File size: 12,578 Bytes
0cee4ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
from dataclasses import dataclass
from deepspeed import comm as dist
from typing import Dict
@dataclass
class fragment_address:
numel: int
start: int
@dataclass
class tensor_fragment:
lp_fragment: torch.Tensor
lp_fragment_address: fragment_address
hp_fragment: torch.Tensor
hp_fragment_address: fragment_address
gradient_dict: Dict
offload_gradient_dict: Dict
use_offload: bool
param_group_index: int
optim_fragment: Dict = None
def update_hp(self):
self.hp_fragment.data.copy_(self.lp_fragment.data)
def update_lp(self):
self.lp_fragment.data.copy_(self.hp_fragment.data)
def get_optim_state_fragment(self, key):
if key in self.optim_fragment:
return self.optim_fragment[key]
else:
raise ValueError(f'{key} not found in optimizer state fragment')
def set_optim_state_fragment(self, flat_hp_partition, optim_fragment):
self.optim_fragment = {
key: value.narrow(0, self.hp_fragment_address.start, self.hp_fragment_address.numel)
for key, value in optim_fragment.items()
if torch.is_tensor(value) and value.shape == flat_hp_partition.shape
}
def get_hp_fragment_address(self):
return self.hp_fragment_address
def get_optim_state_keys(self):
return list(self.optim_fragment.keys())
def get_hp_fragment(self, optim_state_key=None):
if optim_state_key is None:
return self.hp_fragment
return self.get_optim_state_fragment(optim_state_key)
def map_to_flat_opt_states(flat_hp_tensor, lp_tensors, optim_state, opt_keys):
for key in opt_keys:
hp_param = flat_hp_tensor
buffer = torch.zeros_like(hp_param)
for lp in lp_tensors:
if lp._hp_mapping is not None:
hp_fragment_address = lp._hp_mapping.get_hp_fragment_address()
hp_fragment = buffer.narrow(0, hp_fragment_address.start, hp_fragment_address.numel)
hp_fragment.data.copy_(lp._hp_mapping.get_hp_fragment(optim_state_key=key).data)
lp._hp_mapping.hp_fragment = hp_fragment
optim_state[hp_param][key] = buffer
def get_full_hp_param(self, optim_state_key=None):
reduce_buffer = torch.zeros_like(self, dtype=torch.float32).flatten()
if self._hp_mapping is not None:
lp_frag_address = self._hp_mapping.lp_fragment_address
reduce_fragment = torch.narrow(reduce_buffer, 0, lp_frag_address.start, lp_frag_address.numel)
hp_fragment = self._hp_mapping.get_hp_fragment(optim_state_key)
reduce_fragment.data.copy_(hp_fragment.data)
dist.all_reduce(reduce_buffer, group=self._dp_group)
return reduce_buffer.reshape_as(self)
def set_full_hp_param(self, value, optim_state_key=None):
if self._hp_mapping is not None:
lp_frag_address = self._hp_mapping.lp_fragment_address
value_fragment = torch.narrow(value.flatten(), 0, lp_frag_address.start, lp_frag_address.numel)
hp_fragment = self._hp_mapping.get_hp_fragment(optim_state_key)
hp_fragment.data.copy_(value_fragment.data)
def get_full_hp_grad(self):
reduce_buffer = torch.zeros_like(self, dtype=torch.float32).flatten()
if self._hp_mapping is not None:
hp_mapping = self._hp_mapping
if hp_mapping.use_offload:
gradient_dict = hp_mapping.offload_gradient_dict
else:
gradient_dict = hp_mapping.gradient_dict
if hp_mapping.param_group_index not in gradient_dict or gradient_dict[hp_mapping.param_group_index] is None:
raise ValueError("Gradients are only available immediately after backward and before engine step")
lp_grad_fragment = gradient_dict[hp_mapping.param_group_index][self._index_in_param_group]
hp_grad_fragment = lp_grad_fragment.to(torch.float32).flatten()
lp_frag_address = self._hp_mapping.lp_fragment_address
reduce_fragment = torch.narrow(reduce_buffer, 0, lp_frag_address.start, lp_frag_address.numel)
if self.view(-1).shape == hp_grad_fragment.shape:
reduce_buffer.data.copy_(hp_grad_fragment.data)
else:
reduce_fragment.data.copy_(hp_grad_fragment.data)
dist.all_reduce(reduce_buffer, group=self._dp_group)
return reduce_buffer.reshape_as(self)
def safe_get_full_fp32_param(param):
"""Assemble and return the fp32 parameter of a low-precision (e.g., fp16) parameter.
Args:
param (``torch.nn.Parameter``): A model parameter
"""
# ZeRO stage 3 param
if hasattr(param, 'ds_id'):
return param._z3_optimizer.get_full_hp_param(param)
# ZeRO stage 1, 2, and bf16_optimizer params
if hasattr(param, '_hp_mapping'):
return param.get_full_hp_param()
return None
def safe_set_full_fp32_param(param, value):
"""Update the partitioned fp32 parameter of a low-precision (e.g., fp16) parameter.
Args:
param (``torch.nn.Parameter``): A model parameter
value (``torch.Tensor``): New value
"""
# ZeRO stage 3 param
if hasattr(param, 'ds_id'):
param._z3_optimizer.set_full_hp_param(value, param)
# ZeRO stage 1, 2, and bf16_optimizer params
if hasattr(param, '_hp_mapping'):
param.set_full_hp_param(value)
def safe_get_full_optimizer_state(param, optim_state_key):
"""Assemble and return the fp32 optimizer state of a low-precision (e.g., fp16) parameter.
Args:
param (``torch.nn.Parameter``): A model parameter
optim_state_key (``string``): Key value of optimizer state (e.g., `exp_avg` in Adam optimizer)
"""
# ZeRO stage 3 param
if hasattr(param, 'ds_id'):
return param._z3_optimizer.get_full_hp_param(param, optim_state_key)
# ZeRO stage 1, 2, and bf16_optimizer params
if hasattr(param, '_hp_mapping'):
return param.get_full_hp_param(optim_state_key)
return None
def safe_set_full_optimizer_state(param, value, optim_state_key):
"""Update the partitioned fp32 optimizer state of a low-precision (e.g., fp16) parameter.
Args:
param (``torch.nn.Parameter``): A model parameter
value (``torch.Tensor``): New value
optim_state_key (``string``): Key value of optimizer state (e.g., `exp_avg` in Adam optimizer)
"""
# ZeRO stage 3 param
if hasattr(param, 'ds_id'):
param._z3_optimizer.set_full_hp_param(value, param, optim_state_key)
# ZeRO stage 1, 2, and bf16_optimizer params
if hasattr(param, '_hp_mapping'):
param.set_full_hp_param(value, optim_state_key)
# TODO: Figure out the correct return dtype
def safe_get_full_grad(param):
"""Assemble and return the fp32 gradient of a low-precision (e.g., fp16) parameter.
Args:
param (``torch.nn.Parameter``): A model parameter
"""
if param.grad is not None:
return param.grad
# ZeRO stage 3 param
if hasattr(param, 'ds_id'):
return param._z3_optimizer.get_fp32_grad_for_param(param)
# ZeRO stage 1, 2, and bf16_optimizer params
if hasattr(param, '_hp_mapping'):
return param.get_full_hp_grad()
return None
### Local API START ###
def safe_get_local_grad(param):
"""Get the fp32 gradient of a partitioned parameter.
Args:
param (``torch.nn.Parameter``): A model parameter
"""
if param.grad is not None:
return param.grad
# ZeRO stage 3 param
if hasattr(param, 'ds_id'):
return param._z3_optimizer.get_local_fp32_grad_for_param(param)
return None
def safe_get_local_fp32_param(param):
"""Get the fp32 partitioned parameter.
Args:
param (``torch.nn.Parameter``): A model parameter
"""
# ZeRO stage 3 param
if hasattr(param, 'ds_id'):
return param._z3_optimizer.get_local_fp32_param(param)
return None
def safe_get_local_optimizer_state(param, optim_state_key):
"""Get the fp32 optimizer state of a partitioned parameter.
Args:
param (``torch.nn.Parameter``): A model parameter
optim_state_key (``string``): Key value of optimizer state (e.g., `exp_avg` in Adam optimizer)
"""
# ZeRO stage 3 param
if hasattr(param, 'ds_id'):
return param._z3_optimizer.get_local_fp32_param(param, optim_state_key)
return None
def safe_set_local_optimizer_state(param, value, optim_state_key):
"""Update the fp32 optimizer state of a partitioned parameter.
Args:
param (``torch.nn.Parameter``): A model parameter
value (``torch.Tensor``): New value
optim_state_key (``string``): Key value of optimizer state (e.g., `exp_avg` in Adam optimizer)
"""
# ZeRO stage 3 param
if hasattr(param, 'ds_id'):
param._z3_optimizer.set_local_hp_param(value, param, optim_state_key)
def safe_set_local_fp32_param(param, value):
"""Update the partitioned fp32 parameter.
Args:
param (``torch.nn.Parameter``): A model parameter
value (``torch.Tensor``): New value
"""
# ZeRO stage 3 param
if hasattr(param, 'ds_id'):
param._z3_optimizer.set_local_hp_param(value, param)
### Local API END ###
# TODO: Implement API for setting ZeRO partitioned gradients
def get_hp_fragment_mapping(lp_param, lp_start, flat_hp_partition, gradient_dict, offload_gradient_dict, use_offload,
param_group_index, partition_start, partition_size):
lp_end = lp_param.numel() + lp_start
hp_start = partition_start
hp_end = partition_start + partition_size
fragment_start = max(lp_start, hp_start)
fragment_end = min(lp_end, hp_end)
assert fragment_start < fragment_end, \
f'fragment start {fragment_start} should be < fragment_end {fragment_end}'
fragment_numel = fragment_end - fragment_start
hp_frag_address = fragment_address(start=fragment_start - hp_start, numel=fragment_numel)
hp_fragment_tensor = flat_hp_partition.narrow(0, hp_frag_address.start, hp_frag_address.numel)
lp_frag_address = fragment_address(start=fragment_start - lp_start, numel=fragment_numel)
lp_fragment_tensor = lp_param.flatten().narrow(0, lp_frag_address.start, lp_frag_address.numel)
return tensor_fragment(lp_fragment=lp_fragment_tensor,
lp_fragment_address=lp_frag_address,
hp_fragment=hp_fragment_tensor,
hp_fragment_address=hp_frag_address,
gradient_dict=gradient_dict,
offload_gradient_dict=offload_gradient_dict,
use_offload=use_offload,
param_group_index=param_group_index)
'''
Logic for lp_param to hp_param mapping
lp lp0 lp1 lp2 lp3 lp4 <------- indices/names
lp [ ][ ][ ][ ][ ] <-------- tensors
flat_lp [ ] <-------- flat lp params
flat_hp [ ] <------------------ flat hp partition on current rank
full_hp [ ] <------- full flat hp params
lp2
full numel = 16
lp_frag
numel = 12
frag_start = 3
frag_end = 15
hp_frag
numel = 12
frag_start = 0
frag_end = 11
hp_frag.copy_(lp_frag)
lp3:
full numel = 4
lp_frag
numel = 4
start = 0
end = 3
hp_frag
numel = 4
start = 12
end = 15
lp4:
full numel = 12
lp_frag
numel = 4
start = 0
end = 3
hp_frag
numel = 4
start = 16
end = 19
Visual depiction of above
lp { }
flat_lp [ ]
flat_hp ( )
flat_lp [ { ( } ) ]
lx hx ly hy
ly-hx
lp { }
flat_lp [ ]
flat_hp ( )
flat_lp [ ( { ) } ]
hx lx hy ly
hy-lx
lp { }
flat_lp [ ]
flat_hp ( )
flat_lp [ ( { } ) ]
hx lx ly hy
ly-lx
lp -> (lx, hy)
flat_hp -> (hx, hy)
'''
|