peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/signal
/_upfirdn.py
# Code adapted from "upfirdn" python library with permission: | |
# | |
# Copyright (c) 2009, Motorola, Inc | |
# | |
# All Rights Reserved. | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions are | |
# met: | |
# | |
# * Redistributions of source code must retain the above copyright notice, | |
# this list of conditions and the following disclaimer. | |
# | |
# * Redistributions in binary form must reproduce the above copyright | |
# notice, this list of conditions and the following disclaimer in the | |
# documentation and/or other materials provided with the distribution. | |
# | |
# * Neither the name of Motorola nor the names of its contributors may be | |
# used to endorse or promote products derived from this software without | |
# specific prior written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS | |
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, | |
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR | |
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | |
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
import numpy as np | |
from ._upfirdn_apply import _output_len, _apply, mode_enum | |
__all__ = ['upfirdn', '_output_len'] | |
_upfirdn_modes = [ | |
'constant', 'wrap', 'edge', 'smooth', 'symmetric', 'reflect', | |
'antisymmetric', 'antireflect', 'line', | |
] | |
def _pad_h(h, up): | |
"""Store coefficients in a transposed, flipped arrangement. | |
For example, suppose upRate is 3, and the | |
input number of coefficients is 10, represented as h[0], ..., h[9]. | |
Then the internal buffer will look like this:: | |
h[9], h[6], h[3], h[0], // flipped phase 0 coefs | |
0, h[7], h[4], h[1], // flipped phase 1 coefs (zero-padded) | |
0, h[8], h[5], h[2], // flipped phase 2 coefs (zero-padded) | |
""" | |
h_padlen = len(h) + (-len(h) % up) | |
h_full = np.zeros(h_padlen, h.dtype) | |
h_full[:len(h)] = h | |
h_full = h_full.reshape(-1, up).T[:, ::-1].ravel() | |
return h_full | |
def _check_mode(mode): | |
mode = mode.lower() | |
enum = mode_enum(mode) | |
return enum | |
class _UpFIRDn: | |
"""Helper for resampling.""" | |
def __init__(self, h, x_dtype, up, down): | |
h = np.asarray(h) | |
if h.ndim != 1 or h.size == 0: | |
raise ValueError('h must be 1-D with non-zero length') | |
self._output_type = np.result_type(h.dtype, x_dtype, np.float32) | |
h = np.asarray(h, self._output_type) | |
self._up = int(up) | |
self._down = int(down) | |
if self._up < 1 or self._down < 1: | |
raise ValueError('Both up and down must be >= 1') | |
# This both transposes, and "flips" each phase for filtering | |
self._h_trans_flip = _pad_h(h, self._up) | |
self._h_trans_flip = np.ascontiguousarray(self._h_trans_flip) | |
self._h_len_orig = len(h) | |
def apply_filter(self, x, axis=-1, mode='constant', cval=0): | |
"""Apply the prepared filter to the specified axis of N-D signal x.""" | |
output_len = _output_len(self._h_len_orig, x.shape[axis], | |
self._up, self._down) | |
# Explicit use of np.int64 for output_shape dtype avoids OverflowError | |
# when allocating large array on platforms where intp is 32 bits. | |
output_shape = np.asarray(x.shape, dtype=np.int64) | |
output_shape[axis] = output_len | |
out = np.zeros(output_shape, dtype=self._output_type, order='C') | |
axis = axis % x.ndim | |
mode = _check_mode(mode) | |
_apply(np.asarray(x, self._output_type), | |
self._h_trans_flip, out, | |
self._up, self._down, axis, mode, cval) | |
return out | |
def upfirdn(h, x, up=1, down=1, axis=-1, mode='constant', cval=0): | |
"""Upsample, FIR filter, and downsample. | |
Parameters | |
---------- | |
h : array_like | |
1-D FIR (finite-impulse response) filter coefficients. | |
x : array_like | |
Input signal array. | |
up : int, optional | |
Upsampling rate. Default is 1. | |
down : int, optional | |
Downsampling rate. Default is 1. | |
axis : int, optional | |
The axis of the input data array along which to apply the | |
linear filter. The filter is applied to each subarray along | |
this axis. Default is -1. | |
mode : str, optional | |
The signal extension mode to use. The set | |
``{"constant", "symmetric", "reflect", "edge", "wrap"}`` correspond to | |
modes provided by `numpy.pad`. ``"smooth"`` implements a smooth | |
extension by extending based on the slope of the last 2 points at each | |
end of the array. ``"antireflect"`` and ``"antisymmetric"`` are | |
anti-symmetric versions of ``"reflect"`` and ``"symmetric"``. The mode | |
`"line"` extends the signal based on a linear trend defined by the | |
first and last points along the ``axis``. | |
.. versionadded:: 1.4.0 | |
cval : float, optional | |
The constant value to use when ``mode == "constant"``. | |
.. versionadded:: 1.4.0 | |
Returns | |
------- | |
y : ndarray | |
The output signal array. Dimensions will be the same as `x` except | |
for along `axis`, which will change size according to the `h`, | |
`up`, and `down` parameters. | |
Notes | |
----- | |
The algorithm is an implementation of the block diagram shown on page 129 | |
of the Vaidyanathan text [1]_ (Figure 4.3-8d). | |
The direct approach of upsampling by factor of P with zero insertion, | |
FIR filtering of length ``N``, and downsampling by factor of Q is | |
O(N*Q) per output sample. The polyphase implementation used here is | |
O(N/P). | |
.. versionadded:: 0.18 | |
References | |
---------- | |
.. [1] P. P. Vaidyanathan, Multirate Systems and Filter Banks, | |
Prentice Hall, 1993. | |
Examples | |
-------- | |
Simple operations: | |
>>> import numpy as np | |
>>> from scipy.signal import upfirdn | |
>>> upfirdn([1, 1, 1], [1, 1, 1]) # FIR filter | |
array([ 1., 2., 3., 2., 1.]) | |
>>> upfirdn([1], [1, 2, 3], 3) # upsampling with zeros insertion | |
array([ 1., 0., 0., 2., 0., 0., 3.]) | |
>>> upfirdn([1, 1, 1], [1, 2, 3], 3) # upsampling with sample-and-hold | |
array([ 1., 1., 1., 2., 2., 2., 3., 3., 3.]) | |
>>> upfirdn([.5, 1, .5], [1, 1, 1], 2) # linear interpolation | |
array([ 0.5, 1. , 1. , 1. , 1. , 1. , 0.5]) | |
>>> upfirdn([1], np.arange(10), 1, 3) # decimation by 3 | |
array([ 0., 3., 6., 9.]) | |
>>> upfirdn([.5, 1, .5], np.arange(10), 2, 3) # linear interp, rate 2/3 | |
array([ 0. , 1. , 2.5, 4. , 5.5, 7. , 8.5]) | |
Apply a single filter to multiple signals: | |
>>> x = np.reshape(np.arange(8), (4, 2)) | |
>>> x | |
array([[0, 1], | |
[2, 3], | |
[4, 5], | |
[6, 7]]) | |
Apply along the last dimension of ``x``: | |
>>> h = [1, 1] | |
>>> upfirdn(h, x, 2) | |
array([[ 0., 0., 1., 1.], | |
[ 2., 2., 3., 3.], | |
[ 4., 4., 5., 5.], | |
[ 6., 6., 7., 7.]]) | |
Apply along the 0th dimension of ``x``: | |
>>> upfirdn(h, x, 2, axis=0) | |
array([[ 0., 1.], | |
[ 0., 1.], | |
[ 2., 3.], | |
[ 2., 3.], | |
[ 4., 5.], | |
[ 4., 5.], | |
[ 6., 7.], | |
[ 6., 7.]]) | |
""" | |
x = np.asarray(x) | |
ufd = _UpFIRDn(h, x.dtype, up, down) | |
# This is equivalent to (but faster than) using np.apply_along_axis | |
return ufd.apply_filter(x, axis, mode, cval) | |