peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/stats
/_binomtest.py
| from math import sqrt | |
| import numpy as np | |
| from scipy._lib._util import _validate_int | |
| from scipy.optimize import brentq | |
| from scipy.special import ndtri | |
| from ._discrete_distns import binom | |
| from ._common import ConfidenceInterval | |
| class BinomTestResult: | |
| """ | |
| Result of `scipy.stats.binomtest`. | |
| Attributes | |
| ---------- | |
| k : int | |
| The number of successes (copied from `binomtest` input). | |
| n : int | |
| The number of trials (copied from `binomtest` input). | |
| alternative : str | |
| Indicates the alternative hypothesis specified in the input | |
| to `binomtest`. It will be one of ``'two-sided'``, ``'greater'``, | |
| or ``'less'``. | |
| statistic: float | |
| The estimate of the proportion of successes. | |
| pvalue : float | |
| The p-value of the hypothesis test. | |
| """ | |
| def __init__(self, k, n, alternative, statistic, pvalue): | |
| self.k = k | |
| self.n = n | |
| self.alternative = alternative | |
| self.statistic = statistic | |
| self.pvalue = pvalue | |
| # add alias for backward compatibility | |
| self.proportion_estimate = statistic | |
| def __repr__(self): | |
| s = ("BinomTestResult(" | |
| f"k={self.k}, " | |
| f"n={self.n}, " | |
| f"alternative={self.alternative!r}, " | |
| f"statistic={self.statistic}, " | |
| f"pvalue={self.pvalue})") | |
| return s | |
| def proportion_ci(self, confidence_level=0.95, method='exact'): | |
| """ | |
| Compute the confidence interval for ``statistic``. | |
| Parameters | |
| ---------- | |
| confidence_level : float, optional | |
| Confidence level for the computed confidence interval | |
| of the estimated proportion. Default is 0.95. | |
| method : {'exact', 'wilson', 'wilsoncc'}, optional | |
| Selects the method used to compute the confidence interval | |
| for the estimate of the proportion: | |
| 'exact' : | |
| Use the Clopper-Pearson exact method [1]_. | |
| 'wilson' : | |
| Wilson's method, without continuity correction ([2]_, [3]_). | |
| 'wilsoncc' : | |
| Wilson's method, with continuity correction ([2]_, [3]_). | |
| Default is ``'exact'``. | |
| Returns | |
| ------- | |
| ci : ``ConfidenceInterval`` object | |
| The object has attributes ``low`` and ``high`` that hold the | |
| lower and upper bounds of the confidence interval. | |
| References | |
| ---------- | |
| .. [1] C. J. Clopper and E. S. Pearson, The use of confidence or | |
| fiducial limits illustrated in the case of the binomial, | |
| Biometrika, Vol. 26, No. 4, pp 404-413 (Dec. 1934). | |
| .. [2] E. B. Wilson, Probable inference, the law of succession, and | |
| statistical inference, J. Amer. Stat. Assoc., 22, pp 209-212 | |
| (1927). | |
| .. [3] Robert G. Newcombe, Two-sided confidence intervals for the | |
| single proportion: comparison of seven methods, Statistics | |
| in Medicine, 17, pp 857-872 (1998). | |
| Examples | |
| -------- | |
| >>> from scipy.stats import binomtest | |
| >>> result = binomtest(k=7, n=50, p=0.1) | |
| >>> result.statistic | |
| 0.14 | |
| >>> result.proportion_ci() | |
| ConfidenceInterval(low=0.05819170033997342, high=0.26739600249700846) | |
| """ | |
| if method not in ('exact', 'wilson', 'wilsoncc'): | |
| raise ValueError(f"method ('{method}') must be one of 'exact', " | |
| "'wilson' or 'wilsoncc'.") | |
| if not (0 <= confidence_level <= 1): | |
| raise ValueError(f'confidence_level ({confidence_level}) must be in ' | |
| 'the interval [0, 1].') | |
| if method == 'exact': | |
| low, high = _binom_exact_conf_int(self.k, self.n, | |
| confidence_level, | |
| self.alternative) | |
| else: | |
| # method is 'wilson' or 'wilsoncc' | |
| low, high = _binom_wilson_conf_int(self.k, self.n, | |
| confidence_level, | |
| self.alternative, | |
| correction=method == 'wilsoncc') | |
| return ConfidenceInterval(low=low, high=high) | |
| def _findp(func): | |
| try: | |
| p = brentq(func, 0, 1) | |
| except RuntimeError: | |
| raise RuntimeError('numerical solver failed to converge when ' | |
| 'computing the confidence limits') from None | |
| except ValueError as exc: | |
| raise ValueError('brentq raised a ValueError; report this to the ' | |
| 'SciPy developers') from exc | |
| return p | |
| def _binom_exact_conf_int(k, n, confidence_level, alternative): | |
| """ | |
| Compute the estimate and confidence interval for the binomial test. | |
| Returns proportion, prop_low, prop_high | |
| """ | |
| if alternative == 'two-sided': | |
| alpha = (1 - confidence_level) / 2 | |
| if k == 0: | |
| plow = 0.0 | |
| else: | |
| plow = _findp(lambda p: binom.sf(k-1, n, p) - alpha) | |
| if k == n: | |
| phigh = 1.0 | |
| else: | |
| phigh = _findp(lambda p: binom.cdf(k, n, p) - alpha) | |
| elif alternative == 'less': | |
| alpha = 1 - confidence_level | |
| plow = 0.0 | |
| if k == n: | |
| phigh = 1.0 | |
| else: | |
| phigh = _findp(lambda p: binom.cdf(k, n, p) - alpha) | |
| elif alternative == 'greater': | |
| alpha = 1 - confidence_level | |
| if k == 0: | |
| plow = 0.0 | |
| else: | |
| plow = _findp(lambda p: binom.sf(k-1, n, p) - alpha) | |
| phigh = 1.0 | |
| return plow, phigh | |
| def _binom_wilson_conf_int(k, n, confidence_level, alternative, correction): | |
| # This function assumes that the arguments have already been validated. | |
| # In particular, `alternative` must be one of 'two-sided', 'less' or | |
| # 'greater'. | |
| p = k / n | |
| if alternative == 'two-sided': | |
| z = ndtri(0.5 + 0.5*confidence_level) | |
| else: | |
| z = ndtri(confidence_level) | |
| # For reference, the formulas implemented here are from | |
| # Newcombe (1998) (ref. [3] in the proportion_ci docstring). | |
| denom = 2*(n + z**2) | |
| center = (2*n*p + z**2)/denom | |
| q = 1 - p | |
| if correction: | |
| if alternative == 'less' or k == 0: | |
| lo = 0.0 | |
| else: | |
| dlo = (1 + z*sqrt(z**2 - 2 - 1/n + 4*p*(n*q + 1))) / denom | |
| lo = center - dlo | |
| if alternative == 'greater' or k == n: | |
| hi = 1.0 | |
| else: | |
| dhi = (1 + z*sqrt(z**2 + 2 - 1/n + 4*p*(n*q - 1))) / denom | |
| hi = center + dhi | |
| else: | |
| delta = z/denom * sqrt(4*n*p*q + z**2) | |
| if alternative == 'less' or k == 0: | |
| lo = 0.0 | |
| else: | |
| lo = center - delta | |
| if alternative == 'greater' or k == n: | |
| hi = 1.0 | |
| else: | |
| hi = center + delta | |
| return lo, hi | |
| def binomtest(k, n, p=0.5, alternative='two-sided'): | |
| """ | |
| Perform a test that the probability of success is p. | |
| The binomial test [1]_ is a test of the null hypothesis that the | |
| probability of success in a Bernoulli experiment is `p`. | |
| Details of the test can be found in many texts on statistics, such | |
| as section 24.5 of [2]_. | |
| Parameters | |
| ---------- | |
| k : int | |
| The number of successes. | |
| n : int | |
| The number of trials. | |
| p : float, optional | |
| The hypothesized probability of success, i.e. the expected | |
| proportion of successes. The value must be in the interval | |
| ``0 <= p <= 1``. The default value is ``p = 0.5``. | |
| alternative : {'two-sided', 'greater', 'less'}, optional | |
| Indicates the alternative hypothesis. The default value is | |
| 'two-sided'. | |
| Returns | |
| ------- | |
| result : `~scipy.stats._result_classes.BinomTestResult` instance | |
| The return value is an object with the following attributes: | |
| k : int | |
| The number of successes (copied from `binomtest` input). | |
| n : int | |
| The number of trials (copied from `binomtest` input). | |
| alternative : str | |
| Indicates the alternative hypothesis specified in the input | |
| to `binomtest`. It will be one of ``'two-sided'``, ``'greater'``, | |
| or ``'less'``. | |
| statistic : float | |
| The estimate of the proportion of successes. | |
| pvalue : float | |
| The p-value of the hypothesis test. | |
| The object has the following methods: | |
| proportion_ci(confidence_level=0.95, method='exact') : | |
| Compute the confidence interval for ``statistic``. | |
| Notes | |
| ----- | |
| .. versionadded:: 1.7.0 | |
| References | |
| ---------- | |
| .. [1] Binomial test, https://en.wikipedia.org/wiki/Binomial_test | |
| .. [2] Jerrold H. Zar, Biostatistical Analysis (fifth edition), | |
| Prentice Hall, Upper Saddle River, New Jersey USA (2010) | |
| Examples | |
| -------- | |
| >>> from scipy.stats import binomtest | |
| A car manufacturer claims that no more than 10% of their cars are unsafe. | |
| 15 cars are inspected for safety, 3 were found to be unsafe. Test the | |
| manufacturer's claim: | |
| >>> result = binomtest(3, n=15, p=0.1, alternative='greater') | |
| >>> result.pvalue | |
| 0.18406106910639114 | |
| The null hypothesis cannot be rejected at the 5% level of significance | |
| because the returned p-value is greater than the critical value of 5%. | |
| The test statistic is equal to the estimated proportion, which is simply | |
| ``3/15``: | |
| >>> result.statistic | |
| 0.2 | |
| We can use the `proportion_ci()` method of the result to compute the | |
| confidence interval of the estimate: | |
| >>> result.proportion_ci(confidence_level=0.95) | |
| ConfidenceInterval(low=0.05684686759024681, high=1.0) | |
| """ | |
| k = _validate_int(k, 'k', minimum=0) | |
| n = _validate_int(n, 'n', minimum=1) | |
| if k > n: | |
| raise ValueError(f'k ({k}) must not be greater than n ({n}).') | |
| if not (0 <= p <= 1): | |
| raise ValueError(f"p ({p}) must be in range [0,1]") | |
| if alternative not in ('two-sided', 'less', 'greater'): | |
| raise ValueError(f"alternative ('{alternative}') not recognized; \n" | |
| "must be 'two-sided', 'less' or 'greater'") | |
| if alternative == 'less': | |
| pval = binom.cdf(k, n, p) | |
| elif alternative == 'greater': | |
| pval = binom.sf(k-1, n, p) | |
| else: | |
| # alternative is 'two-sided' | |
| d = binom.pmf(k, n, p) | |
| rerr = 1 + 1e-7 | |
| if k == p * n: | |
| # special case as shortcut, would also be handled by `else` below | |
| pval = 1. | |
| elif k < p * n: | |
| ix = _binary_search_for_binom_tst(lambda x1: -binom.pmf(x1, n, p), | |
| -d*rerr, np.ceil(p * n), n) | |
| # y is the number of terms between mode and n that are <= d*rerr. | |
| # ix gave us the first term where a(ix) <= d*rerr < a(ix-1) | |
| # if the first equality doesn't hold, y=n-ix. Otherwise, we | |
| # need to include ix as well as the equality holds. Note that | |
| # the equality will hold in very very rare situations due to rerr. | |
| y = n - ix + int(d*rerr == binom.pmf(ix, n, p)) | |
| pval = binom.cdf(k, n, p) + binom.sf(n - y, n, p) | |
| else: | |
| ix = _binary_search_for_binom_tst(lambda x1: binom.pmf(x1, n, p), | |
| d*rerr, 0, np.floor(p * n)) | |
| # y is the number of terms between 0 and mode that are <= d*rerr. | |
| # we need to add a 1 to account for the 0 index. | |
| # For comparing this with old behavior, see | |
| # tst_binary_srch_for_binom_tst method in test_morestats. | |
| y = ix + 1 | |
| pval = binom.cdf(y-1, n, p) + binom.sf(k-1, n, p) | |
| pval = min(1.0, pval) | |
| result = BinomTestResult(k=k, n=n, alternative=alternative, | |
| statistic=k/n, pvalue=pval) | |
| return result | |
| def _binary_search_for_binom_tst(a, d, lo, hi): | |
| """ | |
| Conducts an implicit binary search on a function specified by `a`. | |
| Meant to be used on the binomial PMF for the case of two-sided tests | |
| to obtain the value on the other side of the mode where the tail | |
| probability should be computed. The values on either side of | |
| the mode are always in order, meaning binary search is applicable. | |
| Parameters | |
| ---------- | |
| a : callable | |
| The function over which to perform binary search. Its values | |
| for inputs lo and hi should be in ascending order. | |
| d : float | |
| The value to search. | |
| lo : int | |
| The lower end of range to search. | |
| hi : int | |
| The higher end of the range to search. | |
| Returns | |
| ------- | |
| int | |
| The index, i between lo and hi | |
| such that a(i)<=d<a(i+1) | |
| """ | |
| while lo < hi: | |
| mid = lo + (hi-lo)//2 | |
| midval = a(mid) | |
| if midval < d: | |
| lo = mid+1 | |
| elif midval > d: | |
| hi = mid-1 | |
| else: | |
| return mid | |
| if a(lo) <= d: | |
| return lo | |
| else: | |
| return lo-1 | |