peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/numpy
/f2py
/tests
/test_symbolic.py
import pytest | |
from numpy.f2py.symbolic import ( | |
Expr, | |
Op, | |
ArithOp, | |
Language, | |
as_symbol, | |
as_number, | |
as_string, | |
as_array, | |
as_complex, | |
as_terms, | |
as_factors, | |
eliminate_quotes, | |
insert_quotes, | |
fromstring, | |
as_expr, | |
as_apply, | |
as_numer_denom, | |
as_ternary, | |
as_ref, | |
as_deref, | |
normalize, | |
as_eq, | |
as_ne, | |
as_lt, | |
as_gt, | |
as_le, | |
as_ge, | |
) | |
from . import util | |
class TestSymbolic(util.F2PyTest): | |
def test_eliminate_quotes(self): | |
def worker(s): | |
r, d = eliminate_quotes(s) | |
s1 = insert_quotes(r, d) | |
assert s1 == s | |
for kind in ["", "mykind_"]: | |
worker(kind + '"1234" // "ABCD"') | |
worker(kind + '"1234" // ' + kind + '"ABCD"') | |
worker(kind + "\"1234\" // 'ABCD'") | |
worker(kind + '"1234" // ' + kind + "'ABCD'") | |
worker(kind + '"1\\"2\'AB\'34"') | |
worker("a = " + kind + "'1\\'2\"AB\"34'") | |
def test_sanity(self): | |
x = as_symbol("x") | |
y = as_symbol("y") | |
z = as_symbol("z") | |
assert x.op == Op.SYMBOL | |
assert repr(x) == "Expr(Op.SYMBOL, 'x')" | |
assert x == x | |
assert x != y | |
assert hash(x) is not None | |
n = as_number(123) | |
m = as_number(456) | |
assert n.op == Op.INTEGER | |
assert repr(n) == "Expr(Op.INTEGER, (123, 4))" | |
assert n == n | |
assert n != m | |
assert hash(n) is not None | |
fn = as_number(12.3) | |
fm = as_number(45.6) | |
assert fn.op == Op.REAL | |
assert repr(fn) == "Expr(Op.REAL, (12.3, 4))" | |
assert fn == fn | |
assert fn != fm | |
assert hash(fn) is not None | |
c = as_complex(1, 2) | |
c2 = as_complex(3, 4) | |
assert c.op == Op.COMPLEX | |
assert repr(c) == ("Expr(Op.COMPLEX, (Expr(Op.INTEGER, (1, 4))," | |
" Expr(Op.INTEGER, (2, 4))))") | |
assert c == c | |
assert c != c2 | |
assert hash(c) is not None | |
s = as_string("'123'") | |
s2 = as_string('"ABC"') | |
assert s.op == Op.STRING | |
assert repr(s) == "Expr(Op.STRING, (\"'123'\", 1))", repr(s) | |
assert s == s | |
assert s != s2 | |
a = as_array((n, m)) | |
b = as_array((n, )) | |
assert a.op == Op.ARRAY | |
assert repr(a) == ("Expr(Op.ARRAY, (Expr(Op.INTEGER, (123, 4))," | |
" Expr(Op.INTEGER, (456, 4))))") | |
assert a == a | |
assert a != b | |
t = as_terms(x) | |
u = as_terms(y) | |
assert t.op == Op.TERMS | |
assert repr(t) == "Expr(Op.TERMS, {Expr(Op.SYMBOL, 'x'): 1})" | |
assert t == t | |
assert t != u | |
assert hash(t) is not None | |
v = as_factors(x) | |
w = as_factors(y) | |
assert v.op == Op.FACTORS | |
assert repr(v) == "Expr(Op.FACTORS, {Expr(Op.SYMBOL, 'x'): 1})" | |
assert v == v | |
assert w != v | |
assert hash(v) is not None | |
t = as_ternary(x, y, z) | |
u = as_ternary(x, z, y) | |
assert t.op == Op.TERNARY | |
assert t == t | |
assert t != u | |
assert hash(t) is not None | |
e = as_eq(x, y) | |
f = as_lt(x, y) | |
assert e.op == Op.RELATIONAL | |
assert e == e | |
assert e != f | |
assert hash(e) is not None | |
def test_tostring_fortran(self): | |
x = as_symbol("x") | |
y = as_symbol("y") | |
z = as_symbol("z") | |
n = as_number(123) | |
m = as_number(456) | |
a = as_array((n, m)) | |
c = as_complex(n, m) | |
assert str(x) == "x" | |
assert str(n) == "123" | |
assert str(a) == "[123, 456]" | |
assert str(c) == "(123, 456)" | |
assert str(Expr(Op.TERMS, {x: 1})) == "x" | |
assert str(Expr(Op.TERMS, {x: 2})) == "2 * x" | |
assert str(Expr(Op.TERMS, {x: -1})) == "-x" | |
assert str(Expr(Op.TERMS, {x: -2})) == "-2 * x" | |
assert str(Expr(Op.TERMS, {x: 1, y: 1})) == "x + y" | |
assert str(Expr(Op.TERMS, {x: -1, y: -1})) == "-x - y" | |
assert str(Expr(Op.TERMS, {x: 2, y: 3})) == "2 * x + 3 * y" | |
assert str(Expr(Op.TERMS, {x: -2, y: 3})) == "-2 * x + 3 * y" | |
assert str(Expr(Op.TERMS, {x: 2, y: -3})) == "2 * x - 3 * y" | |
assert str(Expr(Op.FACTORS, {x: 1})) == "x" | |
assert str(Expr(Op.FACTORS, {x: 2})) == "x ** 2" | |
assert str(Expr(Op.FACTORS, {x: -1})) == "x ** -1" | |
assert str(Expr(Op.FACTORS, {x: -2})) == "x ** -2" | |
assert str(Expr(Op.FACTORS, {x: 1, y: 1})) == "x * y" | |
assert str(Expr(Op.FACTORS, {x: 2, y: 3})) == "x ** 2 * y ** 3" | |
v = Expr(Op.FACTORS, {x: 2, Expr(Op.TERMS, {x: 1, y: 1}): 3}) | |
assert str(v) == "x ** 2 * (x + y) ** 3", str(v) | |
v = Expr(Op.FACTORS, {x: 2, Expr(Op.FACTORS, {x: 1, y: 1}): 3}) | |
assert str(v) == "x ** 2 * (x * y) ** 3", str(v) | |
assert str(Expr(Op.APPLY, ("f", (), {}))) == "f()" | |
assert str(Expr(Op.APPLY, ("f", (x, ), {}))) == "f(x)" | |
assert str(Expr(Op.APPLY, ("f", (x, y), {}))) == "f(x, y)" | |
assert str(Expr(Op.INDEXING, ("f", x))) == "f[x]" | |
assert str(as_ternary(x, y, z)) == "merge(y, z, x)" | |
assert str(as_eq(x, y)) == "x .eq. y" | |
assert str(as_ne(x, y)) == "x .ne. y" | |
assert str(as_lt(x, y)) == "x .lt. y" | |
assert str(as_le(x, y)) == "x .le. y" | |
assert str(as_gt(x, y)) == "x .gt. y" | |
assert str(as_ge(x, y)) == "x .ge. y" | |
def test_tostring_c(self): | |
language = Language.C | |
x = as_symbol("x") | |
y = as_symbol("y") | |
z = as_symbol("z") | |
n = as_number(123) | |
assert Expr(Op.FACTORS, {x: 2}).tostring(language=language) == "x * x" | |
assert (Expr(Op.FACTORS, { | |
x + y: 2 | |
}).tostring(language=language) == "(x + y) * (x + y)") | |
assert Expr(Op.FACTORS, { | |
x: 12 | |
}).tostring(language=language) == "pow(x, 12)" | |
assert as_apply(ArithOp.DIV, x, | |
y).tostring(language=language) == "x / y" | |
assert (as_apply(ArithOp.DIV, x, | |
x + y).tostring(language=language) == "x / (x + y)") | |
assert (as_apply(ArithOp.DIV, x - y, x + | |
y).tostring(language=language) == "(x - y) / (x + y)") | |
assert (x + (x - y) / (x + y) + | |
n).tostring(language=language) == "123 + x + (x - y) / (x + y)" | |
assert as_ternary(x, y, z).tostring(language=language) == "(x?y:z)" | |
assert as_eq(x, y).tostring(language=language) == "x == y" | |
assert as_ne(x, y).tostring(language=language) == "x != y" | |
assert as_lt(x, y).tostring(language=language) == "x < y" | |
assert as_le(x, y).tostring(language=language) == "x <= y" | |
assert as_gt(x, y).tostring(language=language) == "x > y" | |
assert as_ge(x, y).tostring(language=language) == "x >= y" | |
def test_operations(self): | |
x = as_symbol("x") | |
y = as_symbol("y") | |
z = as_symbol("z") | |
assert x + x == Expr(Op.TERMS, {x: 2}) | |
assert x - x == Expr(Op.INTEGER, (0, 4)) | |
assert x + y == Expr(Op.TERMS, {x: 1, y: 1}) | |
assert x - y == Expr(Op.TERMS, {x: 1, y: -1}) | |
assert x * x == Expr(Op.FACTORS, {x: 2}) | |
assert x * y == Expr(Op.FACTORS, {x: 1, y: 1}) | |
assert +x == x | |
assert -x == Expr(Op.TERMS, {x: -1}), repr(-x) | |
assert 2 * x == Expr(Op.TERMS, {x: 2}) | |
assert 2 + x == Expr(Op.TERMS, {x: 1, as_number(1): 2}) | |
assert 2 * x + 3 * y == Expr(Op.TERMS, {x: 2, y: 3}) | |
assert (x + y) * 2 == Expr(Op.TERMS, {x: 2, y: 2}) | |
assert x**2 == Expr(Op.FACTORS, {x: 2}) | |
assert (x + y)**2 == Expr( | |
Op.TERMS, | |
{ | |
Expr(Op.FACTORS, {x: 2}): 1, | |
Expr(Op.FACTORS, {y: 2}): 1, | |
Expr(Op.FACTORS, { | |
x: 1, | |
y: 1 | |
}): 2, | |
}, | |
) | |
assert (x + y) * x == x**2 + x * y | |
assert (x + y)**2 == x**2 + 2 * x * y + y**2 | |
assert (x + y)**2 + (x - y)**2 == 2 * x**2 + 2 * y**2 | |
assert (x + y) * z == x * z + y * z | |
assert z * (x + y) == x * z + y * z | |
assert (x / 2) == as_apply(ArithOp.DIV, x, as_number(2)) | |
assert (2 * x / 2) == x | |
assert (3 * x / 2) == as_apply(ArithOp.DIV, 3 * x, as_number(2)) | |
assert (4 * x / 2) == 2 * x | |
assert (5 * x / 2) == as_apply(ArithOp.DIV, 5 * x, as_number(2)) | |
assert (6 * x / 2) == 3 * x | |
assert ((3 * 5) * x / 6) == as_apply(ArithOp.DIV, 5 * x, as_number(2)) | |
assert (30 * x**2 * y**4 / (24 * x**3 * y**3)) == as_apply( | |
ArithOp.DIV, 5 * y, 4 * x) | |
assert ((15 * x / 6) / 5) == as_apply(ArithOp.DIV, x, | |
as_number(2)), (15 * x / 6) / 5 | |
assert (x / (5 / x)) == as_apply(ArithOp.DIV, x**2, as_number(5)) | |
assert (x / 2.0) == Expr(Op.TERMS, {x: 0.5}) | |
s = as_string('"ABC"') | |
t = as_string('"123"') | |
assert s // t == Expr(Op.STRING, ('"ABC123"', 1)) | |
assert s // x == Expr(Op.CONCAT, (s, x)) | |
assert x // s == Expr(Op.CONCAT, (x, s)) | |
c = as_complex(1.0, 2.0) | |
assert -c == as_complex(-1.0, -2.0) | |
assert c + c == as_expr((1 + 2j) * 2) | |
assert c * c == as_expr((1 + 2j)**2) | |
def test_substitute(self): | |
x = as_symbol("x") | |
y = as_symbol("y") | |
z = as_symbol("z") | |
a = as_array((x, y)) | |
assert x.substitute({x: y}) == y | |
assert (x + y).substitute({x: z}) == y + z | |
assert (x * y).substitute({x: z}) == y * z | |
assert (x**4).substitute({x: z}) == z**4 | |
assert (x / y).substitute({x: z}) == z / y | |
assert x.substitute({x: y + z}) == y + z | |
assert a.substitute({x: y + z}) == as_array((y + z, y)) | |
assert as_ternary(x, y, | |
z).substitute({x: y + z}) == as_ternary(y + z, y, z) | |
assert as_eq(x, y).substitute({x: y + z}) == as_eq(y + z, y) | |
def test_fromstring(self): | |
x = as_symbol("x") | |
y = as_symbol("y") | |
z = as_symbol("z") | |
f = as_symbol("f") | |
s = as_string('"ABC"') | |
t = as_string('"123"') | |
a = as_array((x, y)) | |
assert fromstring("x") == x | |
assert fromstring("+ x") == x | |
assert fromstring("- x") == -x | |
assert fromstring("x + y") == x + y | |
assert fromstring("x + 1") == x + 1 | |
assert fromstring("x * y") == x * y | |
assert fromstring("x * 2") == x * 2 | |
assert fromstring("x / y") == x / y | |
assert fromstring("x ** 2", language=Language.Python) == x**2 | |
assert fromstring("x ** 2 ** 3", language=Language.Python) == x**2**3 | |
assert fromstring("(x + y) * z") == (x + y) * z | |
assert fromstring("f(x)") == f(x) | |
assert fromstring("f(x,y)") == f(x, y) | |
assert fromstring("f[x]") == f[x] | |
assert fromstring("f[x][y]") == f[x][y] | |
assert fromstring('"ABC"') == s | |
assert (normalize( | |
fromstring('"ABC" // "123" ', | |
language=Language.Fortran)) == s // t) | |
assert fromstring('f("ABC")') == f(s) | |
assert fromstring('MYSTRKIND_"ABC"') == as_string('"ABC"', "MYSTRKIND") | |
assert fromstring("(/x, y/)") == a, fromstring("(/x, y/)") | |
assert fromstring("f((/x, y/))") == f(a) | |
assert fromstring("(/(x+y)*z/)") == as_array(((x + y) * z, )) | |
assert fromstring("123") == as_number(123) | |
assert fromstring("123_2") == as_number(123, 2) | |
assert fromstring("123_myintkind") == as_number(123, "myintkind") | |
assert fromstring("123.0") == as_number(123.0, 4) | |
assert fromstring("123.0_4") == as_number(123.0, 4) | |
assert fromstring("123.0_8") == as_number(123.0, 8) | |
assert fromstring("123.0e0") == as_number(123.0, 4) | |
assert fromstring("123.0d0") == as_number(123.0, 8) | |
assert fromstring("123d0") == as_number(123.0, 8) | |
assert fromstring("123e-0") == as_number(123.0, 4) | |
assert fromstring("123d+0") == as_number(123.0, 8) | |
assert fromstring("123.0_myrealkind") == as_number(123.0, "myrealkind") | |
assert fromstring("3E4") == as_number(30000.0, 4) | |
assert fromstring("(1, 2)") == as_complex(1, 2) | |
assert fromstring("(1e2, PI)") == as_complex(as_number(100.0), | |
as_symbol("PI")) | |
assert fromstring("[1, 2]") == as_array((as_number(1), as_number(2))) | |
assert fromstring("POINT(x, y=1)") == as_apply(as_symbol("POINT"), | |
x, | |
y=as_number(1)) | |
assert fromstring( | |
'PERSON(name="John", age=50, shape=(/34, 23/))') == as_apply( | |
as_symbol("PERSON"), | |
name=as_string('"John"'), | |
age=as_number(50), | |
shape=as_array((as_number(34), as_number(23))), | |
) | |
assert fromstring("x?y:z") == as_ternary(x, y, z) | |
assert fromstring("*x") == as_deref(x) | |
assert fromstring("**x") == as_deref(as_deref(x)) | |
assert fromstring("&x") == as_ref(x) | |
assert fromstring("(*x) * (*y)") == as_deref(x) * as_deref(y) | |
assert fromstring("(*x) * *y") == as_deref(x) * as_deref(y) | |
assert fromstring("*x * *y") == as_deref(x) * as_deref(y) | |
assert fromstring("*x**y") == as_deref(x) * as_deref(y) | |
assert fromstring("x == y") == as_eq(x, y) | |
assert fromstring("x != y") == as_ne(x, y) | |
assert fromstring("x < y") == as_lt(x, y) | |
assert fromstring("x > y") == as_gt(x, y) | |
assert fromstring("x <= y") == as_le(x, y) | |
assert fromstring("x >= y") == as_ge(x, y) | |
assert fromstring("x .eq. y", language=Language.Fortran) == as_eq(x, y) | |
assert fromstring("x .ne. y", language=Language.Fortran) == as_ne(x, y) | |
assert fromstring("x .lt. y", language=Language.Fortran) == as_lt(x, y) | |
assert fromstring("x .gt. y", language=Language.Fortran) == as_gt(x, y) | |
assert fromstring("x .le. y", language=Language.Fortran) == as_le(x, y) | |
assert fromstring("x .ge. y", language=Language.Fortran) == as_ge(x, y) | |
def test_traverse(self): | |
x = as_symbol("x") | |
y = as_symbol("y") | |
z = as_symbol("z") | |
f = as_symbol("f") | |
# Use traverse to substitute a symbol | |
def replace_visit(s, r=z): | |
if s == x: | |
return r | |
assert x.traverse(replace_visit) == z | |
assert y.traverse(replace_visit) == y | |
assert z.traverse(replace_visit) == z | |
assert (f(y)).traverse(replace_visit) == f(y) | |
assert (f(x)).traverse(replace_visit) == f(z) | |
assert (f[y]).traverse(replace_visit) == f[y] | |
assert (f[z]).traverse(replace_visit) == f[z] | |
assert (x + y + z).traverse(replace_visit) == (2 * z + y) | |
assert (x + | |
f(y, x - z)).traverse(replace_visit) == (z + | |
f(y, as_number(0))) | |
assert as_eq(x, y).traverse(replace_visit) == as_eq(z, y) | |
# Use traverse to collect symbols, method 1 | |
function_symbols = set() | |
symbols = set() | |
def collect_symbols(s): | |
if s.op is Op.APPLY: | |
oper = s.data[0] | |
function_symbols.add(oper) | |
if oper in symbols: | |
symbols.remove(oper) | |
elif s.op is Op.SYMBOL and s not in function_symbols: | |
symbols.add(s) | |
(x + f(y, x - z)).traverse(collect_symbols) | |
assert function_symbols == {f} | |
assert symbols == {x, y, z} | |
# Use traverse to collect symbols, method 2 | |
def collect_symbols2(expr, symbols): | |
if expr.op is Op.SYMBOL: | |
symbols.add(expr) | |
symbols = set() | |
(x + f(y, x - z)).traverse(collect_symbols2, symbols) | |
assert symbols == {x, y, z, f} | |
# Use traverse to partially collect symbols | |
def collect_symbols3(expr, symbols): | |
if expr.op is Op.APPLY: | |
# skip traversing function calls | |
return expr | |
if expr.op is Op.SYMBOL: | |
symbols.add(expr) | |
symbols = set() | |
(x + f(y, x - z)).traverse(collect_symbols3, symbols) | |
assert symbols == {x} | |
def test_linear_solve(self): | |
x = as_symbol("x") | |
y = as_symbol("y") | |
z = as_symbol("z") | |
assert x.linear_solve(x) == (as_number(1), as_number(0)) | |
assert (x + 1).linear_solve(x) == (as_number(1), as_number(1)) | |
assert (2 * x).linear_solve(x) == (as_number(2), as_number(0)) | |
assert (2 * x + 3).linear_solve(x) == (as_number(2), as_number(3)) | |
assert as_number(3).linear_solve(x) == (as_number(0), as_number(3)) | |
assert y.linear_solve(x) == (as_number(0), y) | |
assert (y * z).linear_solve(x) == (as_number(0), y * z) | |
assert (x + y).linear_solve(x) == (as_number(1), y) | |
assert (z * x + y).linear_solve(x) == (z, y) | |
assert ((z + y) * x + y).linear_solve(x) == (z + y, y) | |
assert (z * y * x + y).linear_solve(x) == (z * y, y) | |
pytest.raises(RuntimeError, lambda: (x * x).linear_solve(x)) | |
def test_as_numer_denom(self): | |
x = as_symbol("x") | |
y = as_symbol("y") | |
n = as_number(123) | |
assert as_numer_denom(x) == (x, as_number(1)) | |
assert as_numer_denom(x / n) == (x, n) | |
assert as_numer_denom(n / x) == (n, x) | |
assert as_numer_denom(x / y) == (x, y) | |
assert as_numer_denom(x * y) == (x * y, as_number(1)) | |
assert as_numer_denom(n + x / y) == (x + n * y, y) | |
assert as_numer_denom(n + x / (y - x / n)) == (y * n**2, y * n - x) | |
def test_polynomial_atoms(self): | |
x = as_symbol("x") | |
y = as_symbol("y") | |
n = as_number(123) | |
assert x.polynomial_atoms() == {x} | |
assert n.polynomial_atoms() == set() | |
assert (y[x]).polynomial_atoms() == {y[x]} | |
assert (y(x)).polynomial_atoms() == {y(x)} | |
assert (y(x) + x).polynomial_atoms() == {y(x), x} | |
assert (y(x) * x[y]).polynomial_atoms() == {y(x), x[y]} | |
assert (y(x)**x).polynomial_atoms() == {y(x)} | |