peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/optimize
/_linesearch.py
""" | |
Functions | |
--------- | |
.. autosummary:: | |
:toctree: generated/ | |
line_search_armijo | |
line_search_wolfe1 | |
line_search_wolfe2 | |
scalar_search_wolfe1 | |
scalar_search_wolfe2 | |
""" | |
from warnings import warn | |
from scipy.optimize import _minpack2 as minpack2 # noqa: F401 | |
from ._dcsrch import DCSRCH | |
import numpy as np | |
__all__ = ['LineSearchWarning', 'line_search_wolfe1', 'line_search_wolfe2', | |
'scalar_search_wolfe1', 'scalar_search_wolfe2', | |
'line_search_armijo'] | |
class LineSearchWarning(RuntimeWarning): | |
pass | |
def _check_c1_c2(c1, c2): | |
if not (0 < c1 < c2 < 1): | |
raise ValueError("'c1' and 'c2' do not satisfy" | |
"'0 < c1 < c2 < 1'.") | |
#------------------------------------------------------------------------------ | |
# Minpack's Wolfe line and scalar searches | |
#------------------------------------------------------------------------------ | |
def line_search_wolfe1(f, fprime, xk, pk, gfk=None, | |
old_fval=None, old_old_fval=None, | |
args=(), c1=1e-4, c2=0.9, amax=50, amin=1e-8, | |
xtol=1e-14): | |
""" | |
As `scalar_search_wolfe1` but do a line search to direction `pk` | |
Parameters | |
---------- | |
f : callable | |
Function `f(x)` | |
fprime : callable | |
Gradient of `f` | |
xk : array_like | |
Current point | |
pk : array_like | |
Search direction | |
gfk : array_like, optional | |
Gradient of `f` at point `xk` | |
old_fval : float, optional | |
Value of `f` at point `xk` | |
old_old_fval : float, optional | |
Value of `f` at point preceding `xk` | |
The rest of the parameters are the same as for `scalar_search_wolfe1`. | |
Returns | |
------- | |
stp, f_count, g_count, fval, old_fval | |
As in `line_search_wolfe1` | |
gval : array | |
Gradient of `f` at the final point | |
Notes | |
----- | |
Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1``. | |
""" | |
if gfk is None: | |
gfk = fprime(xk, *args) | |
gval = [gfk] | |
gc = [0] | |
fc = [0] | |
def phi(s): | |
fc[0] += 1 | |
return f(xk + s*pk, *args) | |
def derphi(s): | |
gval[0] = fprime(xk + s*pk, *args) | |
gc[0] += 1 | |
return np.dot(gval[0], pk) | |
derphi0 = np.dot(gfk, pk) | |
stp, fval, old_fval = scalar_search_wolfe1( | |
phi, derphi, old_fval, old_old_fval, derphi0, | |
c1=c1, c2=c2, amax=amax, amin=amin, xtol=xtol) | |
return stp, fc[0], gc[0], fval, old_fval, gval[0] | |
def scalar_search_wolfe1(phi, derphi, phi0=None, old_phi0=None, derphi0=None, | |
c1=1e-4, c2=0.9, | |
amax=50, amin=1e-8, xtol=1e-14): | |
""" | |
Scalar function search for alpha that satisfies strong Wolfe conditions | |
alpha > 0 is assumed to be a descent direction. | |
Parameters | |
---------- | |
phi : callable phi(alpha) | |
Function at point `alpha` | |
derphi : callable phi'(alpha) | |
Objective function derivative. Returns a scalar. | |
phi0 : float, optional | |
Value of phi at 0 | |
old_phi0 : float, optional | |
Value of phi at previous point | |
derphi0 : float, optional | |
Value derphi at 0 | |
c1 : float, optional | |
Parameter for Armijo condition rule. | |
c2 : float, optional | |
Parameter for curvature condition rule. | |
amax, amin : float, optional | |
Maximum and minimum step size | |
xtol : float, optional | |
Relative tolerance for an acceptable step. | |
Returns | |
------- | |
alpha : float | |
Step size, or None if no suitable step was found | |
phi : float | |
Value of `phi` at the new point `alpha` | |
phi0 : float | |
Value of `phi` at `alpha=0` | |
Notes | |
----- | |
Uses routine DCSRCH from MINPACK. | |
Parameters `c1` and `c2` must satisfy ``0 < c1 < c2 < 1`` as described in [1]_. | |
References | |
---------- | |
.. [1] Nocedal, J., & Wright, S. J. (2006). Numerical optimization. | |
In Springer Series in Operations Research and Financial Engineering. | |
(Springer Series in Operations Research and Financial Engineering). | |
Springer Nature. | |
""" | |
_check_c1_c2(c1, c2) | |
if phi0 is None: | |
phi0 = phi(0.) | |
if derphi0 is None: | |
derphi0 = derphi(0.) | |
if old_phi0 is not None and derphi0 != 0: | |
alpha1 = min(1.0, 1.01*2*(phi0 - old_phi0)/derphi0) | |
if alpha1 < 0: | |
alpha1 = 1.0 | |
else: | |
alpha1 = 1.0 | |
maxiter = 100 | |
dcsrch = DCSRCH(phi, derphi, c1, c2, xtol, amin, amax) | |
stp, phi1, phi0, task = dcsrch( | |
alpha1, phi0=phi0, derphi0=derphi0, maxiter=maxiter | |
) | |
return stp, phi1, phi0 | |
line_search = line_search_wolfe1 | |
#------------------------------------------------------------------------------ | |
# Pure-Python Wolfe line and scalar searches | |
#------------------------------------------------------------------------------ | |
# Note: `line_search_wolfe2` is the public `scipy.optimize.line_search` | |
def line_search_wolfe2(f, myfprime, xk, pk, gfk=None, old_fval=None, | |
old_old_fval=None, args=(), c1=1e-4, c2=0.9, amax=None, | |
extra_condition=None, maxiter=10): | |
"""Find alpha that satisfies strong Wolfe conditions. | |
Parameters | |
---------- | |
f : callable f(x,*args) | |
Objective function. | |
myfprime : callable f'(x,*args) | |
Objective function gradient. | |
xk : ndarray | |
Starting point. | |
pk : ndarray | |
Search direction. The search direction must be a descent direction | |
for the algorithm to converge. | |
gfk : ndarray, optional | |
Gradient value for x=xk (xk being the current parameter | |
estimate). Will be recomputed if omitted. | |
old_fval : float, optional | |
Function value for x=xk. Will be recomputed if omitted. | |
old_old_fval : float, optional | |
Function value for the point preceding x=xk. | |
args : tuple, optional | |
Additional arguments passed to objective function. | |
c1 : float, optional | |
Parameter for Armijo condition rule. | |
c2 : float, optional | |
Parameter for curvature condition rule. | |
amax : float, optional | |
Maximum step size | |
extra_condition : callable, optional | |
A callable of the form ``extra_condition(alpha, x, f, g)`` | |
returning a boolean. Arguments are the proposed step ``alpha`` | |
and the corresponding ``x``, ``f`` and ``g`` values. The line search | |
accepts the value of ``alpha`` only if this | |
callable returns ``True``. If the callable returns ``False`` | |
for the step length, the algorithm will continue with | |
new iterates. The callable is only called for iterates | |
satisfying the strong Wolfe conditions. | |
maxiter : int, optional | |
Maximum number of iterations to perform. | |
Returns | |
------- | |
alpha : float or None | |
Alpha for which ``x_new = x0 + alpha * pk``, | |
or None if the line search algorithm did not converge. | |
fc : int | |
Number of function evaluations made. | |
gc : int | |
Number of gradient evaluations made. | |
new_fval : float or None | |
New function value ``f(x_new)=f(x0+alpha*pk)``, | |
or None if the line search algorithm did not converge. | |
old_fval : float | |
Old function value ``f(x0)``. | |
new_slope : float or None | |
The local slope along the search direction at the | |
new value ``<myfprime(x_new), pk>``, | |
or None if the line search algorithm did not converge. | |
Notes | |
----- | |
Uses the line search algorithm to enforce strong Wolfe | |
conditions. See Wright and Nocedal, 'Numerical Optimization', | |
1999, pp. 59-61. | |
The search direction `pk` must be a descent direction (e.g. | |
``-myfprime(xk)``) to find a step length that satisfies the strong Wolfe | |
conditions. If the search direction is not a descent direction (e.g. | |
``myfprime(xk)``), then `alpha`, `new_fval`, and `new_slope` will be None. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.optimize import line_search | |
A objective function and its gradient are defined. | |
>>> def obj_func(x): | |
... return (x[0])**2+(x[1])**2 | |
>>> def obj_grad(x): | |
... return [2*x[0], 2*x[1]] | |
We can find alpha that satisfies strong Wolfe conditions. | |
>>> start_point = np.array([1.8, 1.7]) | |
>>> search_gradient = np.array([-1.0, -1.0]) | |
>>> line_search(obj_func, obj_grad, start_point, search_gradient) | |
(1.0, 2, 1, 1.1300000000000001, 6.13, [1.6, 1.4]) | |
""" | |
fc = [0] | |
gc = [0] | |
gval = [None] | |
gval_alpha = [None] | |
def phi(alpha): | |
fc[0] += 1 | |
return f(xk + alpha * pk, *args) | |
fprime = myfprime | |
def derphi(alpha): | |
gc[0] += 1 | |
gval[0] = fprime(xk + alpha * pk, *args) # store for later use | |
gval_alpha[0] = alpha | |
return np.dot(gval[0], pk) | |
if gfk is None: | |
gfk = fprime(xk, *args) | |
derphi0 = np.dot(gfk, pk) | |
if extra_condition is not None: | |
# Add the current gradient as argument, to avoid needless | |
# re-evaluation | |
def extra_condition2(alpha, phi): | |
if gval_alpha[0] != alpha: | |
derphi(alpha) | |
x = xk + alpha * pk | |
return extra_condition(alpha, x, phi, gval[0]) | |
else: | |
extra_condition2 = None | |
alpha_star, phi_star, old_fval, derphi_star = scalar_search_wolfe2( | |
phi, derphi, old_fval, old_old_fval, derphi0, c1, c2, amax, | |
extra_condition2, maxiter=maxiter) | |
if derphi_star is None: | |
warn('The line search algorithm did not converge', | |
LineSearchWarning, stacklevel=2) | |
else: | |
# derphi_star is a number (derphi) -- so use the most recently | |
# calculated gradient used in computing it derphi = gfk*pk | |
# this is the gradient at the next step no need to compute it | |
# again in the outer loop. | |
derphi_star = gval[0] | |
return alpha_star, fc[0], gc[0], phi_star, old_fval, derphi_star | |
def scalar_search_wolfe2(phi, derphi, phi0=None, | |
old_phi0=None, derphi0=None, | |
c1=1e-4, c2=0.9, amax=None, | |
extra_condition=None, maxiter=10): | |
"""Find alpha that satisfies strong Wolfe conditions. | |
alpha > 0 is assumed to be a descent direction. | |
Parameters | |
---------- | |
phi : callable phi(alpha) | |
Objective scalar function. | |
derphi : callable phi'(alpha) | |
Objective function derivative. Returns a scalar. | |
phi0 : float, optional | |
Value of phi at 0. | |
old_phi0 : float, optional | |
Value of phi at previous point. | |
derphi0 : float, optional | |
Value of derphi at 0 | |
c1 : float, optional | |
Parameter for Armijo condition rule. | |
c2 : float, optional | |
Parameter for curvature condition rule. | |
amax : float, optional | |
Maximum step size. | |
extra_condition : callable, optional | |
A callable of the form ``extra_condition(alpha, phi_value)`` | |
returning a boolean. The line search accepts the value | |
of ``alpha`` only if this callable returns ``True``. | |
If the callable returns ``False`` for the step length, | |
the algorithm will continue with new iterates. | |
The callable is only called for iterates satisfying | |
the strong Wolfe conditions. | |
maxiter : int, optional | |
Maximum number of iterations to perform. | |
Returns | |
------- | |
alpha_star : float or None | |
Best alpha, or None if the line search algorithm did not converge. | |
phi_star : float | |
phi at alpha_star. | |
phi0 : float | |
phi at 0. | |
derphi_star : float or None | |
derphi at alpha_star, or None if the line search algorithm | |
did not converge. | |
Notes | |
----- | |
Uses the line search algorithm to enforce strong Wolfe | |
conditions. See Wright and Nocedal, 'Numerical Optimization', | |
1999, pp. 59-61. | |
""" | |
_check_c1_c2(c1, c2) | |
if phi0 is None: | |
phi0 = phi(0.) | |
if derphi0 is None: | |
derphi0 = derphi(0.) | |
alpha0 = 0 | |
if old_phi0 is not None and derphi0 != 0: | |
alpha1 = min(1.0, 1.01*2*(phi0 - old_phi0)/derphi0) | |
else: | |
alpha1 = 1.0 | |
if alpha1 < 0: | |
alpha1 = 1.0 | |
if amax is not None: | |
alpha1 = min(alpha1, amax) | |
phi_a1 = phi(alpha1) | |
#derphi_a1 = derphi(alpha1) evaluated below | |
phi_a0 = phi0 | |
derphi_a0 = derphi0 | |
if extra_condition is None: | |
def extra_condition(alpha, phi): | |
return True | |
for i in range(maxiter): | |
if alpha1 == 0 or (amax is not None and alpha0 > amax): | |
# alpha1 == 0: This shouldn't happen. Perhaps the increment has | |
# slipped below machine precision? | |
alpha_star = None | |
phi_star = phi0 | |
phi0 = old_phi0 | |
derphi_star = None | |
if alpha1 == 0: | |
msg = 'Rounding errors prevent the line search from converging' | |
else: | |
msg = "The line search algorithm could not find a solution " + \ | |
"less than or equal to amax: %s" % amax | |
warn(msg, LineSearchWarning, stacklevel=2) | |
break | |
not_first_iteration = i > 0 | |
if (phi_a1 > phi0 + c1 * alpha1 * derphi0) or \ | |
((phi_a1 >= phi_a0) and not_first_iteration): | |
alpha_star, phi_star, derphi_star = \ | |
_zoom(alpha0, alpha1, phi_a0, | |
phi_a1, derphi_a0, phi, derphi, | |
phi0, derphi0, c1, c2, extra_condition) | |
break | |
derphi_a1 = derphi(alpha1) | |
if (abs(derphi_a1) <= -c2*derphi0): | |
if extra_condition(alpha1, phi_a1): | |
alpha_star = alpha1 | |
phi_star = phi_a1 | |
derphi_star = derphi_a1 | |
break | |
if (derphi_a1 >= 0): | |
alpha_star, phi_star, derphi_star = \ | |
_zoom(alpha1, alpha0, phi_a1, | |
phi_a0, derphi_a1, phi, derphi, | |
phi0, derphi0, c1, c2, extra_condition) | |
break | |
alpha2 = 2 * alpha1 # increase by factor of two on each iteration | |
if amax is not None: | |
alpha2 = min(alpha2, amax) | |
alpha0 = alpha1 | |
alpha1 = alpha2 | |
phi_a0 = phi_a1 | |
phi_a1 = phi(alpha1) | |
derphi_a0 = derphi_a1 | |
else: | |
# stopping test maxiter reached | |
alpha_star = alpha1 | |
phi_star = phi_a1 | |
derphi_star = None | |
warn('The line search algorithm did not converge', | |
LineSearchWarning, stacklevel=2) | |
return alpha_star, phi_star, phi0, derphi_star | |
def _cubicmin(a, fa, fpa, b, fb, c, fc): | |
""" | |
Finds the minimizer for a cubic polynomial that goes through the | |
points (a,fa), (b,fb), and (c,fc) with derivative at a of fpa. | |
If no minimizer can be found, return None. | |
""" | |
# f(x) = A *(x-a)^3 + B*(x-a)^2 + C*(x-a) + D | |
with np.errstate(divide='raise', over='raise', invalid='raise'): | |
try: | |
C = fpa | |
db = b - a | |
dc = c - a | |
denom = (db * dc) ** 2 * (db - dc) | |
d1 = np.empty((2, 2)) | |
d1[0, 0] = dc ** 2 | |
d1[0, 1] = -db ** 2 | |
d1[1, 0] = -dc ** 3 | |
d1[1, 1] = db ** 3 | |
[A, B] = np.dot(d1, np.asarray([fb - fa - C * db, | |
fc - fa - C * dc]).flatten()) | |
A /= denom | |
B /= denom | |
radical = B * B - 3 * A * C | |
xmin = a + (-B + np.sqrt(radical)) / (3 * A) | |
except ArithmeticError: | |
return None | |
if not np.isfinite(xmin): | |
return None | |
return xmin | |
def _quadmin(a, fa, fpa, b, fb): | |
""" | |
Finds the minimizer for a quadratic polynomial that goes through | |
the points (a,fa), (b,fb) with derivative at a of fpa. | |
""" | |
# f(x) = B*(x-a)^2 + C*(x-a) + D | |
with np.errstate(divide='raise', over='raise', invalid='raise'): | |
try: | |
D = fa | |
C = fpa | |
db = b - a * 1.0 | |
B = (fb - D - C * db) / (db * db) | |
xmin = a - C / (2.0 * B) | |
except ArithmeticError: | |
return None | |
if not np.isfinite(xmin): | |
return None | |
return xmin | |
def _zoom(a_lo, a_hi, phi_lo, phi_hi, derphi_lo, | |
phi, derphi, phi0, derphi0, c1, c2, extra_condition): | |
"""Zoom stage of approximate linesearch satisfying strong Wolfe conditions. | |
Part of the optimization algorithm in `scalar_search_wolfe2`. | |
Notes | |
----- | |
Implements Algorithm 3.6 (zoom) in Wright and Nocedal, | |
'Numerical Optimization', 1999, pp. 61. | |
""" | |
maxiter = 10 | |
i = 0 | |
delta1 = 0.2 # cubic interpolant check | |
delta2 = 0.1 # quadratic interpolant check | |
phi_rec = phi0 | |
a_rec = 0 | |
while True: | |
# interpolate to find a trial step length between a_lo and | |
# a_hi Need to choose interpolation here. Use cubic | |
# interpolation and then if the result is within delta * | |
# dalpha or outside of the interval bounded by a_lo or a_hi | |
# then use quadratic interpolation, if the result is still too | |
# close, then use bisection | |
dalpha = a_hi - a_lo | |
if dalpha < 0: | |
a, b = a_hi, a_lo | |
else: | |
a, b = a_lo, a_hi | |
# minimizer of cubic interpolant | |
# (uses phi_lo, derphi_lo, phi_hi, and the most recent value of phi) | |
# | |
# if the result is too close to the end points (or out of the | |
# interval), then use quadratic interpolation with phi_lo, | |
# derphi_lo and phi_hi if the result is still too close to the | |
# end points (or out of the interval) then use bisection | |
if (i > 0): | |
cchk = delta1 * dalpha | |
a_j = _cubicmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi, | |
a_rec, phi_rec) | |
if (i == 0) or (a_j is None) or (a_j > b - cchk) or (a_j < a + cchk): | |
qchk = delta2 * dalpha | |
a_j = _quadmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi) | |
if (a_j is None) or (a_j > b-qchk) or (a_j < a+qchk): | |
a_j = a_lo + 0.5*dalpha | |
# Check new value of a_j | |
phi_aj = phi(a_j) | |
if (phi_aj > phi0 + c1*a_j*derphi0) or (phi_aj >= phi_lo): | |
phi_rec = phi_hi | |
a_rec = a_hi | |
a_hi = a_j | |
phi_hi = phi_aj | |
else: | |
derphi_aj = derphi(a_j) | |
if abs(derphi_aj) <= -c2*derphi0 and extra_condition(a_j, phi_aj): | |
a_star = a_j | |
val_star = phi_aj | |
valprime_star = derphi_aj | |
break | |
if derphi_aj*(a_hi - a_lo) >= 0: | |
phi_rec = phi_hi | |
a_rec = a_hi | |
a_hi = a_lo | |
phi_hi = phi_lo | |
else: | |
phi_rec = phi_lo | |
a_rec = a_lo | |
a_lo = a_j | |
phi_lo = phi_aj | |
derphi_lo = derphi_aj | |
i += 1 | |
if (i > maxiter): | |
# Failed to find a conforming step size | |
a_star = None | |
val_star = None | |
valprime_star = None | |
break | |
return a_star, val_star, valprime_star | |
#------------------------------------------------------------------------------ | |
# Armijo line and scalar searches | |
#------------------------------------------------------------------------------ | |
def line_search_armijo(f, xk, pk, gfk, old_fval, args=(), c1=1e-4, alpha0=1): | |
"""Minimize over alpha, the function ``f(xk+alpha pk)``. | |
Parameters | |
---------- | |
f : callable | |
Function to be minimized. | |
xk : array_like | |
Current point. | |
pk : array_like | |
Search direction. | |
gfk : array_like | |
Gradient of `f` at point `xk`. | |
old_fval : float | |
Value of `f` at point `xk`. | |
args : tuple, optional | |
Optional arguments. | |
c1 : float, optional | |
Value to control stopping criterion. | |
alpha0 : scalar, optional | |
Value of `alpha` at start of the optimization. | |
Returns | |
------- | |
alpha | |
f_count | |
f_val_at_alpha | |
Notes | |
----- | |
Uses the interpolation algorithm (Armijo backtracking) as suggested by | |
Wright and Nocedal in 'Numerical Optimization', 1999, pp. 56-57 | |
""" | |
xk = np.atleast_1d(xk) | |
fc = [0] | |
def phi(alpha1): | |
fc[0] += 1 | |
return f(xk + alpha1*pk, *args) | |
if old_fval is None: | |
phi0 = phi(0.) | |
else: | |
phi0 = old_fval # compute f(xk) -- done in past loop | |
derphi0 = np.dot(gfk, pk) | |
alpha, phi1 = scalar_search_armijo(phi, phi0, derphi0, c1=c1, | |
alpha0=alpha0) | |
return alpha, fc[0], phi1 | |
def line_search_BFGS(f, xk, pk, gfk, old_fval, args=(), c1=1e-4, alpha0=1): | |
""" | |
Compatibility wrapper for `line_search_armijo` | |
""" | |
r = line_search_armijo(f, xk, pk, gfk, old_fval, args=args, c1=c1, | |
alpha0=alpha0) | |
return r[0], r[1], 0, r[2] | |
def scalar_search_armijo(phi, phi0, derphi0, c1=1e-4, alpha0=1, amin=0): | |
"""Minimize over alpha, the function ``phi(alpha)``. | |
Uses the interpolation algorithm (Armijo backtracking) as suggested by | |
Wright and Nocedal in 'Numerical Optimization', 1999, pp. 56-57 | |
alpha > 0 is assumed to be a descent direction. | |
Returns | |
------- | |
alpha | |
phi1 | |
""" | |
phi_a0 = phi(alpha0) | |
if phi_a0 <= phi0 + c1*alpha0*derphi0: | |
return alpha0, phi_a0 | |
# Otherwise, compute the minimizer of a quadratic interpolant: | |
alpha1 = -(derphi0) * alpha0**2 / 2.0 / (phi_a0 - phi0 - derphi0 * alpha0) | |
phi_a1 = phi(alpha1) | |
if (phi_a1 <= phi0 + c1*alpha1*derphi0): | |
return alpha1, phi_a1 | |
# Otherwise, loop with cubic interpolation until we find an alpha which | |
# satisfies the first Wolfe condition (since we are backtracking, we will | |
# assume that the value of alpha is not too small and satisfies the second | |
# condition. | |
while alpha1 > amin: # we are assuming alpha>0 is a descent direction | |
factor = alpha0**2 * alpha1**2 * (alpha1-alpha0) | |
a = alpha0**2 * (phi_a1 - phi0 - derphi0*alpha1) - \ | |
alpha1**2 * (phi_a0 - phi0 - derphi0*alpha0) | |
a = a / factor | |
b = -alpha0**3 * (phi_a1 - phi0 - derphi0*alpha1) + \ | |
alpha1**3 * (phi_a0 - phi0 - derphi0*alpha0) | |
b = b / factor | |
alpha2 = (-b + np.sqrt(abs(b**2 - 3 * a * derphi0))) / (3.0*a) | |
phi_a2 = phi(alpha2) | |
if (phi_a2 <= phi0 + c1*alpha2*derphi0): | |
return alpha2, phi_a2 | |
if (alpha1 - alpha2) > alpha1 / 2.0 or (1 - alpha2/alpha1) < 0.96: | |
alpha2 = alpha1 / 2.0 | |
alpha0 = alpha1 | |
alpha1 = alpha2 | |
phi_a0 = phi_a1 | |
phi_a1 = phi_a2 | |
# Failed to find a suitable step length | |
return None, phi_a1 | |
#------------------------------------------------------------------------------ | |
# Non-monotone line search for DF-SANE | |
#------------------------------------------------------------------------------ | |
def _nonmonotone_line_search_cruz(f, x_k, d, prev_fs, eta, | |
gamma=1e-4, tau_min=0.1, tau_max=0.5): | |
""" | |
Nonmonotone backtracking line search as described in [1]_ | |
Parameters | |
---------- | |
f : callable | |
Function returning a tuple ``(f, F)`` where ``f`` is the value | |
of a merit function and ``F`` the residual. | |
x_k : ndarray | |
Initial position. | |
d : ndarray | |
Search direction. | |
prev_fs : float | |
List of previous merit function values. Should have ``len(prev_fs) <= M`` | |
where ``M`` is the nonmonotonicity window parameter. | |
eta : float | |
Allowed merit function increase, see [1]_ | |
gamma, tau_min, tau_max : float, optional | |
Search parameters, see [1]_ | |
Returns | |
------- | |
alpha : float | |
Step length | |
xp : ndarray | |
Next position | |
fp : float | |
Merit function value at next position | |
Fp : ndarray | |
Residual at next position | |
References | |
---------- | |
[1] "Spectral residual method without gradient information for solving | |
large-scale nonlinear systems of equations." W. La Cruz, | |
J.M. Martinez, M. Raydan. Math. Comp. **75**, 1429 (2006). | |
""" | |
f_k = prev_fs[-1] | |
f_bar = max(prev_fs) | |
alpha_p = 1 | |
alpha_m = 1 | |
alpha = 1 | |
while True: | |
xp = x_k + alpha_p * d | |
fp, Fp = f(xp) | |
if fp <= f_bar + eta - gamma * alpha_p**2 * f_k: | |
alpha = alpha_p | |
break | |
alpha_tp = alpha_p**2 * f_k / (fp + (2*alpha_p - 1)*f_k) | |
xp = x_k - alpha_m * d | |
fp, Fp = f(xp) | |
if fp <= f_bar + eta - gamma * alpha_m**2 * f_k: | |
alpha = -alpha_m | |
break | |
alpha_tm = alpha_m**2 * f_k / (fp + (2*alpha_m - 1)*f_k) | |
alpha_p = np.clip(alpha_tp, tau_min * alpha_p, tau_max * alpha_p) | |
alpha_m = np.clip(alpha_tm, tau_min * alpha_m, tau_max * alpha_m) | |
return alpha, xp, fp, Fp | |
def _nonmonotone_line_search_cheng(f, x_k, d, f_k, C, Q, eta, | |
gamma=1e-4, tau_min=0.1, tau_max=0.5, | |
nu=0.85): | |
""" | |
Nonmonotone line search from [1] | |
Parameters | |
---------- | |
f : callable | |
Function returning a tuple ``(f, F)`` where ``f`` is the value | |
of a merit function and ``F`` the residual. | |
x_k : ndarray | |
Initial position. | |
d : ndarray | |
Search direction. | |
f_k : float | |
Initial merit function value. | |
C, Q : float | |
Control parameters. On the first iteration, give values | |
Q=1.0, C=f_k | |
eta : float | |
Allowed merit function increase, see [1]_ | |
nu, gamma, tau_min, tau_max : float, optional | |
Search parameters, see [1]_ | |
Returns | |
------- | |
alpha : float | |
Step length | |
xp : ndarray | |
Next position | |
fp : float | |
Merit function value at next position | |
Fp : ndarray | |
Residual at next position | |
C : float | |
New value for the control parameter C | |
Q : float | |
New value for the control parameter Q | |
References | |
---------- | |
.. [1] W. Cheng & D.-H. Li, ''A derivative-free nonmonotone line | |
search and its application to the spectral residual | |
method'', IMA J. Numer. Anal. 29, 814 (2009). | |
""" | |
alpha_p = 1 | |
alpha_m = 1 | |
alpha = 1 | |
while True: | |
xp = x_k + alpha_p * d | |
fp, Fp = f(xp) | |
if fp <= C + eta - gamma * alpha_p**2 * f_k: | |
alpha = alpha_p | |
break | |
alpha_tp = alpha_p**2 * f_k / (fp + (2*alpha_p - 1)*f_k) | |
xp = x_k - alpha_m * d | |
fp, Fp = f(xp) | |
if fp <= C + eta - gamma * alpha_m**2 * f_k: | |
alpha = -alpha_m | |
break | |
alpha_tm = alpha_m**2 * f_k / (fp + (2*alpha_m - 1)*f_k) | |
alpha_p = np.clip(alpha_tp, tau_min * alpha_p, tau_max * alpha_p) | |
alpha_m = np.clip(alpha_tm, tau_min * alpha_m, tau_max * alpha_m) | |
# Update C and Q | |
Q_next = nu * Q + 1 | |
C = (nu * Q * (C + eta) + fp) / Q_next | |
Q = Q_next | |
return alpha, xp, fp, Fp, C, Q | |