File size: 11,546 Bytes
9e86264 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
# Copyright 2022 The HuggingFace Evaluate Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
from datasets import ClassLabel, Dataset, Sequence
from typing_extensions import Literal
from ..module import EvaluationModule
from ..utils.file_utils import add_end_docstrings, add_start_docstrings
from .base import EVALUATOR_COMPUTE_RETURN_DOCSTRING, EVALUTOR_COMPUTE_START_DOCSTRING, Evaluator
from .utils import DatasetColumn
if TYPE_CHECKING:
from transformers import Pipeline, PreTrainedModel, PreTrainedTokenizer, TFPreTrainedModel
TASK_DOCUMENTATION = r"""
The dataset input and label columns are expected to be formatted as a list of words and a list of labels respectively, following [conll2003 dataset](https://huggingface.co/datasets/conll2003). Datasets whose inputs are single strings, and labels are a list of offset are not supported.
Examples:
```python
>>> from evaluate import evaluator
>>> from datasets import load_dataset
>>> task_evaluator = evaluator("token-classification")
>>> data = load_dataset("conll2003", split="validation[:2]")
>>> results = task_evaluator.compute(
>>> model_or_pipeline="elastic/distilbert-base-uncased-finetuned-conll03-english",
>>> data=data,
>>> metric="seqeval",
>>> )
```
<Tip>
For example, the following dataset format is accepted by the evaluator:
```python
dataset = Dataset.from_dict(
mapping={
"tokens": [["New", "York", "is", "a", "city", "and", "Felix", "a", "person", "."]],
"ner_tags": [[1, 2, 0, 0, 0, 0, 3, 0, 0, 0]],
},
features=Features({
"tokens": Sequence(feature=Value(dtype="string")),
"ner_tags": Sequence(feature=ClassLabel(names=["O", "B-LOC", "I-LOC", "B-PER", "I-PER"])),
}),
)
```
</Tip>
<Tip warning={true}>
For example, the following dataset format is **not** accepted by the evaluator:
```python
dataset = Dataset.from_dict(
mapping={
"tokens": [["New York is a city and Felix a person."]],
"starts": [[0, 23]],
"ends": [[7, 27]],
"ner_tags": [["LOC", "PER"]],
},
features=Features({
"tokens": Value(dtype="string"),
"starts": Sequence(feature=Value(dtype="int32")),
"ends": Sequence(feature=Value(dtype="int32")),
"ner_tags": Sequence(feature=Value(dtype="string")),
}),
)
```
</Tip>
"""
class TokenClassificationEvaluator(Evaluator):
"""
Token classification evaluator.
This token classification evaluator can currently be loaded from [`evaluator`] using the default task name
`token-classification`.
Methods in this class assume a data format compatible with the [`~transformers.TokenClassificationPipeline`].
"""
PIPELINE_KWARGS = {"ignore_labels": []}
def __init__(self, task="token-classification", default_metric_name=None):
super().__init__(task, default_metric_name=default_metric_name)
def predictions_processor(self, predictions: List[List[Dict]], words: List[List[str]], join_by: str):
"""
Transform the pipeline predictions into a list of predicted labels of the same length as the true labels.
Args:
predictions (`List[List[Dict]]`):
List of pipeline predictions, where each token has been labeled.
words (`List[List[str]]`):
Original input data to the pipeline, used to build predicted labels of the same length.
join_by (`str`):
String to use to join two words. In English, it will typically be " ".
Returns:
`dict`: a dictionary holding the predictions
"""
preds = []
# iterate over the data rows
for i, prediction in enumerate(predictions):
pred_processed = []
# get a list of tuples giving the indexes of the start and end character of each word
words_offsets = self.words_to_offsets(words[i], join_by)
token_index = 0
for word_offset in words_offsets:
# for each word, we may keep only the predicted label for the first token, discard the others
while prediction[token_index]["start"] < word_offset[0]:
token_index += 1
if prediction[token_index]["start"] > word_offset[0]: # bad indexing
pred_processed.append("O")
elif prediction[token_index]["start"] == word_offset[0]:
pred_processed.append(prediction[token_index]["entity"])
preds.append(pred_processed)
return {"predictions": preds}
def words_to_offsets(self, words: List[str], join_by: str):
"""
Convert a list of words to a list of offsets, where word are joined by `join_by`.
Args:
words (`List[str]`):
List of words to get offsets from.
join_by (`str`):
String to insert between words.
Returns:
`List[Tuple[int, int]]`: List of the characters (start index, end index) for each of the words.
"""
offsets = []
start = 0
for word in words:
end = start + len(word) - 1
offsets.append((start, end))
start = end + len(join_by) + 1
return offsets
def prepare_data(self, data: Union[str, Dataset], input_column: str, label_column: str, join_by: str):
super().prepare_data(data, input_column, label_column)
if not isinstance(data.features[input_column], Sequence) or not isinstance(
data.features[label_column], Sequence
):
raise ValueError(
"TokenClassificationEvaluator expects the input and label columns to be provided as lists."
)
# If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere.
# Otherwise, we have to get the list of labels manually.
labels_are_int = isinstance(data.features[label_column].feature, ClassLabel)
if labels_are_int:
label_list = data.features[label_column].feature.names # list of string labels
id_to_label = {i: label for i, label in enumerate(label_list)}
references = [[id_to_label[label_id] for label_id in label_ids] for label_ids in data[label_column]]
elif data.features[label_column].feature.dtype.startswith("int"):
raise NotImplementedError(
"References provided as integers, but the reference column is not a Sequence of ClassLabels."
)
else:
# In the event the labels are not a `Sequence[ClassLabel]`, we have already labels as strings
# An example is labels as ["PER", "PER", "O", "LOC", "O", "LOC", "O"], e.g. in polyglot_ner dataset
references = data[label_column]
metric_inputs = {"references": references}
data = data.map(lambda x: {input_column: join_by.join(x[input_column])})
pipeline_inputs = DatasetColumn(data, input_column)
return metric_inputs, pipeline_inputs
def prepare_pipeline(
self,
model_or_pipeline: Union[str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel"], # noqa: F821
tokenizer: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821
feature_extractor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821
device: int = None,
):
pipe = super().prepare_pipeline(model_or_pipeline, tokenizer, feature_extractor, device)
# check the pipeline outputs start characters in its predictions
dummy_output = pipe(["2003 New York Gregory"], **self.PIPELINE_KWARGS)
if dummy_output[0][0]["start"] is None:
raise ValueError(
"TokenClassificationEvaluator supports only pipelines giving 'start' index as a pipeline output (got None). "
"Transformers pipelines with a slow tokenizer will raise this error."
)
return pipe
@add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING)
@add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION)
def compute(
self,
model_or_pipeline: Union[
str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821
] = None,
data: Union[str, Dataset] = None,
subset: Optional[str] = None,
split: str = None,
metric: Union[str, EvaluationModule] = None,
tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821
strategy: Literal["simple", "bootstrap"] = "simple",
confidence_level: float = 0.95,
n_resamples: int = 9999,
device: Optional[int] = None,
random_state: Optional[int] = None,
input_column: str = "tokens",
label_column: str = "ner_tags",
join_by: Optional[str] = " ",
) -> Tuple[Dict[str, float], Any]:
"""
input_column (`str`, defaults to `"tokens"`):
The name of the column containing the tokens feature in the dataset specified by `data`.
label_column (`str`, defaults to `"label"`):
The name of the column containing the labels in the dataset specified by `data`.
join_by (`str`, *optional*, defaults to `" "`):
This evaluator supports dataset whose input column is a list of words. This parameter specifies how to join
words to generate a string input. This is especially useful for languages that do not separate words by a space.
"""
result = {}
self.check_for_mismatch_in_device_setup(device, model_or_pipeline)
# Prepare inputs
data = self.load_data(data=data, subset=subset, split=split)
metric_inputs, pipe_inputs = self.prepare_data(
data=data, input_column=input_column, label_column=label_column, join_by=join_by
)
pipe = self.prepare_pipeline(model_or_pipeline=model_or_pipeline, tokenizer=tokenizer, device=device)
metric = self.prepare_metric(metric)
# Compute predictions
predictions, perf_results = self.call_pipeline(pipe, pipe_inputs)
predictions = self.predictions_processor(predictions, data[input_column], join_by)
metric_inputs.update(predictions)
# Compute metrics from references and predictions
metric_results = self.compute_metric(
metric=metric,
metric_inputs=metric_inputs,
strategy=strategy,
confidence_level=confidence_level,
n_resamples=n_resamples,
random_state=random_state,
)
result.update(metric_results)
result.update(perf_results)
return result
|