File size: 9,566 Bytes
9e86264 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# Copyright 2022 The HuggingFace Evaluate Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
# Lint as: python3
from datasets import Dataset
try:
TRANSFORMERS_AVAILABLE = True
except ImportError:
TRANSFORMERS_AVAILABLE = False
from typing_extensions import Literal
from ..module import EvaluationModule
from ..utils.file_utils import add_end_docstrings, add_start_docstrings
from ..utils.logging import get_logger
from .base import EVALUATOR_COMPUTE_RETURN_DOCSTRING, EVALUTOR_COMPUTE_START_DOCSTRING, Evaluator
from .utils import DatasetColumn
if TYPE_CHECKING:
from transformers import Pipeline, PreTrainedModel, PreTrainedTokenizer, TFPreTrainedModel
logger = get_logger(__name__)
TASK_DOCUMENTATION = r"""
Examples:
```python
>>> from evaluate import evaluator
>>> from datasets import load_dataset
>>> task_evaluator = evaluator("question-answering")
>>> data = load_dataset("squad", split="validation[:2]")
>>> results = task_evaluator.compute(
>>> model_or_pipeline="sshleifer/tiny-distilbert-base-cased-distilled-squad",
>>> data=data,
>>> metric="squad",
>>> )
```
<Tip>
Datasets where the answer may be missing in the context are supported, for example SQuAD v2 dataset. In this case, it is safer to pass `squad_v2_format=True` to
the compute() call.
</Tip>
```python
>>> from evaluate import evaluator
>>> from datasets import load_dataset
>>> task_evaluator = evaluator("question-answering")
>>> data = load_dataset("squad_v2", split="validation[:2]")
>>> results = task_evaluator.compute(
>>> model_or_pipeline="mrm8488/bert-tiny-finetuned-squadv2",
>>> data=data,
>>> metric="squad_v2",
>>> squad_v2_format=True,
>>> )
```
"""
class QuestionAnsweringEvaluator(Evaluator):
"""
Question answering evaluator. This evaluator handles
[**extractive** question answering](https://huggingface.co/docs/transformers/task_summary#extractive-question-answering),
where the answer to the question is extracted from a context.
This question answering evaluator can currently be loaded from [`evaluator`] using the default task name
`question-answering`.
Methods in this class assume a data format compatible with the
[`~transformers.QuestionAnsweringPipeline`].
"""
PIPELINE_KWARGS = {}
def __init__(self, task="question-answering", default_metric_name=None):
super().__init__(task, default_metric_name=default_metric_name)
def prepare_data(
self, data: Dataset, question_column: str, context_column: str, id_column: str, label_column: str
):
"""Prepare data."""
if data is None:
raise ValueError(
"Please specify a valid `data` object - either a `str` with a name or a `Dataset` object."
)
self.check_required_columns(
data,
{
"question_column": question_column,
"context_column": context_column,
"id_column": id_column,
"label_column": label_column,
},
)
metric_inputs = dict()
metric_inputs["references"] = [
{"id": element[id_column], "answers": element[label_column]} for element in data
]
return metric_inputs, {
"question": DatasetColumn(data, question_column),
"context": DatasetColumn(data, context_column),
}
def is_squad_v2_format(self, data: Dataset, label_column: str = "answers"):
"""
Check if the provided dataset follows the squad v2 data schema, namely possible samples where the answer is not in the context.
In this case, the answer text list should be `[]`.
"""
original_num_rows = data.num_rows
nonempty_num_rows = data.filter(
lambda x: len(x[label_column]["text"]) > 0, load_from_cache_file=False
).num_rows
if original_num_rows > nonempty_num_rows:
return True
else:
return False
def predictions_processor(self, predictions: List, squad_v2_format: bool, ids: List):
result = []
for i in range(len(predictions)):
pred = {"prediction_text": predictions[i]["answer"], "id": ids[i]}
if squad_v2_format:
pred["no_answer_probability"] = predictions[i]["score"]
result.append(pred)
return {"predictions": result}
@add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING)
@add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION)
def compute(
self,
model_or_pipeline: Union[
str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821
] = None,
data: Union[str, Dataset] = None,
subset: Optional[str] = None,
split: Optional[str] = None,
metric: Union[str, EvaluationModule] = None,
tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821
strategy: Literal["simple", "bootstrap"] = "simple",
confidence_level: float = 0.95,
n_resamples: int = 9999,
device: int = None,
random_state: Optional[int] = None,
question_column: str = "question",
context_column: str = "context",
id_column: str = "id",
label_column: str = "answers",
squad_v2_format: Optional[bool] = None,
) -> Tuple[Dict[str, float], Any]:
"""
question_column (`str`, defaults to `"question"`):
The name of the column containing the question in the dataset specified by `data`.
context_column (`str`, defaults to `"context"`):
The name of the column containing the context in the dataset specified by `data`.
id_column (`str`, defaults to `"id"`):
The name of the column containing the identification field of the question and answer pair in the
dataset specified by `data`.
label_column (`str`, defaults to `"answers"`):
The name of the column containing the answers in the dataset specified by `data`.
squad_v2_format (`bool`, *optional*, defaults to `None`):
Whether the dataset follows the format of squad_v2 dataset. This is the case when the provided dataset
has questions where the answer is not in the context, more specifically when are answers as
`{"text": [], "answer_start": []}` in the answer column. If all questions have at least one answer, this parameter
should be set to `False`. If this parameter is not provided, the format will be automatically inferred.
"""
result = {}
self.check_for_mismatch_in_device_setup(device, model_or_pipeline)
data = self.load_data(data=data, subset=subset, split=split)
metric_inputs, pipe_inputs = self.prepare_data(
data=data,
question_column=question_column,
context_column=context_column,
id_column=id_column,
label_column=label_column,
)
if squad_v2_format is None:
squad_v2_format = self.is_squad_v2_format(data=data, label_column=label_column)
logger.warning(
f"`squad_v2_format` parameter not provided to QuestionAnsweringEvaluator.compute(). Automatically inferred `squad_v2_format` as {squad_v2_format}."
)
pipe = self.prepare_pipeline(model_or_pipeline=model_or_pipeline, tokenizer=tokenizer, device=device)
metric = self.prepare_metric(metric)
if squad_v2_format and metric.name == "squad":
logger.warning(
"The dataset has SQuAD v2 format but you are using the SQuAD metric. Consider passing the 'squad_v2' metric."
)
if not squad_v2_format and metric.name == "squad_v2":
logger.warning(
"The dataset has SQuAD v1 format but you are using the SQuAD v2 metric. Consider passing the 'squad' metric."
)
if squad_v2_format:
self.PIPELINE_KWARGS["handle_impossible_answer"] = True
else:
self.PIPELINE_KWARGS["handle_impossible_answer"] = False
# Compute predictions
predictions, perf_results = self.call_pipeline(pipe, **pipe_inputs)
predictions = self.predictions_processor(predictions, squad_v2_format=squad_v2_format, ids=data[id_column])
metric_inputs.update(predictions)
# Compute metrics from references and predictions
metric_results = self.compute_metric(
metric=metric,
metric_inputs=metric_inputs,
strategy=strategy,
confidence_level=confidence_level,
n_resamples=n_resamples,
random_state=random_state,
)
result.update(metric_results)
result.update(perf_results)
return result
|