peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/ops
/lion
/fused_lion.py
| # Copyright (c) Microsoft Corporation. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # DeepSpeed Team | |
| """ | |
| This file is modified from fused_adam.py | |
| """ | |
| import torch | |
| from .multi_tensor_apply import MultiTensorApply | |
| multi_tensor_applier = MultiTensorApply(2048 * 32) | |
| from deepspeed.accelerator import get_accelerator | |
| from deepspeed.ops.op_builder import FusedLionBuilder | |
| class FusedLion(torch.optim.Optimizer): | |
| """Implements Lion algorithm. | |
| Currently GPU-only. | |
| Arguments: | |
| params (iterable): iterable of parameters to optimize or dicts defining | |
| parameter groups. | |
| lr (float, optional): learning rate. (default: 1e-3) | |
| betas (Tuple[float, float], optional): coefficients used for computing | |
| running averages of gradient and its square. (default: (0.9, 0.999)) | |
| weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | |
| set_grad_none (bool, optional): whether set grad to None when zero_grad() | |
| method is called. (default: True) | |
| .. _Symbolic Discovery of Optimization Algorithms: | |
| https://doi.org/10.48550/arXiv.2302.06675 | |
| """ | |
| def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), weight_decay=0., set_grad_none=True): | |
| defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay) | |
| super(FusedLion, self).__init__(params, defaults) | |
| self.set_grad_none = set_grad_none | |
| fused_lion_cuda = FusedLionBuilder().load() | |
| # Skip buffer | |
| self._dummy_overflow_buf = get_accelerator().IntTensor([0]) | |
| self.multi_tensor_lion = fused_lion_cuda.multi_tensor_lion | |
| def zero_grad(self): | |
| if self.set_grad_none: | |
| for group in self.param_groups: | |
| for p in group['params']: | |
| p.grad = None | |
| else: | |
| super(FusedLion, self).zero_grad() | |
| def step(self, closure=None, grads=None, output_params=None, scale=None, grad_norms=None, grad_scaler=None): | |
| """Performs a single optimization step. | |
| Arguments: | |
| closure (callable, optional): A closure that reevaluates the model | |
| and returns the loss. | |
| The remaining arguments are deprecated, and are only retained (for the moment) for error-checking purposes. | |
| """ | |
| if any(p is not None for p in [grads, output_params, scale, grad_norms]): | |
| raise RuntimeError('FusedLion has been updated.') | |
| loss = None | |
| if closure is not None: | |
| loss = closure() | |
| for group in self.param_groups: | |
| if len(group['params']) == 0: | |
| continue | |
| beta1, beta2 = group['betas'] | |
| # assume same step across group now to simplify things | |
| # per parameter step can be easily support by making it tensor, or pass list into kernel | |
| if 'step' not in group: | |
| group['step'] = 0 | |
| # create lists for multi-tensor apply | |
| g_16, p_16, m_16 = [], [], [] | |
| g_bf, p_bf, m_bf = [], [], [] | |
| g_32, p_32, m_32 = [], [], [] | |
| for p in group['params']: | |
| if p.grad is None: | |
| continue | |
| if p.grad.data.is_sparse: | |
| raise NotImplementedError('FusedLion does not support sparse gradients') | |
| state = self.state[p] | |
| # State initialization | |
| if len(state) == 0: | |
| # DeepSpeed ZeRO 3 processes each subgroup a time, so we need to keep tracking step count for each tensor separately. | |
| # While this is not an issue for ZeRO 1 & 2, since they apply a single optimization step to the whole param group at the same time. | |
| # In order to keep backward compatibility for the existing checkpoints, we use group['state'] to initialize state['step'] if it exists. | |
| state['step'] = group.get('step', 0) | |
| # Exponential moving average of gradient values | |
| state['exp_avg'] = torch.zeros_like(p.data) | |
| if p.dtype == torch.float16: | |
| g_16.append(p.grad.data) | |
| p_16.append(p.data) | |
| m_16.append(state['exp_avg']) | |
| elif p.dtype == torch.bfloat16: | |
| g_bf.append(p.grad) | |
| p_bf.append(p) | |
| m_bf.append(state['exp_avg']) | |
| elif p.dtype == torch.float32: | |
| g_32.append(p.grad.data) | |
| p_32.append(p.data) | |
| m_32.append(state['exp_avg']) | |
| else: | |
| raise RuntimeError('FusedLion only support fp16, bf16 and fp32.') | |
| if len(g_16) > 0: | |
| state['step'] += 1 | |
| multi_tensor_applier(self.multi_tensor_lion, self._dummy_overflow_buf, [g_16, p_16, m_16], group['lr'], | |
| beta1, beta2, state['step'], group['weight_decay']) | |
| if len(g_bf) > 0: | |
| state['step'] += 1 | |
| multi_tensor_applier(self.multi_tensor_lion, self._dummy_overflow_buf, [g_bf, p_bf, m_bf], group['lr'], | |
| beta1, beta2, state['step'], group['weight_decay']) | |
| if len(g_32) > 0: | |
| state['step'] += 1 | |
| multi_tensor_applier(self.multi_tensor_lion, self._dummy_overflow_buf, [g_32, p_32, m_32], group['lr'], | |
| beta1, beta2, state['step'], group['weight_decay']) | |
| return loss | |