peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/sparse
/tests
/test_csr.py
import numpy as np | |
from numpy.testing import assert_array_almost_equal, assert_ | |
from scipy.sparse import csr_matrix, csc_matrix, csr_array, csc_array, hstack | |
from scipy import sparse | |
import pytest | |
def _check_csr_rowslice(i, sl, X, Xcsr): | |
np_slice = X[i, sl] | |
csr_slice = Xcsr[i, sl] | |
assert_array_almost_equal(np_slice, csr_slice.toarray()[0]) | |
assert_(type(csr_slice) is csr_matrix) | |
def test_csr_rowslice(): | |
N = 10 | |
np.random.seed(0) | |
X = np.random.random((N, N)) | |
X[X > 0.7] = 0 | |
Xcsr = csr_matrix(X) | |
slices = [slice(None, None, None), | |
slice(None, None, -1), | |
slice(1, -2, 2), | |
slice(-2, 1, -2)] | |
for i in range(N): | |
for sl in slices: | |
_check_csr_rowslice(i, sl, X, Xcsr) | |
def test_csr_getrow(): | |
N = 10 | |
np.random.seed(0) | |
X = np.random.random((N, N)) | |
X[X > 0.7] = 0 | |
Xcsr = csr_matrix(X) | |
for i in range(N): | |
arr_row = X[i:i + 1, :] | |
csr_row = Xcsr.getrow(i) | |
assert_array_almost_equal(arr_row, csr_row.toarray()) | |
assert_(type(csr_row) is csr_matrix) | |
def test_csr_getcol(): | |
N = 10 | |
np.random.seed(0) | |
X = np.random.random((N, N)) | |
X[X > 0.7] = 0 | |
Xcsr = csr_matrix(X) | |
for i in range(N): | |
arr_col = X[:, i:i + 1] | |
csr_col = Xcsr.getcol(i) | |
assert_array_almost_equal(arr_col, csr_col.toarray()) | |
assert_(type(csr_col) is csr_matrix) | |
def test_csr_empty_slices(matrix_input, axis, expected_shape): | |
# see gh-11127 for related discussion | |
slice_1 = matrix_input.toarray().shape[0] - 1 | |
slice_2 = slice_1 | |
slice_3 = slice_2 - 1 | |
if axis == 0: | |
actual_shape_1 = matrix_input[slice_1:slice_2, :].toarray().shape | |
actual_shape_2 = matrix_input[slice_1:slice_3, :].toarray().shape | |
elif axis == 1: | |
actual_shape_1 = matrix_input[:, slice_1:slice_2].toarray().shape | |
actual_shape_2 = matrix_input[:, slice_1:slice_3].toarray().shape | |
elif axis == 'both': | |
actual_shape_1 = matrix_input[slice_1:slice_2, slice_1:slice_2].toarray().shape | |
actual_shape_2 = matrix_input[slice_1:slice_3, slice_1:slice_3].toarray().shape | |
assert actual_shape_1 == expected_shape | |
assert actual_shape_1 == actual_shape_2 | |
def test_csr_bool_indexing(): | |
data = csr_matrix([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) | |
list_indices1 = [False, True, False] | |
array_indices1 = np.array(list_indices1) | |
list_indices2 = [[False, True, False], [False, True, False], [False, True, False]] | |
array_indices2 = np.array(list_indices2) | |
list_indices3 = ([False, True, False], [False, True, False]) | |
array_indices3 = (np.array(list_indices3[0]), np.array(list_indices3[1])) | |
slice_list1 = data[list_indices1].toarray() | |
slice_array1 = data[array_indices1].toarray() | |
slice_list2 = data[list_indices2] | |
slice_array2 = data[array_indices2] | |
slice_list3 = data[list_indices3] | |
slice_array3 = data[array_indices3] | |
assert (slice_list1 == slice_array1).all() | |
assert (slice_list2 == slice_array2).all() | |
assert (slice_list3 == slice_array3).all() | |
def test_csr_hstack_int64(): | |
""" | |
Tests if hstack properly promotes to indices and indptr arrays to np.int64 | |
when using np.int32 during concatenation would result in either array | |
overflowing. | |
""" | |
max_int32 = np.iinfo(np.int32).max | |
# First case: indices would overflow with int32 | |
data = [1.0] | |
row = [0] | |
max_indices_1 = max_int32 - 1 | |
max_indices_2 = 3 | |
# Individual indices arrays are representable with int32 | |
col_1 = [max_indices_1 - 1] | |
col_2 = [max_indices_2 - 1] | |
X_1 = csr_matrix((data, (row, col_1))) | |
X_2 = csr_matrix((data, (row, col_2))) | |
assert max(max_indices_1 - 1, max_indices_2 - 1) < max_int32 | |
assert X_1.indices.dtype == X_1.indptr.dtype == np.int32 | |
assert X_2.indices.dtype == X_2.indptr.dtype == np.int32 | |
# ... but when concatenating their CSR matrices, the resulting indices | |
# array can't be represented with int32 and must be promoted to int64. | |
X_hs = hstack([X_1, X_2], format="csr") | |
assert X_hs.indices.max() == max_indices_1 + max_indices_2 - 1 | |
assert max_indices_1 + max_indices_2 - 1 > max_int32 | |
assert X_hs.indices.dtype == X_hs.indptr.dtype == np.int64 | |
# Even if the matrices are empty, we must account for their size | |
# contribution so that we may safely set the final elements. | |
X_1_empty = csr_matrix(X_1.shape) | |
X_2_empty = csr_matrix(X_2.shape) | |
X_hs_empty = hstack([X_1_empty, X_2_empty], format="csr") | |
assert X_hs_empty.shape == X_hs.shape | |
assert X_hs_empty.indices.dtype == np.int64 | |
# Should be just small enough to stay in int32 after stack. Note that | |
# we theoretically could support indices.max() == max_int32, but due to an | |
# edge-case in the underlying sparsetools code | |
# (namely the `coo_tocsr` routine), | |
# we require that max(X_hs_32.shape) < max_int32 as well. | |
# Hence we can only support max_int32 - 1. | |
col_3 = [max_int32 - max_indices_1 - 1] | |
X_3 = csr_matrix((data, (row, col_3))) | |
X_hs_32 = hstack([X_1, X_3], format="csr") | |
assert X_hs_32.indices.dtype == np.int32 | |
assert X_hs_32.indices.max() == max_int32 - 1 | |
def test_mixed_index_dtype_int_indexing(cls): | |
# https://github.com/scipy/scipy/issues/20182 | |
rng = np.random.default_rng(0) | |
base_mtx = cls(sparse.random(50, 50, random_state=rng, density=0.1)) | |
indptr_64bit = base_mtx.copy() | |
indices_64bit = base_mtx.copy() | |
indptr_64bit.indptr = base_mtx.indptr.astype(np.int64) | |
indices_64bit.indices = base_mtx.indices.astype(np.int64) | |
for mtx in [base_mtx, indptr_64bit, indices_64bit]: | |
np.testing.assert_array_equal(mtx[[1,2], :].toarray(), base_mtx[[1, 2], :].toarray()) | |
np.testing.assert_array_equal(mtx[:, [1, 2]].toarray(), base_mtx[:, [1, 2]].toarray()) |