File size: 10,404 Bytes
0cee4ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import time
from numpy import mean
from deepspeed.utils.logging import log_dist
from deepspeed.accelerator import get_accelerator
FORWARD_MICRO_TIMER = 'fwd_microstep'
FORWARD_GLOBAL_TIMER = 'fwd'
BACKWARD_MICRO_TIMER = 'bwd_microstep'
BACKWARD_GLOBAL_TIMER = 'bwd'
BACKWARD_INNER_MICRO_TIMER = 'bwd_inner_microstep'
BACKWARD_INNER_GLOBAL_TIMER = 'bwd_inner'
BACKWARD_REDUCE_MICRO_TIMER = 'bwd_allreduce_microstep'
BACKWARD_REDUCE_GLOBAL_TIMER = 'bwd_allreduce'
STEP_MICRO_TIMER = 'step_microstep'
STEP_GLOBAL_TIMER = 'step'
try:
import psutil
PSUTILS_INSTALLED = True
except ImportError:
PSUTILS_INSTALLED = False
pass
class CudaEventTimer(object):
def __init__(self, start_event: get_accelerator().Event, end_event: get_accelerator().Event):
self.start_event = start_event
self.end_event = end_event
def get_elapsed_msec(self):
get_accelerator().current_stream().wait_event(self.end_event)
self.end_event.synchronize()
return self.start_event.elapsed_time(self.end_event)
class SynchronizedWallClockTimer:
"""Group of timers. Borrowed from Nvidia Megatron code"""
class Timer:
"""Timer."""
def __init__(self, name):
self.name_ = name
self.started_ = False
self.event_timers = []
self.use_host_timer = get_accelerator().use_host_timers()
self.start_event = None
self.elapsed_records = None
self.start_time = 0.0
self.end_time = 0.0
def start(self):
"""Start the timer."""
assert not self.started_, f"{self.name_} timer has already been started"
if self.use_host_timer:
self.start_time = time.time()
else:
event_class = get_accelerator().Event
self.start_event = event_class(enable_timing=True)
self.start_event.record()
self.started_ = True
def stop(self, reset=False, record=False):
"""Stop the timer."""
assert self.started_, "timer is not started"
event_class = get_accelerator().Event
if self.use_host_timer:
self.end_time = time.time()
self.event_timers.append(self.end_time - self.start_time)
else:
event_class = get_accelerator().Event
end_event = event_class(enable_timing=True)
end_event.record()
self.event_timers.append(CudaEventTimer(self.start_event, end_event))
self.start_event = None
self.started_ = False
def _get_elapsed_msec(self):
if self.use_host_timer:
self.elapsed_records = [et * 1000.0 for et in self.event_timers]
else:
self.elapsed_records = [et.get_elapsed_msec() for et in self.event_timers]
self.event_timers.clear()
return sum(self.elapsed_records)
def reset(self):
"""Reset timer."""
self.started_ = False
self.start_event = None
self.elapsed_records = None
self.event_timers.clear()
def elapsed(self, reset=True):
"""Calculate the elapsed time."""
started_ = self.started_
# If the timing in progress, end it first.
if self.started_:
self.stop()
# Get the elapsed time.
elapsed_ = self._get_elapsed_msec()
# Reset the elapsed time
if reset:
self.reset()
# If timing was in progress, set it back.
if started_:
self.start()
return elapsed_
def mean(self):
self.elapsed(reset=False)
return trim_mean(self.elapsed_records, 0.1)
def __init__(self):
self.timers = {}
def get_timers(self):
return self.timers
def __call__(self, name):
if name not in self.timers:
self.timers[name] = self.Timer(name)
return self.timers[name]
@staticmethod
def memory_usage():
alloc = "mem_allocated: {:.4f} GB".format(get_accelerator().memory_allocated() / (1024 * 1024 * 1024))
max_alloc = "max_mem_allocated: {:.4f} GB".format(get_accelerator().max_memory_allocated() /
(1024 * 1024 * 1024))
cache = "cache_allocated: {:.4f} GB".format(get_accelerator().memory_cached() / (1024 * 1024 * 1024))
max_cache = "max_cache_allocated: {:.4f} GB".format(get_accelerator().max_memory_cached() /
(1024 * 1024 * 1024))
return " | {} | {} | {} | {}".format(alloc, max_alloc, cache, max_cache)
def log(self, names, normalizer=1.0, reset=True, memory_breakdown=False, ranks=None):
"""Log a group of timers."""
assert normalizer > 0.0
string = f"time (ms)"
for name in names:
if name in self.timers:
elapsed_time = (self.timers[name].elapsed(reset=reset) / normalizer)
string += " | {}: {:.2f}".format(name, elapsed_time)
log_dist(string, ranks=ranks or [0])
def get_mean(self, names, normalizer=1.0, reset=True):
"""Get the mean of a group of timers."""
assert normalizer > 0.0
means = {}
for name in names:
if name in self.timers:
elapsed_time = (self.timers[name].mean() * 1000.0 / normalizer)
means[name] = elapsed_time
return means
class NoopTimer:
class Timer:
def start(self):
...
def reset(self):
...
def stop(self, **kwargs):
...
def elapsed(self, **kwargs):
return 0
def mean(self):
return 0
def __init__(self):
self.timer = self.Timer()
def __call__(self, name):
return self.timer
def get_timers(self):
return {}
def log(self, names, normalizer=1.0, reset=True, memory_breakdown=False, ranks=None):
...
def get_mean(self, names, normalizer=1.0, reset=True):
...
class ThroughputTimer:
def __init__(
self,
batch_size,
start_step=2,
steps_per_output=50,
monitor_memory=False,
logging_fn=None,
):
from deepspeed.utils import logger
self.start_time = 0
self.end_time = 0
self.started = False
self.batch_size = 1 if batch_size is None else batch_size
self.start_step = start_step
self.epoch_count = 0
self.micro_step_count = 0
self.global_step_count = 0
self.total_elapsed_time = 0
self.step_elapsed_time = 0
self.steps_per_output = steps_per_output
self.monitor_memory = monitor_memory
self.logging = logging_fn
if self.logging is None:
self.logging = logger.info
self.initialized = False
if self.monitor_memory and not PSUTILS_INSTALLED:
raise ImportError("Unable to import 'psutils', please install package")
def update_epoch_count(self):
self.epoch_count += 1
self.micro_step_count = 0
def _init_timer(self):
self.initialized = True
def start(self):
self._init_timer()
self.started = True
if self.global_step_count >= self.start_step:
get_accelerator().synchronize()
self.start_time = time.time()
def stop(self, global_step=False, report_speed=True):
if not self.started:
return
self.started = False
self.micro_step_count += 1
if global_step:
self.global_step_count += 1
if self.start_time > 0:
get_accelerator().synchronize()
self.end_time = time.time()
duration = self.end_time - self.start_time
self.total_elapsed_time += duration
self.step_elapsed_time += duration
if global_step:
if report_speed and self.global_step_count % self.steps_per_output == 0:
self.logging(
"epoch={}/micro_step={}/global_step={}, RunningAvgSamplesPerSec={}, CurrSamplesPerSec={}, "
"MemAllocated={}GB, MaxMemAllocated={}GB".format(
self.epoch_count,
self.micro_step_count,
self.global_step_count,
self.avg_samples_per_sec(),
self.batch_size / self.step_elapsed_time,
round(get_accelerator().memory_allocated() / 1024**3, 2),
round(get_accelerator().max_memory_allocated() / 1024**3, 2),
))
if self.monitor_memory:
virt_mem = psutil.virtual_memory()
swap = psutil.swap_memory()
self.logging("epoch={}/micro_step={}/global_step={}, vm %: {}, swap %: {}".format(
self.epoch_count,
self.micro_step_count,
self.global_step_count,
virt_mem.percent,
swap.percent,
))
self.step_elapsed_time = 0
def avg_samples_per_sec(self):
if self.global_step_count > 0:
total_step_offset = self.global_step_count - self.start_step
avg_time_per_step = self.total_elapsed_time / total_step_offset
# training samples per second
return self.batch_size / avg_time_per_step
return float("-inf")
def trim_mean(data, trim_percent):
"""Compute the trimmed mean of a list of numbers.
Args:
data (list): List of numbers.
trim_percent (float): Percentage of data to trim.
Returns:
float: Trimmed mean.
"""
assert 0.0 <= trim_percent <= 1.0
n = len(data)
# Account for edge case of empty list
if len(data) == 0:
return 0
data.sort()
k = int(round(n * (trim_percent)))
return mean(data[k:n - k])
|