peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/sparse
/_csc.py
"""Compressed Sparse Column matrix format""" | |
__docformat__ = "restructuredtext en" | |
__all__ = ['csc_array', 'csc_matrix', 'isspmatrix_csc'] | |
import numpy as np | |
from ._matrix import spmatrix | |
from ._base import _spbase, sparray | |
from ._sparsetools import csc_tocsr, expandptr | |
from ._sputils import upcast | |
from ._compressed import _cs_matrix | |
class _csc_base(_cs_matrix): | |
_format = 'csc' | |
def transpose(self, axes=None, copy=False): | |
if axes is not None and axes != (1, 0): | |
raise ValueError("Sparse arrays/matrices do not support " | |
"an 'axes' parameter because swapping " | |
"dimensions is the only logical permutation.") | |
M, N = self.shape | |
return self._csr_container((self.data, self.indices, | |
self.indptr), (N, M), copy=copy) | |
transpose.__doc__ = _spbase.transpose.__doc__ | |
def __iter__(self): | |
yield from self.tocsr() | |
def tocsc(self, copy=False): | |
if copy: | |
return self.copy() | |
else: | |
return self | |
tocsc.__doc__ = _spbase.tocsc.__doc__ | |
def tocsr(self, copy=False): | |
M,N = self.shape | |
idx_dtype = self._get_index_dtype((self.indptr, self.indices), | |
maxval=max(self.nnz, N)) | |
indptr = np.empty(M + 1, dtype=idx_dtype) | |
indices = np.empty(self.nnz, dtype=idx_dtype) | |
data = np.empty(self.nnz, dtype=upcast(self.dtype)) | |
csc_tocsr(M, N, | |
self.indptr.astype(idx_dtype), | |
self.indices.astype(idx_dtype), | |
self.data, | |
indptr, | |
indices, | |
data) | |
A = self._csr_container( | |
(data, indices, indptr), | |
shape=self.shape, copy=False | |
) | |
A.has_sorted_indices = True | |
return A | |
tocsr.__doc__ = _spbase.tocsr.__doc__ | |
def nonzero(self): | |
# CSC can't use _cs_matrix's .nonzero method because it | |
# returns the indices sorted for self transposed. | |
# Get row and col indices, from _cs_matrix.tocoo | |
major_dim, minor_dim = self._swap(self.shape) | |
minor_indices = self.indices | |
major_indices = np.empty(len(minor_indices), dtype=self.indices.dtype) | |
expandptr(major_dim, self.indptr, major_indices) | |
row, col = self._swap((major_indices, minor_indices)) | |
# Remove explicit zeros | |
nz_mask = self.data != 0 | |
row = row[nz_mask] | |
col = col[nz_mask] | |
# Sort them to be in C-style order | |
ind = np.argsort(row, kind='mergesort') | |
row = row[ind] | |
col = col[ind] | |
return row, col | |
nonzero.__doc__ = _cs_matrix.nonzero.__doc__ | |
def _getrow(self, i): | |
"""Returns a copy of row i of the matrix, as a (1 x n) | |
CSR matrix (row vector). | |
""" | |
M, N = self.shape | |
i = int(i) | |
if i < 0: | |
i += M | |
if i < 0 or i >= M: | |
raise IndexError('index (%d) out of range' % i) | |
return self._get_submatrix(minor=i).tocsr() | |
def _getcol(self, i): | |
"""Returns a copy of column i of the matrix, as a (m x 1) | |
CSC matrix (column vector). | |
""" | |
M, N = self.shape | |
i = int(i) | |
if i < 0: | |
i += N | |
if i < 0 or i >= N: | |
raise IndexError('index (%d) out of range' % i) | |
return self._get_submatrix(major=i, copy=True) | |
def _get_intXarray(self, row, col): | |
return self._major_index_fancy(col)._get_submatrix(minor=row) | |
def _get_intXslice(self, row, col): | |
if col.step in (1, None): | |
return self._get_submatrix(major=col, minor=row, copy=True) | |
return self._major_slice(col)._get_submatrix(minor=row) | |
def _get_sliceXint(self, row, col): | |
if row.step in (1, None): | |
return self._get_submatrix(major=col, minor=row, copy=True) | |
return self._get_submatrix(major=col)._minor_slice(row) | |
def _get_sliceXarray(self, row, col): | |
return self._major_index_fancy(col)._minor_slice(row) | |
def _get_arrayXint(self, row, col): | |
return self._get_submatrix(major=col)._minor_index_fancy(row) | |
def _get_arrayXslice(self, row, col): | |
return self._major_slice(col)._minor_index_fancy(row) | |
# these functions are used by the parent class (_cs_matrix) | |
# to remove redundancy between csc_array and csr_matrix | |
def _swap(x): | |
"""swap the members of x if this is a column-oriented matrix | |
""" | |
return x[1], x[0] | |
def isspmatrix_csc(x): | |
"""Is `x` of csc_matrix type? | |
Parameters | |
---------- | |
x | |
object to check for being a csc matrix | |
Returns | |
------- | |
bool | |
True if `x` is a csc matrix, False otherwise | |
Examples | |
-------- | |
>>> from scipy.sparse import csc_array, csc_matrix, coo_matrix, isspmatrix_csc | |
>>> isspmatrix_csc(csc_matrix([[5]])) | |
True | |
>>> isspmatrix_csc(csc_array([[5]])) | |
False | |
>>> isspmatrix_csc(coo_matrix([[5]])) | |
False | |
""" | |
return isinstance(x, csc_matrix) | |
# This namespace class separates array from matrix with isinstance | |
class csc_array(_csc_base, sparray): | |
""" | |
Compressed Sparse Column array. | |
This can be instantiated in several ways: | |
csc_array(D) | |
where D is a 2-D ndarray | |
csc_array(S) | |
with another sparse array or matrix S (equivalent to S.tocsc()) | |
csc_array((M, N), [dtype]) | |
to construct an empty array with shape (M, N) | |
dtype is optional, defaulting to dtype='d'. | |
csc_array((data, (row_ind, col_ind)), [shape=(M, N)]) | |
where ``data``, ``row_ind`` and ``col_ind`` satisfy the | |
relationship ``a[row_ind[k], col_ind[k]] = data[k]``. | |
csc_array((data, indices, indptr), [shape=(M, N)]) | |
is the standard CSC representation where the row indices for | |
column i are stored in ``indices[indptr[i]:indptr[i+1]]`` | |
and their corresponding values are stored in | |
``data[indptr[i]:indptr[i+1]]``. If the shape parameter is | |
not supplied, the array dimensions are inferred from | |
the index arrays. | |
Attributes | |
---------- | |
dtype : dtype | |
Data type of the array | |
shape : 2-tuple | |
Shape of the array | |
ndim : int | |
Number of dimensions (this is always 2) | |
nnz | |
size | |
data | |
CSC format data array of the array | |
indices | |
CSC format index array of the array | |
indptr | |
CSC format index pointer array of the array | |
has_sorted_indices | |
has_canonical_format | |
T | |
Notes | |
----- | |
Sparse arrays can be used in arithmetic operations: they support | |
addition, subtraction, multiplication, division, and matrix power. | |
Advantages of the CSC format | |
- efficient arithmetic operations CSC + CSC, CSC * CSC, etc. | |
- efficient column slicing | |
- fast matrix vector products (CSR, BSR may be faster) | |
Disadvantages of the CSC format | |
- slow row slicing operations (consider CSR) | |
- changes to the sparsity structure are expensive (consider LIL or DOK) | |
Canonical format | |
- Within each column, indices are sorted by row. | |
- There are no duplicate entries. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.sparse import csc_array | |
>>> csc_array((3, 4), dtype=np.int8).toarray() | |
array([[0, 0, 0, 0], | |
[0, 0, 0, 0], | |
[0, 0, 0, 0]], dtype=int8) | |
>>> row = np.array([0, 2, 2, 0, 1, 2]) | |
>>> col = np.array([0, 0, 1, 2, 2, 2]) | |
>>> data = np.array([1, 2, 3, 4, 5, 6]) | |
>>> csc_array((data, (row, col)), shape=(3, 3)).toarray() | |
array([[1, 0, 4], | |
[0, 0, 5], | |
[2, 3, 6]]) | |
>>> indptr = np.array([0, 2, 3, 6]) | |
>>> indices = np.array([0, 2, 2, 0, 1, 2]) | |
>>> data = np.array([1, 2, 3, 4, 5, 6]) | |
>>> csc_array((data, indices, indptr), shape=(3, 3)).toarray() | |
array([[1, 0, 4], | |
[0, 0, 5], | |
[2, 3, 6]]) | |
""" | |
class csc_matrix(spmatrix, _csc_base): | |
""" | |
Compressed Sparse Column matrix. | |
This can be instantiated in several ways: | |
csc_matrix(D) | |
where D is a 2-D ndarray | |
csc_matrix(S) | |
with another sparse array or matrix S (equivalent to S.tocsc()) | |
csc_matrix((M, N), [dtype]) | |
to construct an empty matrix with shape (M, N) | |
dtype is optional, defaulting to dtype='d'. | |
csc_matrix((data, (row_ind, col_ind)), [shape=(M, N)]) | |
where ``data``, ``row_ind`` and ``col_ind`` satisfy the | |
relationship ``a[row_ind[k], col_ind[k]] = data[k]``. | |
csc_matrix((data, indices, indptr), [shape=(M, N)]) | |
is the standard CSC representation where the row indices for | |
column i are stored in ``indices[indptr[i]:indptr[i+1]]`` | |
and their corresponding values are stored in | |
``data[indptr[i]:indptr[i+1]]``. If the shape parameter is | |
not supplied, the matrix dimensions are inferred from | |
the index arrays. | |
Attributes | |
---------- | |
dtype : dtype | |
Data type of the matrix | |
shape : 2-tuple | |
Shape of the matrix | |
ndim : int | |
Number of dimensions (this is always 2) | |
nnz | |
size | |
data | |
CSC format data array of the matrix | |
indices | |
CSC format index array of the matrix | |
indptr | |
CSC format index pointer array of the matrix | |
has_sorted_indices | |
has_canonical_format | |
T | |
Notes | |
----- | |
Sparse matrices can be used in arithmetic operations: they support | |
addition, subtraction, multiplication, division, and matrix power. | |
Advantages of the CSC format | |
- efficient arithmetic operations CSC + CSC, CSC * CSC, etc. | |
- efficient column slicing | |
- fast matrix vector products (CSR, BSR may be faster) | |
Disadvantages of the CSC format | |
- slow row slicing operations (consider CSR) | |
- changes to the sparsity structure are expensive (consider LIL or DOK) | |
Canonical format | |
- Within each column, indices are sorted by row. | |
- There are no duplicate entries. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.sparse import csc_matrix | |
>>> csc_matrix((3, 4), dtype=np.int8).toarray() | |
array([[0, 0, 0, 0], | |
[0, 0, 0, 0], | |
[0, 0, 0, 0]], dtype=int8) | |
>>> row = np.array([0, 2, 2, 0, 1, 2]) | |
>>> col = np.array([0, 0, 1, 2, 2, 2]) | |
>>> data = np.array([1, 2, 3, 4, 5, 6]) | |
>>> csc_matrix((data, (row, col)), shape=(3, 3)).toarray() | |
array([[1, 0, 4], | |
[0, 0, 5], | |
[2, 3, 6]]) | |
>>> indptr = np.array([0, 2, 3, 6]) | |
>>> indices = np.array([0, 2, 2, 0, 1, 2]) | |
>>> data = np.array([1, 2, 3, 4, 5, 6]) | |
>>> csc_matrix((data, indices, indptr), shape=(3, 3)).toarray() | |
array([[1, 0, 4], | |
[0, 0, 5], | |
[2, 3, 6]]) | |
""" | |