peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/sparse
/tests
/test_minmax1d.py
"""Test of min-max 1D features of sparse array classes""" | |
import pytest | |
import numpy as np | |
from numpy.testing import assert_equal, assert_array_equal | |
from scipy.sparse import coo_array | |
from scipy.sparse._sputils import isscalarlike | |
def toarray(a): | |
if isinstance(a, np.ndarray) or isscalarlike(a): | |
return a | |
return a.toarray() | |
formats_for_minmax = [coo_array] | |
class Test_MinMaxMixin1D: | |
def test_minmax(self, spcreator): | |
D = np.arange(5) | |
X = spcreator(D) | |
assert_equal(X.min(), 0) | |
assert_equal(X.max(), 4) | |
assert_equal((-X).min(), -4) | |
assert_equal((-X).max(), 0) | |
def test_minmax_axis(self, spcreator): | |
D = np.arange(50) | |
X = spcreator(D) | |
for axis in [0, -1]: | |
assert_array_equal( | |
toarray(X.max(axis=axis)), D.max(axis=axis, keepdims=True) | |
) | |
assert_array_equal( | |
toarray(X.min(axis=axis)), D.min(axis=axis, keepdims=True) | |
) | |
for axis in [-2, 1]: | |
with pytest.raises(ValueError, match="axis out of range"): | |
X.min(axis=axis) | |
with pytest.raises(ValueError, match="axis out of range"): | |
X.max(axis=axis) | |
def test_numpy_minmax(self, spcreator): | |
dat = np.array([0, 1, 2]) | |
datsp = spcreator(dat) | |
assert_array_equal(np.min(datsp), np.min(dat)) | |
assert_array_equal(np.max(datsp), np.max(dat)) | |
def test_argmax(self, spcreator): | |
D1 = np.array([-1, 5, 2, 3]) | |
D2 = np.array([0, 0, -1, -2]) | |
D3 = np.array([-1, -2, -3, -4]) | |
D4 = np.array([1, 2, 3, 4]) | |
D5 = np.array([1, 2, 0, 0]) | |
for D in [D1, D2, D3, D4, D5]: | |
mat = spcreator(D) | |
assert_equal(mat.argmax(), np.argmax(D)) | |
assert_equal(mat.argmin(), np.argmin(D)) | |
assert_equal(mat.argmax(axis=0), np.argmax(D, axis=0)) | |
assert_equal(mat.argmin(axis=0), np.argmin(D, axis=0)) | |
D6 = np.empty((0,)) | |
for axis in [None, 0]: | |
mat = spcreator(D6) | |
with pytest.raises(ValueError, match="to an empty matrix"): | |
mat.argmin(axis=axis) | |
with pytest.raises(ValueError, match="to an empty matrix"): | |
mat.argmax(axis=axis) | |