peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/utils
/init_on_device.py
| # Copyright (c) Microsoft Corporation. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # DeepSpeed Team | |
| import torch | |
| from typing import Callable | |
| from torch import Tensor | |
| from packaging import version as pkg_version | |
| class OnDevice(object): | |
| """ | |
| Create modules/tensors w. specific devices and dtypes. Examples: | |
| Create MyModule which consists of many different sub-modules and parameters. In this case we can create | |
| MyModule as a collection of 'meta' tensors by passing `device='meta'` or we can create the module _directly_ | |
| on a CUDA device by passing `device=f'cuda:{local_rank}'` (where `local_rank` is the local GPU id. | |
| with OnDevice(dtype=torch.float16, device='meta'): | |
| model = MyModel() | |
| with OnDevice(dtype=torch.float16, device=f'cuda:{local_rank}'): | |
| model = MyModel() | |
| """ | |
| _orig_torch_empty = torch.empty | |
| _orig_torch_zeros = torch.zeros | |
| _orig_torch_ones = torch.ones | |
| _orig_torch_full = torch.full | |
| def __init__(self, dtype, device="meta", enabled=True): | |
| self.dtype = dtype | |
| self.enabled = enabled | |
| self.device = device | |
| if device == "meta": | |
| if pkg_version.parse('1.10') > pkg_version.parse(torch.__version__): | |
| raise NotImplementedError("Meta tensor support is not available, please upgrade to torch 1.10+") | |
| def fp_tensor_constructor(self, fn: Callable, target_fp_dtype: torch.dtype) -> Callable: | |
| def wrapped_fn(*args, **kwargs) -> Tensor: | |
| if kwargs.get("device", None) is None: | |
| kwargs['device'] = self.device | |
| tensor: Tensor = fn(*args, **kwargs) | |
| if tensor.is_floating_point(): | |
| tensor = tensor.to(target_fp_dtype) | |
| return tensor | |
| return wrapped_fn | |
| def get_new_tensor_fn_for_dtype(self, dtype: torch.dtype) -> Callable: | |
| def new_tensor(cls, *args) -> Tensor: | |
| tensor = OnDevice._orig_torch_empty(0, device=self.device).new_empty(*args) | |
| if tensor.is_floating_point(): | |
| tensor = tensor.to(dtype) | |
| return tensor | |
| return new_tensor | |
| def __enter__(self): | |
| if not self.enabled: | |
| return | |
| torch.Tensor.__old_new__ = torch.Tensor.__new__ | |
| torch.Tensor.__new__ = self.get_new_tensor_fn_for_dtype(self.dtype) | |
| torch.empty = self.fp_tensor_constructor(self._orig_torch_empty, self.dtype) | |
| torch.zeros = self.fp_tensor_constructor(self._orig_torch_zeros, self.dtype) | |
| torch.ones = self.fp_tensor_constructor(self._orig_torch_ones, self.dtype) | |
| torch.full = self.fp_tensor_constructor(self._orig_torch_full, self.dtype) | |
| def __exit__(self, exc_type, exc_value, traceback): | |
| if not self.enabled: | |
| return | |
| torch.Tensor.__new__ = torch.Tensor.__old_new__ | |
| torch.empty = self._orig_torch_empty | |
| torch.zeros = self._orig_torch_zeros | |
| torch.ones = self._orig_torch_ones | |
| torch.full = self._orig_torch_full | |