File size: 24,175 Bytes
0cee4ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
# The file has been adapted from https://github.com/NVIDIA/Megatron-LM and retains the following license from the original file
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Support different forms of parallelism in DeepSpeed using multiple process groups.
Given that there are multiple scenarios and use-cases, this file is going to be updated
frequently. For now, the group creation needed for the training scenario is being implemented.
For inference and other new scenarios, the code will be either reused or added to this file.
"""
from deepspeed import comm as dist
from deepspeed.utils import log_dist
from deepspeed.utils.bwc import bwc_tensor_model_parallel_world_size, bwc_pipeline_parallel_world_size
from deepspeed.utils.exceptions import DeprecatedException
from deepspeed.accelerator import get_accelerator
# Expert parallel group that the current rank belongs to.
_EXPERT_PARALLEL_GROUP = {}
# Expert data parallel group that the current rank belongs to.
_EXPERT_DATA_PARALLEL_GROUP = {}
# dist world group needs to be cloned for some cases
_WORLD_GROUP = None
# ZeRO parameter partitioning group that the current rank belongs to.
_ZERO_PARAM_INTRA_PARALLEL_GROUP = None
# global object to maintain mpu object if passed by a Megatron client
mpu = None
# global object that stores tensor parallel world size for experts
expert_tensor_parallel_world_size = 1
# All to All quantized graident communication groups
_ALL_TO_ALL_GROUP = {}
_DATA_PARALLEL_GROUP = None
# Deprecated groups initialize function.
def initialize(ep_size=1, mpu=None):
""" Deprecated function. Retained to inform the users."""
raise DeprecatedException(
"Please do not use the groups.initialize() API as it is deprecated. Instead, pass the desired ep_size to deepspeed.moe.layer.MoE(..,ep_size,..)"
)
def _ensure_divisibility(numerator, denominator):
"""Ensure that numerator is divisible by the denominator."""
assert numerator % denominator == 0, '{} is not divisible by {}'.format(numerator, denominator)
# Not currently used. Helper function to create a model (tensor) parallel group.
def _create_model_parallel(model_parallel_size_):
"""
Initialize model data parallel groups.
Arguments:
model_parallel_size: number of GPUs used to parallelize model.
Returns:
Tuple of data parallel group and model parallel group
Let's say we have a total of 8 GPUs denoted by g0 ... g7 and we
use 2 GPUs to parallelize the model. The present function will
create 4 model parallel groups and 2 data parallel groups as:
4 model parallel groups:
[g0, g1], [g2, g3], [g4, g5], [g6, g7]
2 data parallel groups:
[g0, g2, g4, g6], [g1, g3, g5, g7]
Note that for efficiency, the caller should make sure adjacent ranks
are on the same DGX box. For example if we are using 2 DGX-1 boxes
with a total of 16 GPUs, rank 0 to 7 belong to the first box and
ranks 8 to 15 belong to the second box.
"""
log_dist(f'Creating model parallel group with size {model_parallel_size_}', ranks=[0])
# Get world size and rank. Ensure some consistencies.
assert dist.is_initialized()
world_size = dist.get_world_size()
model_parallel_size = min(model_parallel_size_, world_size)
_ensure_divisibility(world_size, model_parallel_size)
rank = dist.get_rank()
_DATA_PARALLEL_GROUP = None
_MODEL_PARALLEL_GROUP = None
# Build the data parallel groups.
for i in range(model_parallel_size):
ranks = range(i, world_size, model_parallel_size)
group = dist.new_group(ranks)
if i == (rank % model_parallel_size):
_DATA_PARALLEL_GROUP = group
# Build the model parallel groups.
for i in range(world_size // model_parallel_size):
ranks = range(i * model_parallel_size, (i + 1) * model_parallel_size)
group = dist.new_group(ranks)
if i == (rank // model_parallel_size):
_MODEL_PARALLEL_GROUP = group
return _DATA_PARALLEL_GROUP, _MODEL_PARALLEL_GROUP
def _create_expert_and_data_parallel(expert_parallel_size_, use_data_before_expert_parallel_=False):
"""
Create expert and data parallel groups.
Note: Caller of this function is responsible to check if the groups already exist.
Example - E + D parallel
world_size = 16
expert_parallel_size = 2 # number of experts in same group
expert_data_parallel_group = [0,2,4,6,8,10,12,14], [1,3,5,7,9,11,13,15] - all reduce is only on MoE params
expert_parallel_group = [0, 1], [2,3], [4,5], [6,7], [8,9] - no all reduce, but all to all
data_parallel_group = [0,1,...,15] - all reduce is only on non-MoE
use_data_before_expert_parallel_ (bool): Use the D + E instead of E + D topology
"""
assert dist.is_initialized()
log_dist(f'Creating expert and data parallel groups with size {expert_parallel_size_}', ranks=[0])
world_size = dist.get_world_size()
pp_world_size = 1 if mpu is None else bwc_pipeline_parallel_world_size(mpu)
rank = dist.get_rank()
pp_stride = world_size // pp_world_size
_ensure_divisibility(pp_stride, expert_parallel_size_)
group_name = f"ep_size_{expert_parallel_size_}"
# Build the expert data parallel groups.
global _EXPERT_DATA_PARALLEL_GROUP
ep_stride = pp_stride // expert_parallel_size_
# Only create group if it does not already exist
if group_name not in _EXPERT_DATA_PARALLEL_GROUP:
for pp_stage_start in range(0, world_size, pp_stride):
for i in range(expert_parallel_size_):
if use_data_before_expert_parallel_:
ranks = range(pp_stage_start + i * ep_stride, pp_stage_start + (i + 1) * ep_stride)
else:
ranks = range(pp_stage_start + i, pp_stage_start + pp_stride, expert_parallel_size_)
group = dist.new_group(ranks)
log_dist(
f'Creating expert data parallel process group named {group_name} '
f'with ranks: {list(ranks)}', [0])
if rank in ranks:
_EXPERT_DATA_PARALLEL_GROUP[group_name] = group
# Build the expert parallel groups.
global _EXPERT_PARALLEL_GROUP
# Only create group if it does not already exist
if group_name not in _EXPERT_PARALLEL_GROUP:
if use_data_before_expert_parallel_:
for pp_stage_start in range(0, world_size, pp_stride):
for i in range(ep_stride):
ranks = range(pp_stage_start + i, pp_stage_start + pp_stride, ep_stride)
group = dist.new_group(ranks)
log_dist(
f'creating expert parallel process group named {group_name} '
f'with ranks: {list(ranks)}', [0])
if rank in ranks:
_EXPERT_PARALLEL_GROUP[group_name] = group
else:
for i in range(world_size // expert_parallel_size_):
ranks = range(i * expert_parallel_size_, (i + 1) * expert_parallel_size_)
group = dist.new_group(ranks)
log_dist(f'creating expert parallel process group named {group_name} '
f'with ranks: {list(ranks)}', [0])
if rank in ranks:
_EXPERT_PARALLEL_GROUP[group_name] = group
def _get_expert_parallel_ranks(world_size,
tensor_parallel_size_,
expert_parallel_size_,
pipeline_parallel_size_=1,
use_data_before_expert_parallel_=False):
"""Generate expert parallel and expert data parallel group ranks list.
Example - E + M + D parallel
world_size = 16
model_degree = 2
expert_degree = 4 # number of experts in same group
mp_group = [0, 1], [2,3], [4,5] ...
data_parallel_group =[0,2,4,6,8,10, 12,14], [1,3,5,7,9,11,13,15]
expert_parallel_group = [0,2,4,6], [8,10,12,14] [1,3,5,7], [9,11,13,15]
expert_data_parallel_group = [0,8],[2,10],[4,12],[6,14], [1,9],[3,11],[5,13],[7,15]
Args:
world_size (int): Distributed world size.
tensor_parallel_size_ (int): Tensor parallel group size.
expert_parallel_size_ (int): Expert parallel group size.
pipeline_parallel_size_ (int): Pipeline parallel group size
use_data_before_expert_parallel_ (bool): Use the D + E instead of E + D topology
Returns:
Expert parallel group ranks and Expert data parallel group ranks list.
"""
_ensure_divisibility(world_size, tensor_parallel_size_ * pipeline_parallel_size_)
dp_world_size = world_size // (tensor_parallel_size_ * pipeline_parallel_size_)
_ensure_divisibility(dp_world_size, expert_parallel_size_)
# Generate data parallel groups
data_parallel_groups = []
dp_group_size = tensor_parallel_size_
pp_stride = world_size // pipeline_parallel_size_
if use_data_before_expert_parallel_:
dp_stride = world_size // expert_parallel_size_ // tensor_parallel_size_ // pipeline_parallel_size_
for pp_stage_start in range(0, world_size, pp_stride):
pp_stage_next = pp_stage_start + pp_stride
for i in range(dp_group_size):
data_parallel_groups.append(list())
for ds in range(dp_stride):
# [0, 4, 8, 12, 16, 20, 24, 28, 2, 6, 10, 14, 18, 22, 26, 30]
# [1, 5, 9, 13, 17, 21, 25, 29, 3, 7, 11, 15, 19, 23, 27, 31]
data_parallel_groups[-1].extend(
list(
range(pp_stage_start + i + ds * tensor_parallel_size_, pp_stage_next,
dp_stride * tensor_parallel_size_)))
else:
for pp_stage_start in range(0, world_size, pp_stride):
pp_stage_next = pp_stage_start + pp_stride
for i in range(dp_group_size):
data_parallel_groups.append(list(range(pp_stage_start + i, pp_stage_next, dp_group_size)))
expert_parallel_groups = []
expert_data_parallel_groups = []
for dp_ranks in data_parallel_groups:
# partition of expert parallel groups, e.g. [0,2,4,6], [8,10,12,14]
part_ep_groups = []
for i in range(0, dp_world_size, expert_parallel_size_):
part_ep_groups.append(dp_ranks[i:i + expert_parallel_size_])
expert_parallel_groups.extend(part_ep_groups)
# zip part_ep_groups get expert data parallel ranks, e.g [0,8],[2,10],[4,12],[6,14]
for expert_dp_ranks in zip(*part_ep_groups):
expert_data_parallel_groups.append(list(expert_dp_ranks))
return expert_parallel_groups, expert_data_parallel_groups
def _create_expert_data_and_model_parallel(expert_parallel_size_, mpu, use_data_before_expert_parallel_=False):
"""
Create expert and data parallel groups based on MPU (model parallel) group.
Note: Caller of this function is responsible to check if the groups already exist.
Example - E + M + D parallel
world_size = 16
model_degree = 2
expert_degree = 4 # number of experts in same group
mp_group = [0, 1], [2,3], [4,5] ...
data_parallel_group =[0,2,4,6,8,10, 12,14], [1,3,5,7,9,11,13,15]
expert_parallel_group = [0,2,4,6], [8,10,12,14] [1,3,5,7], [9,11,13,15]
expert_data_parallel_group = [0,8],[2,10],[4,12],[6,14], [1,9],[3,11],[5,13],[7,15]
"""
assert dist.is_initialized(), "dist is not initialized"
tensor_parallel_size_ = bwc_tensor_model_parallel_world_size(mpu)
global expert_tensor_parallel_world_size
expert_tensor_parallel_world_size = tensor_parallel_size_
world_size = dist.get_world_size()
rank = dist.get_rank()
dp_world_size = mpu.get_data_parallel_world_size()
pp_world_size = 1 if mpu is None else bwc_pipeline_parallel_world_size(mpu)
_ensure_divisibility(world_size, tensor_parallel_size_)
_ensure_divisibility(dp_world_size, expert_parallel_size_)
log_dist(
f"Creating deepspeed groups with model parallel size {tensor_parallel_size_}, "
f"pipeline parallel size {pp_world_size}, expert parallel size {expert_parallel_size_}, "
f"world size {world_size}, dp world size {dp_world_size}", [0])
global _EXPERT_PARALLEL_GROUP, _EXPERT_DATA_PARALLEL_GROUP
group_name = f"ep_size_{expert_parallel_size_}"
# Only create groups if they don't already exist
# Need to check conditions outside the group creation loop because of the way torch.dist group creation works
if group_name not in _EXPERT_DATA_PARALLEL_GROUP and group_name not in _EXPERT_PARALLEL_GROUP:
expert_parallel_groups, expert_data_parallel_groups = _get_expert_parallel_ranks(
world_size, tensor_parallel_size_, expert_parallel_size_, pp_world_size, use_data_before_expert_parallel_)
for ranks in expert_parallel_groups:
group = dist.new_group(ranks)
if rank in list(ranks):
_EXPERT_PARALLEL_GROUP[group_name] = group
for ranks in expert_data_parallel_groups:
group = dist.new_group(ranks)
if rank in list(ranks):
_EXPERT_DATA_PARALLEL_GROUP[group_name] = group
def _get_max_expert_size():
"""Get the maximum ep_size from all the created groups."""
assert _EXPERT_PARALLEL_GROUP is not None, "Warning! Process group not initialized"
keylist = []
for key in _EXPERT_PARALLEL_GROUP.keys():
# index 2 is ep_size in the group name: ep_size_<ep_size>
index = 2
keylist.append(int(key.split('_')[index]))
return max(keylist) if len(keylist) > 0 else None
def _get_max_expert_size_name():
"""Get the name of the group with max. ep_size"""
return f'ep_size_{_get_max_expert_size()}'
def _get_max_expert_parallel_group():
"""Get the max expert parallel size."""
return _get_expert_parallel_group(_get_max_expert_size_name())
def _get_expert_parallel_group(group_name):
"""Get the expert parallel group the caller rank belongs to."""
assert group_name in _EXPERT_PARALLEL_GROUP, \
'expert parallel group is not initialized'
return _EXPERT_PARALLEL_GROUP[group_name]
def _get_expert_parallel_group_dict():
"""Get the expert parallel group dict."""
return _EXPERT_PARALLEL_GROUP
def _get_expert_data_parallel_group(group_name):
"""Get the expert data parallel group the caller rank belongs to."""
assert group_name in _EXPERT_DATA_PARALLEL_GROUP, \
'expert data parallel group is not initialized'
return _EXPERT_DATA_PARALLEL_GROUP[group_name]
def _get_expert_data_parallel_group_dict():
"""Get the expert data parallel group dict."""
return _EXPERT_DATA_PARALLEL_GROUP
def _clone_world_group():
"""Create a clone of the world group
Note: We need to clone the dist world group because we
use dist.get_global_rank() utility function in DeepSpeed at many places.
As that function does not work on dist.group.WORLD, we
need to keep a clone of it.
"""
assert dist.is_initialized(), "dist is not initialized"
global _WORLD_GROUP
if _WORLD_GROUP is None:
# If not cloned already, clone the world group
_WORLD_GROUP = dist.new_group(ranks=range(dist.get_world_size()))
return _WORLD_GROUP
def _get_local_all_to_all_group():
assert dist.is_initialized(), 'dist is not initialized'
global _ALL_TO_ALL_GROUP
device_per_node = get_accelerator().device_count()
num_local = dist.get_world_size() // device_per_node
if num_local == 0 and dist.get_world_size() > 0:
assert dist.get_world_size() >= 1, 'num_gpus must >=1, cannot initialize All-To-All'
cur_rank = []
for i in range(dist.get_world_size()):
cur_rank.append(i)
_ALL_TO_ALL_GROUP['local_0'] = dist.new_group(ranks=cur_rank)
elif num_local == 1:
assert dist.get_world_size(
) == device_per_node, 'num_gpus not equal to device per node, cannot initialize All-To-All'
_ALL_TO_ALL_GROUP['local_0'] = dist.new_group(ranks=[i for i in range(device_per_node)])
else:
assert dist.get_world_size() > device_per_node, 'num_nodes<2 cannot initialize All-To-All'
for i in range(num_local):
local_rank = [j + device_per_node * i for j in range(device_per_node)]
_ALL_TO_ALL_GROUP[f"local_{i}"] = dist.new_group(ranks=local_rank)
for i in range(device_per_node):
cur_rank = []
for j in range(num_local):
cur_rank.append(i + j * device_per_node)
_ALL_TO_ALL_GROUP[f"global_{i}"] = dist.new_group(ranks=cur_rank)
return _ALL_TO_ALL_GROUP
def _get_data_parallel_group():
"""Get the data parallel group the caller rank belongs to."""
assert dist.is_initialized(), 'dist is not initialized'
global mpu
if mpu is not None:
return mpu.get_data_parallel_group()
# Return the clone of dist world group
return _clone_world_group()
def _get_broadcast_src_rank():
return dist.get_global_rank(_get_sequence_data_parallel_group(), 0)
def _get_expert_broadcast_src_rank(group_name):
return dist.get_global_rank(_get_expert_data_parallel_group(group_name), 0)
def _get_expert_parallel_world_size(group_name):
"""Return world size for the expert parallel group."""
return dist.get_world_size(group=_get_expert_parallel_group(group_name))
def _get_expert_data_parallel_world_size(group_name):
"""Return world size for the expert data parallel group."""
return dist.get_world_size(group=_get_expert_data_parallel_group(group_name))
def _get_expert_parallel_rank(group_name):
"""Return my rank for the expert parallel group."""
return dist.get_rank(group=_get_expert_parallel_group(group_name))
def _get_expert_parallel_src_rank(group_name):
"""Calculate the global rank corresponding to a local rank zero
in the expert parallel group."""
global_rank = dist.get_rank()
local_world_size = _get_expert_parallel_world_size(group_name)
return (global_rank // local_world_size) * local_world_size
def _get_expert_data_parallel_rank(group_name):
"""Return my rank for the expert data parallel group."""
return dist.get_rank(group=_get_expert_data_parallel_group(group_name))
def _get_data_parallel_world_size():
"""Return world size for the data parallel group."""
global mpu
if mpu is not None:
return mpu.get_data_parallel_world_size()
return dist.get_world_size(group=_get_data_parallel_group())
def _get_model_parallel_world_size():
"""Return world size for the model parallel group."""
global mpu
if mpu is not None:
return mpu.get_model_parallel_world_size()
return 1
def _get_data_parallel_rank():
"""Return my rank for the data parallel group."""
return dist.get_rank(group=_get_data_parallel_group())
def _get_sequence_parallel_world_size():
"""Return world size for the model parallel group."""
global mpu
if mpu is not None and hasattr(mpu, 'get_sequence_parallel_world_size'):
return mpu.get_sequence_parallel_world_size()
return 1
def _get_sequence_parallel_rank():
"""Return my rank for the data parallel group."""
global mpu
if mpu is not None and hasattr(mpu, 'get_sequence_parallel_rank'):
return mpu.get_sequence_parallel_rank()
return 0
def _get_sequence_parallel_group():
global mpu
if mpu is not None and hasattr(mpu, 'get_sequence_parallel_group'):
return mpu.get_sequence_parallel_group()
return None
def _get_sequence_data_parallel_world_size():
"""Return world size for the model parallel group."""
global mpu
if mpu is not None and hasattr(mpu, 'get_sequence_data_parallel_world_size'):
return mpu.get_sequence_data_parallel_world_size()
return _get_data_parallel_world_size()
def _get_sequence_data_parallel_rank():
"""Return my rank for the data parallel group."""
global mpu
if mpu is not None and hasattr(mpu, 'get_sequence_data_parallel_rank'):
return mpu.get_sequence_data_parallel_rank()
return _get_data_parallel_rank()
def _get_sequence_data_parallel_group():
global mpu
# When sequence parallelism is enabled, the process group for zero sharding and
# gradient allreduce must be across both dimensions of data and sequence parallelism.
if mpu is not None and hasattr(mpu, 'get_sequence_data_parallel_group'):
return mpu.get_sequence_data_parallel_group()
return _get_data_parallel_group()
def _get_expert_model_parallel_world_size():
global expert_tensor_parallel_world_size
return expert_tensor_parallel_world_size
def _create_zero_param_parallel_group(group_size):
"""
Create parameter partitioning group within ZeRO data parallel groups.
Example - ZP + D parallel
world_size = 16
zero_hpz_partition_size = 2 # number of ranks with replicated params (dual partitioning)
zero_param_intra_parallel_group = [0, 1], [2,3], [4,5], [6,7], [8,9] - segmented (subgroup) with rep partition
data_parallel_group = [0,1,...,15] - all reduce is on ZeRO model
"""
assert dist.is_initialized()
global _ZERO_PARAM_INTRA_PARALLEL_GROUP
# Only create group if it does not already exist
assert _ZERO_PARAM_INTRA_PARALLEL_GROUP is None, \
'ZeRO parameter intra parallel group is already initialized'
world_size = dist.get_world_size()
rank = dist.get_rank()
zero_param_parallel_size_ = min(group_size, world_size)
_ensure_divisibility(world_size, zero_param_parallel_size_)
# Build the ZeRO param intra parallel groups.
for i in range(world_size // zero_param_parallel_size_):
ranks = range(i * zero_param_parallel_size_, (i + 1) * zero_param_parallel_size_)
group = dist.new_group(ranks)
if i == (rank // zero_param_parallel_size_):
_ZERO_PARAM_INTRA_PARALLEL_GROUP = group
def _get_zero_param_intra_parallel_group():
"""Get the ZeRO parameter partitioning intra parallel group the caller rank belongs to."""
#assert _ZERO_PARAM_INTRA_PARALLEL_GROUP is not None, \
# 'ZeRO parameter partitioning group is not initialized'
#TODO: Add warning
return _ZERO_PARAM_INTRA_PARALLEL_GROUP
def _zero_param_parallel_is_initialized():
"""Check if ZeRO data parallel with parameter partititioning groups are initialized."""
###TODO: assert that MPU is not set
if _ZERO_PARAM_INTRA_PARALLEL_GROUP is None and _DATA_PARALLEL_GROUP is None:
return False
def _get_zero_param_intra_parallel_rank_in_mygroup():
"""Return my rank for the ZeRO parameter inter parallel group."""
return dist.get_rank(group=_get_zero_param_intra_parallel_group())
def _get_zero_param_intra_parallel_group_world_size():
"""Return world size for the ZeRO parameter parallel group."""
return dist.get_world_size(group=_get_zero_param_intra_parallel_group())
def _get_zero_param_intra_parallel_group_ranks():
"""Return all ranks for the ZeRO parameter intra parallel group."""
return dist.get_all_ranks_from_group(group=_get_zero_param_intra_parallel_group())
|