*args, **kwargs)
if mode == 'generate':
_ = model.generate(*args, **kwargs)
else:
if mode == 'forward':
_ = model(*args)
if mode == 'generate':
_ = model.generate(*args)
flops = prof.get_total_flops()
macs = prof.get_total_macs()
params = prof.get_total_params()
if print_profile:
prof.print_model_profile(profile_step=warm_up,
module_depth=module_depth,
top_modules=top_modules,
detailed=detailed,
output_file=output_file)
prof.end_profile()
if as_string:
return number_to_string(flops), macs_to_string(macs), params_to_string(params)
return flops, macs, params
|