peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/sparse
/_dia.py
"""Sparse DIAgonal format""" | |
__docformat__ = "restructuredtext en" | |
__all__ = ['dia_array', 'dia_matrix', 'isspmatrix_dia'] | |
import numpy as np | |
from .._lib._util import copy_if_needed | |
from ._matrix import spmatrix | |
from ._base import issparse, _formats, _spbase, sparray | |
from ._data import _data_matrix | |
from ._sputils import ( | |
isshape, upcast_char, getdtype, get_sum_dtype, validateaxis, check_shape | |
) | |
from ._sparsetools import dia_matvec | |
class _dia_base(_data_matrix): | |
_format = 'dia' | |
def __init__(self, arg1, shape=None, dtype=None, copy=False): | |
_data_matrix.__init__(self) | |
if issparse(arg1): | |
if arg1.format == "dia": | |
if copy: | |
arg1 = arg1.copy() | |
self.data = arg1.data | |
self.offsets = arg1.offsets | |
self._shape = check_shape(arg1.shape) | |
else: | |
if arg1.format == self.format and copy: | |
A = arg1.copy() | |
else: | |
A = arg1.todia() | |
self.data = A.data | |
self.offsets = A.offsets | |
self._shape = check_shape(A.shape) | |
elif isinstance(arg1, tuple): | |
if isshape(arg1): | |
# It's a tuple of matrix dimensions (M, N) | |
# create empty matrix | |
self._shape = check_shape(arg1) | |
self.data = np.zeros((0,0), getdtype(dtype, default=float)) | |
idx_dtype = self._get_index_dtype(maxval=max(self.shape)) | |
self.offsets = np.zeros((0), dtype=idx_dtype) | |
else: | |
try: | |
# Try interpreting it as (data, offsets) | |
data, offsets = arg1 | |
except Exception as e: | |
message = 'unrecognized form for dia_array constructor' | |
raise ValueError(message) from e | |
else: | |
if shape is None: | |
raise ValueError('expected a shape argument') | |
if not copy: | |
copy = copy_if_needed | |
self.data = np.atleast_2d(np.array(arg1[0], dtype=dtype, copy=copy)) | |
offsets = np.array(arg1[1], | |
dtype=self._get_index_dtype(maxval=max(shape)), | |
copy=copy) | |
self.offsets = np.atleast_1d(offsets) | |
self._shape = check_shape(shape) | |
else: | |
#must be dense, convert to COO first, then to DIA | |
try: | |
arg1 = np.asarray(arg1) | |
except Exception as e: | |
raise ValueError("unrecognized form for" | |
" %s_matrix constructor" % self.format) from e | |
A = self._coo_container(arg1, dtype=dtype, shape=shape).todia() | |
self.data = A.data | |
self.offsets = A.offsets | |
self._shape = check_shape(A.shape) | |
if dtype is not None: | |
self.data = self.data.astype(dtype) | |
#check format | |
if self.offsets.ndim != 1: | |
raise ValueError('offsets array must have rank 1') | |
if self.data.ndim != 2: | |
raise ValueError('data array must have rank 2') | |
if self.data.shape[0] != len(self.offsets): | |
raise ValueError('number of diagonals (%d) ' | |
'does not match the number of offsets (%d)' | |
% (self.data.shape[0], len(self.offsets))) | |
if len(np.unique(self.offsets)) != len(self.offsets): | |
raise ValueError('offset array contains duplicate values') | |
def __repr__(self): | |
_, fmt = _formats[self.format] | |
sparse_cls = 'array' if isinstance(self, sparray) else 'matrix' | |
shape_str = 'x'.join(str(x) for x in self.shape) | |
ndiag = self.data.shape[0] | |
return ( | |
f"<{shape_str} sparse {sparse_cls} of type '{self.dtype.type}'\n" | |
f"\twith {self.nnz} stored elements ({ndiag} diagonals) in {fmt} format>" | |
) | |
def _data_mask(self): | |
"""Returns a mask of the same shape as self.data, where | |
mask[i,j] is True when data[i,j] corresponds to a stored element.""" | |
num_rows, num_cols = self.shape | |
offset_inds = np.arange(self.data.shape[1]) | |
row = offset_inds - self.offsets[:,None] | |
mask = (row >= 0) | |
mask &= (row < num_rows) | |
mask &= (offset_inds < num_cols) | |
return mask | |
def count_nonzero(self): | |
mask = self._data_mask() | |
return np.count_nonzero(self.data[mask]) | |
def _getnnz(self, axis=None): | |
if axis is not None: | |
raise NotImplementedError("_getnnz over an axis is not implemented " | |
"for DIA format") | |
M,N = self.shape | |
nnz = 0 | |
for k in self.offsets: | |
if k > 0: | |
nnz += min(M,N-k) | |
else: | |
nnz += min(M+k,N) | |
return int(nnz) | |
_getnnz.__doc__ = _spbase._getnnz.__doc__ | |
count_nonzero.__doc__ = _spbase.count_nonzero.__doc__ | |
def sum(self, axis=None, dtype=None, out=None): | |
validateaxis(axis) | |
if axis is not None and axis < 0: | |
axis += 2 | |
res_dtype = get_sum_dtype(self.dtype) | |
num_rows, num_cols = self.shape | |
ret = None | |
if axis == 0: | |
mask = self._data_mask() | |
x = (self.data * mask).sum(axis=0) | |
if x.shape[0] == num_cols: | |
res = x | |
else: | |
res = np.zeros(num_cols, dtype=x.dtype) | |
res[:x.shape[0]] = x | |
ret = self._ascontainer(res, dtype=res_dtype) | |
else: | |
row_sums = np.zeros((num_rows, 1), dtype=res_dtype) | |
one = np.ones(num_cols, dtype=res_dtype) | |
dia_matvec(num_rows, num_cols, len(self.offsets), | |
self.data.shape[1], self.offsets, self.data, one, row_sums) | |
row_sums = self._ascontainer(row_sums) | |
if axis is None: | |
return row_sums.sum(dtype=dtype, out=out) | |
ret = self._ascontainer(row_sums.sum(axis=axis)) | |
if out is not None and out.shape != ret.shape: | |
raise ValueError("dimensions do not match") | |
return ret.sum(axis=(), dtype=dtype, out=out) | |
sum.__doc__ = _spbase.sum.__doc__ | |
def _add_sparse(self, other): | |
# Check if other is also of type dia_array | |
if not isinstance(other, type(self)): | |
# If other is not of type dia_array, default to | |
# converting to csr_matrix, as is done in the _add_sparse | |
# method of parent class _spbase | |
return self.tocsr()._add_sparse(other) | |
# The task is to compute m = self + other | |
# Start by making a copy of self, of the datatype | |
# that should result from adding self and other | |
dtype = np.promote_types(self.dtype, other.dtype) | |
m = self.astype(dtype, copy=True) | |
# Then, add all the stored diagonals of other. | |
for d in other.offsets: | |
# Check if the diagonal has already been added. | |
if d in m.offsets: | |
# If the diagonal is already there, we need to take | |
# the sum of the existing and the new | |
m.setdiag(m.diagonal(d) + other.diagonal(d), d) | |
else: | |
m.setdiag(other.diagonal(d), d) | |
return m | |
def _matmul_vector(self, other): | |
x = other | |
y = np.zeros(self.shape[0], dtype=upcast_char(self.dtype.char, | |
x.dtype.char)) | |
L = self.data.shape[1] | |
M,N = self.shape | |
dia_matvec(M,N, len(self.offsets), L, self.offsets, self.data, | |
x.ravel(), y.ravel()) | |
return y | |
def _setdiag(self, values, k=0): | |
M, N = self.shape | |
if values.ndim == 0: | |
# broadcast | |
values_n = np.inf | |
else: | |
values_n = len(values) | |
if k < 0: | |
n = min(M + k, N, values_n) | |
min_index = 0 | |
max_index = n | |
else: | |
n = min(M, N - k, values_n) | |
min_index = k | |
max_index = k + n | |
if values.ndim != 0: | |
# allow also longer sequences | |
values = values[:n] | |
data_rows, data_cols = self.data.shape | |
if k in self.offsets: | |
if max_index > data_cols: | |
data = np.zeros((data_rows, max_index), dtype=self.data.dtype) | |
data[:, :data_cols] = self.data | |
self.data = data | |
self.data[self.offsets == k, min_index:max_index] = values | |
else: | |
self.offsets = np.append(self.offsets, self.offsets.dtype.type(k)) | |
m = max(max_index, data_cols) | |
data = np.zeros((data_rows + 1, m), dtype=self.data.dtype) | |
data[:-1, :data_cols] = self.data | |
data[-1, min_index:max_index] = values | |
self.data = data | |
def todia(self, copy=False): | |
if copy: | |
return self.copy() | |
else: | |
return self | |
todia.__doc__ = _spbase.todia.__doc__ | |
def transpose(self, axes=None, copy=False): | |
if axes is not None and axes != (1, 0): | |
raise ValueError("Sparse arrays/matrices do not support " | |
"an 'axes' parameter because swapping " | |
"dimensions is the only logical permutation.") | |
num_rows, num_cols = self.shape | |
max_dim = max(self.shape) | |
# flip diagonal offsets | |
offsets = -self.offsets | |
# re-align the data matrix | |
r = np.arange(len(offsets), dtype=np.intc)[:, None] | |
c = np.arange(num_rows, dtype=np.intc) - (offsets % max_dim)[:, None] | |
pad_amount = max(0, max_dim-self.data.shape[1]) | |
data = np.hstack((self.data, np.zeros((self.data.shape[0], pad_amount), | |
dtype=self.data.dtype))) | |
data = data[r, c] | |
return self._dia_container((data, offsets), shape=( | |
num_cols, num_rows), copy=copy) | |
transpose.__doc__ = _spbase.transpose.__doc__ | |
def diagonal(self, k=0): | |
rows, cols = self.shape | |
if k <= -rows or k >= cols: | |
return np.empty(0, dtype=self.data.dtype) | |
idx, = np.nonzero(self.offsets == k) | |
first_col = max(0, k) | |
last_col = min(rows + k, cols) | |
result_size = last_col - first_col | |
if idx.size == 0: | |
return np.zeros(result_size, dtype=self.data.dtype) | |
result = self.data[idx[0], first_col:last_col] | |
padding = result_size - len(result) | |
if padding > 0: | |
result = np.pad(result, (0, padding), mode='constant') | |
return result | |
diagonal.__doc__ = _spbase.diagonal.__doc__ | |
def tocsc(self, copy=False): | |
if self.nnz == 0: | |
return self._csc_container(self.shape, dtype=self.dtype) | |
num_rows, num_cols = self.shape | |
num_offsets, offset_len = self.data.shape | |
offset_inds = np.arange(offset_len) | |
row = offset_inds - self.offsets[:,None] | |
mask = (row >= 0) | |
mask &= (row < num_rows) | |
mask &= (offset_inds < num_cols) | |
mask &= (self.data != 0) | |
idx_dtype = self._get_index_dtype(maxval=max(self.shape)) | |
indptr = np.zeros(num_cols + 1, dtype=idx_dtype) | |
indptr[1:offset_len+1] = np.cumsum(mask.sum(axis=0)[:num_cols]) | |
if offset_len < num_cols: | |
indptr[offset_len+1:] = indptr[offset_len] | |
indices = row.T[mask.T].astype(idx_dtype, copy=False) | |
data = self.data.T[mask.T] | |
return self._csc_container((data, indices, indptr), shape=self.shape, | |
dtype=self.dtype) | |
tocsc.__doc__ = _spbase.tocsc.__doc__ | |
def tocoo(self, copy=False): | |
num_rows, num_cols = self.shape | |
num_offsets, offset_len = self.data.shape | |
offset_inds = np.arange(offset_len) | |
row = offset_inds - self.offsets[:,None] | |
mask = (row >= 0) | |
mask &= (row < num_rows) | |
mask &= (offset_inds < num_cols) | |
mask &= (self.data != 0) | |
row = row[mask] | |
col = np.tile(offset_inds, num_offsets)[mask.ravel()] | |
idx_dtype = self._get_index_dtype( | |
arrays=(self.offsets,), maxval=max(self.shape) | |
) | |
row = row.astype(idx_dtype, copy=False) | |
col = col.astype(idx_dtype, copy=False) | |
data = self.data[mask] | |
# Note: this cannot set has_canonical_format=True, because despite the | |
# lack of duplicates, we do not generate sorted indices. | |
return self._coo_container( | |
(data, (row, col)), shape=self.shape, dtype=self.dtype, copy=False | |
) | |
tocoo.__doc__ = _spbase.tocoo.__doc__ | |
# needed by _data_matrix | |
def _with_data(self, data, copy=True): | |
"""Returns a matrix with the same sparsity structure as self, | |
but with different data. By default the structure arrays are copied. | |
""" | |
if copy: | |
return self._dia_container( | |
(data, self.offsets.copy()), shape=self.shape | |
) | |
else: | |
return self._dia_container( | |
(data, self.offsets), shape=self.shape | |
) | |
def resize(self, *shape): | |
shape = check_shape(shape) | |
M, N = shape | |
# we do not need to handle the case of expanding N | |
self.data = self.data[:, :N] | |
if (M > self.shape[0] and | |
np.any(self.offsets + self.shape[0] < self.data.shape[1])): | |
# explicitly clear values that were previously hidden | |
mask = (self.offsets[:, None] + self.shape[0] <= | |
np.arange(self.data.shape[1])) | |
self.data[mask] = 0 | |
self._shape = shape | |
resize.__doc__ = _spbase.resize.__doc__ | |
def isspmatrix_dia(x): | |
"""Is `x` of dia_matrix type? | |
Parameters | |
---------- | |
x | |
object to check for being a dia matrix | |
Returns | |
------- | |
bool | |
True if `x` is a dia matrix, False otherwise | |
Examples | |
-------- | |
>>> from scipy.sparse import dia_array, dia_matrix, coo_matrix, isspmatrix_dia | |
>>> isspmatrix_dia(dia_matrix([[5]])) | |
True | |
>>> isspmatrix_dia(dia_array([[5]])) | |
False | |
>>> isspmatrix_dia(coo_matrix([[5]])) | |
False | |
""" | |
return isinstance(x, dia_matrix) | |
# This namespace class separates array from matrix with isinstance | |
class dia_array(_dia_base, sparray): | |
""" | |
Sparse array with DIAgonal storage. | |
This can be instantiated in several ways: | |
dia_array(D) | |
where D is a 2-D ndarray | |
dia_array(S) | |
with another sparse array or matrix S (equivalent to S.todia()) | |
dia_array((M, N), [dtype]) | |
to construct an empty array with shape (M, N), | |
dtype is optional, defaulting to dtype='d'. | |
dia_array((data, offsets), shape=(M, N)) | |
where the ``data[k,:]`` stores the diagonal entries for | |
diagonal ``offsets[k]`` (See example below) | |
Attributes | |
---------- | |
dtype : dtype | |
Data type of the array | |
shape : 2-tuple | |
Shape of the array | |
ndim : int | |
Number of dimensions (this is always 2) | |
nnz | |
size | |
data | |
DIA format data array of the array | |
offsets | |
DIA format offset array of the array | |
T | |
Notes | |
----- | |
Sparse arrays can be used in arithmetic operations: they support | |
addition, subtraction, multiplication, division, and matrix power. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.sparse import dia_array | |
>>> dia_array((3, 4), dtype=np.int8).toarray() | |
array([[0, 0, 0, 0], | |
[0, 0, 0, 0], | |
[0, 0, 0, 0]], dtype=int8) | |
>>> data = np.array([[1, 2, 3, 4]]).repeat(3, axis=0) | |
>>> offsets = np.array([0, -1, 2]) | |
>>> dia_array((data, offsets), shape=(4, 4)).toarray() | |
array([[1, 0, 3, 0], | |
[1, 2, 0, 4], | |
[0, 2, 3, 0], | |
[0, 0, 3, 4]]) | |
>>> from scipy.sparse import dia_array | |
>>> n = 10 | |
>>> ex = np.ones(n) | |
>>> data = np.array([ex, 2 * ex, ex]) | |
>>> offsets = np.array([-1, 0, 1]) | |
>>> dia_array((data, offsets), shape=(n, n)).toarray() | |
array([[2., 1., 0., ..., 0., 0., 0.], | |
[1., 2., 1., ..., 0., 0., 0.], | |
[0., 1., 2., ..., 0., 0., 0.], | |
..., | |
[0., 0., 0., ..., 2., 1., 0.], | |
[0., 0., 0., ..., 1., 2., 1.], | |
[0., 0., 0., ..., 0., 1., 2.]]) | |
""" | |
class dia_matrix(spmatrix, _dia_base): | |
""" | |
Sparse matrix with DIAgonal storage. | |
This can be instantiated in several ways: | |
dia_matrix(D) | |
where D is a 2-D ndarray | |
dia_matrix(S) | |
with another sparse array or matrix S (equivalent to S.todia()) | |
dia_matrix((M, N), [dtype]) | |
to construct an empty matrix with shape (M, N), | |
dtype is optional, defaulting to dtype='d'. | |
dia_matrix((data, offsets), shape=(M, N)) | |
where the ``data[k,:]`` stores the diagonal entries for | |
diagonal ``offsets[k]`` (See example below) | |
Attributes | |
---------- | |
dtype : dtype | |
Data type of the matrix | |
shape : 2-tuple | |
Shape of the matrix | |
ndim : int | |
Number of dimensions (this is always 2) | |
nnz | |
size | |
data | |
DIA format data array of the matrix | |
offsets | |
DIA format offset array of the matrix | |
T | |
Notes | |
----- | |
Sparse matrices can be used in arithmetic operations: they support | |
addition, subtraction, multiplication, division, and matrix power. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.sparse import dia_matrix | |
>>> dia_matrix((3, 4), dtype=np.int8).toarray() | |
array([[0, 0, 0, 0], | |
[0, 0, 0, 0], | |
[0, 0, 0, 0]], dtype=int8) | |
>>> data = np.array([[1, 2, 3, 4]]).repeat(3, axis=0) | |
>>> offsets = np.array([0, -1, 2]) | |
>>> dia_matrix((data, offsets), shape=(4, 4)).toarray() | |
array([[1, 0, 3, 0], | |
[1, 2, 0, 4], | |
[0, 2, 3, 0], | |
[0, 0, 3, 4]]) | |
>>> from scipy.sparse import dia_matrix | |
>>> n = 10 | |
>>> ex = np.ones(n) | |
>>> data = np.array([ex, 2 * ex, ex]) | |
>>> offsets = np.array([-1, 0, 1]) | |
>>> dia_matrix((data, offsets), shape=(n, n)).toarray() | |
array([[2., 1., 0., ..., 0., 0., 0.], | |
[1., 2., 1., ..., 0., 0., 0.], | |
[0., 1., 2., ..., 0., 0., 0.], | |
..., | |
[0., 0., 0., ..., 2., 1., 0.], | |
[0., 0., 0., ..., 1., 2., 1.], | |
[0., 0., 0., ..., 0., 1., 2.]]) | |
""" | |