peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/linalg
/_basic.py
# | |
# Author: Pearu Peterson, March 2002 | |
# | |
# w/ additions by Travis Oliphant, March 2002 | |
# and Jake Vanderplas, August 2012 | |
from warnings import warn | |
from itertools import product | |
import numpy as np | |
from numpy import atleast_1d, atleast_2d | |
from .lapack import get_lapack_funcs, _compute_lwork | |
from ._misc import LinAlgError, _datacopied, LinAlgWarning | |
from ._decomp import _asarray_validated | |
from . import _decomp, _decomp_svd | |
from ._solve_toeplitz import levinson | |
from ._cythonized_array_utils import find_det_from_lu | |
from scipy._lib.deprecation import _NoValue, _deprecate_positional_args | |
__all__ = ['solve', 'solve_triangular', 'solveh_banded', 'solve_banded', | |
'solve_toeplitz', 'solve_circulant', 'inv', 'det', 'lstsq', | |
'pinv', 'pinvh', 'matrix_balance', 'matmul_toeplitz'] | |
# The numpy facilities for type-casting checks are too slow for small sized | |
# arrays and eat away the time budget for the checkups. Here we set a | |
# precomputed dict container of the numpy.can_cast() table. | |
# It can be used to determine quickly what a dtype can be cast to LAPACK | |
# compatible types, i.e., 'float32, float64, complex64, complex128'. | |
# Then it can be checked via "casting_dict[arr.dtype.char]" | |
lapack_cast_dict = {x: ''.join([y for y in 'fdFD' if np.can_cast(x, y)]) | |
for x in np.typecodes['All']} | |
# Linear equations | |
def _solve_check(n, info, lamch=None, rcond=None): | |
""" Check arguments during the different steps of the solution phase """ | |
if info < 0: | |
raise ValueError(f'LAPACK reported an illegal value in {-info}-th argument.') | |
elif 0 < info: | |
raise LinAlgError('Matrix is singular.') | |
if lamch is None: | |
return | |
E = lamch('E') | |
if rcond < E: | |
warn(f'Ill-conditioned matrix (rcond={rcond:.6g}): ' | |
'result may not be accurate.', | |
LinAlgWarning, stacklevel=3) | |
def solve(a, b, lower=False, overwrite_a=False, | |
overwrite_b=False, check_finite=True, assume_a='gen', | |
transposed=False): | |
""" | |
Solves the linear equation set ``a @ x == b`` for the unknown ``x`` | |
for square `a` matrix. | |
If the data matrix is known to be a particular type then supplying the | |
corresponding string to ``assume_a`` key chooses the dedicated solver. | |
The available options are | |
=================== ======== | |
generic matrix 'gen' | |
symmetric 'sym' | |
hermitian 'her' | |
positive definite 'pos' | |
=================== ======== | |
If omitted, ``'gen'`` is the default structure. | |
The datatype of the arrays define which solver is called regardless | |
of the values. In other words, even when the complex array entries have | |
precisely zero imaginary parts, the complex solver will be called based | |
on the data type of the array. | |
Parameters | |
---------- | |
a : (N, N) array_like | |
Square input data | |
b : (N, NRHS) array_like | |
Input data for the right hand side. | |
lower : bool, default: False | |
Ignored if ``assume_a == 'gen'`` (the default). If True, the | |
calculation uses only the data in the lower triangle of `a`; | |
entries above the diagonal are ignored. If False (default), the | |
calculation uses only the data in the upper triangle of `a`; entries | |
below the diagonal are ignored. | |
overwrite_a : bool, default: False | |
Allow overwriting data in `a` (may enhance performance). | |
overwrite_b : bool, default: False | |
Allow overwriting data in `b` (may enhance performance). | |
check_finite : bool, default: True | |
Whether to check that the input matrices contain only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
assume_a : str, {'gen', 'sym', 'her', 'pos'} | |
Valid entries are explained above. | |
transposed : bool, default: False | |
If True, solve ``a.T @ x == b``. Raises `NotImplementedError` | |
for complex `a`. | |
Returns | |
------- | |
x : (N, NRHS) ndarray | |
The solution array. | |
Raises | |
------ | |
ValueError | |
If size mismatches detected or input a is not square. | |
LinAlgError | |
If the matrix is singular. | |
LinAlgWarning | |
If an ill-conditioned input a is detected. | |
NotImplementedError | |
If transposed is True and input a is a complex matrix. | |
Notes | |
----- | |
If the input b matrix is a 1-D array with N elements, when supplied | |
together with an NxN input a, it is assumed as a valid column vector | |
despite the apparent size mismatch. This is compatible with the | |
numpy.dot() behavior and the returned result is still 1-D array. | |
The generic, symmetric, Hermitian and positive definite solutions are | |
obtained via calling ?GESV, ?SYSV, ?HESV, and ?POSV routines of | |
LAPACK respectively. | |
Examples | |
-------- | |
Given `a` and `b`, solve for `x`: | |
>>> import numpy as np | |
>>> a = np.array([[3, 2, 0], [1, -1, 0], [0, 5, 1]]) | |
>>> b = np.array([2, 4, -1]) | |
>>> from scipy import linalg | |
>>> x = linalg.solve(a, b) | |
>>> x | |
array([ 2., -2., 9.]) | |
>>> np.dot(a, x) == b | |
array([ True, True, True], dtype=bool) | |
""" | |
# Flags for 1-D or N-D right-hand side | |
b_is_1D = False | |
a1 = atleast_2d(_asarray_validated(a, check_finite=check_finite)) | |
b1 = atleast_1d(_asarray_validated(b, check_finite=check_finite)) | |
n = a1.shape[0] | |
overwrite_a = overwrite_a or _datacopied(a1, a) | |
overwrite_b = overwrite_b or _datacopied(b1, b) | |
if a1.shape[0] != a1.shape[1]: | |
raise ValueError('Input a needs to be a square matrix.') | |
if n != b1.shape[0]: | |
# Last chance to catch 1x1 scalar a and 1-D b arrays | |
if not (n == 1 and b1.size != 0): | |
raise ValueError('Input b has to have same number of rows as ' | |
'input a') | |
# accommodate empty arrays | |
if b1.size == 0: | |
return np.asfortranarray(b1.copy()) | |
# regularize 1-D b arrays to 2D | |
if b1.ndim == 1: | |
if n == 1: | |
b1 = b1[None, :] | |
else: | |
b1 = b1[:, None] | |
b_is_1D = True | |
if assume_a not in ('gen', 'sym', 'her', 'pos'): | |
raise ValueError(f'{assume_a} is not a recognized matrix structure') | |
# for a real matrix, describe it as "symmetric", not "hermitian" | |
# (lapack doesn't know what to do with real hermitian matrices) | |
if assume_a == 'her' and not np.iscomplexobj(a1): | |
assume_a = 'sym' | |
# Get the correct lamch function. | |
# The LAMCH functions only exists for S and D | |
# So for complex values we have to convert to real/double. | |
if a1.dtype.char in 'fF': # single precision | |
lamch = get_lapack_funcs('lamch', dtype='f') | |
else: | |
lamch = get_lapack_funcs('lamch', dtype='d') | |
# Currently we do not have the other forms of the norm calculators | |
# lansy, lanpo, lanhe. | |
# However, in any case they only reduce computations slightly... | |
lange = get_lapack_funcs('lange', (a1,)) | |
# Since the I-norm and 1-norm are the same for symmetric matrices | |
# we can collect them all in this one call | |
# Note however, that when issuing 'gen' and form!='none', then | |
# the I-norm should be used | |
if transposed: | |
trans = 1 | |
norm = 'I' | |
if np.iscomplexobj(a1): | |
raise NotImplementedError('scipy.linalg.solve can currently ' | |
'not solve a^T x = b or a^H x = b ' | |
'for complex matrices.') | |
else: | |
trans = 0 | |
norm = '1' | |
anorm = lange(norm, a1) | |
# Generalized case 'gesv' | |
if assume_a == 'gen': | |
gecon, getrf, getrs = get_lapack_funcs(('gecon', 'getrf', 'getrs'), | |
(a1, b1)) | |
lu, ipvt, info = getrf(a1, overwrite_a=overwrite_a) | |
_solve_check(n, info) | |
x, info = getrs(lu, ipvt, b1, | |
trans=trans, overwrite_b=overwrite_b) | |
_solve_check(n, info) | |
rcond, info = gecon(lu, anorm, norm=norm) | |
# Hermitian case 'hesv' | |
elif assume_a == 'her': | |
hecon, hesv, hesv_lw = get_lapack_funcs(('hecon', 'hesv', | |
'hesv_lwork'), (a1, b1)) | |
lwork = _compute_lwork(hesv_lw, n, lower) | |
lu, ipvt, x, info = hesv(a1, b1, lwork=lwork, | |
lower=lower, | |
overwrite_a=overwrite_a, | |
overwrite_b=overwrite_b) | |
_solve_check(n, info) | |
rcond, info = hecon(lu, ipvt, anorm) | |
# Symmetric case 'sysv' | |
elif assume_a == 'sym': | |
sycon, sysv, sysv_lw = get_lapack_funcs(('sycon', 'sysv', | |
'sysv_lwork'), (a1, b1)) | |
lwork = _compute_lwork(sysv_lw, n, lower) | |
lu, ipvt, x, info = sysv(a1, b1, lwork=lwork, | |
lower=lower, | |
overwrite_a=overwrite_a, | |
overwrite_b=overwrite_b) | |
_solve_check(n, info) | |
rcond, info = sycon(lu, ipvt, anorm) | |
# Positive definite case 'posv' | |
else: | |
pocon, posv = get_lapack_funcs(('pocon', 'posv'), | |
(a1, b1)) | |
lu, x, info = posv(a1, b1, lower=lower, | |
overwrite_a=overwrite_a, | |
overwrite_b=overwrite_b) | |
_solve_check(n, info) | |
rcond, info = pocon(lu, anorm) | |
_solve_check(n, info, lamch, rcond) | |
if b_is_1D: | |
x = x.ravel() | |
return x | |
def solve_triangular(a, b, trans=0, lower=False, unit_diagonal=False, | |
overwrite_b=False, check_finite=True): | |
""" | |
Solve the equation `a x = b` for `x`, assuming a is a triangular matrix. | |
Parameters | |
---------- | |
a : (M, M) array_like | |
A triangular matrix | |
b : (M,) or (M, N) array_like | |
Right-hand side matrix in `a x = b` | |
lower : bool, optional | |
Use only data contained in the lower triangle of `a`. | |
Default is to use upper triangle. | |
trans : {0, 1, 2, 'N', 'T', 'C'}, optional | |
Type of system to solve: | |
======== ========= | |
trans system | |
======== ========= | |
0 or 'N' a x = b | |
1 or 'T' a^T x = b | |
2 or 'C' a^H x = b | |
======== ========= | |
unit_diagonal : bool, optional | |
If True, diagonal elements of `a` are assumed to be 1 and | |
will not be referenced. | |
overwrite_b : bool, optional | |
Allow overwriting data in `b` (may enhance performance) | |
check_finite : bool, optional | |
Whether to check that the input matrices contain only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
Returns | |
------- | |
x : (M,) or (M, N) ndarray | |
Solution to the system `a x = b`. Shape of return matches `b`. | |
Raises | |
------ | |
LinAlgError | |
If `a` is singular | |
Notes | |
----- | |
.. versionadded:: 0.9.0 | |
Examples | |
-------- | |
Solve the lower triangular system a x = b, where:: | |
[3 0 0 0] [4] | |
a = [2 1 0 0] b = [2] | |
[1 0 1 0] [4] | |
[1 1 1 1] [2] | |
>>> import numpy as np | |
>>> from scipy.linalg import solve_triangular | |
>>> a = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]]) | |
>>> b = np.array([4, 2, 4, 2]) | |
>>> x = solve_triangular(a, b, lower=True) | |
>>> x | |
array([ 1.33333333, -0.66666667, 2.66666667, -1.33333333]) | |
>>> a.dot(x) # Check the result | |
array([ 4., 2., 4., 2.]) | |
""" | |
a1 = _asarray_validated(a, check_finite=check_finite) | |
b1 = _asarray_validated(b, check_finite=check_finite) | |
if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]: | |
raise ValueError('expected square matrix') | |
if a1.shape[0] != b1.shape[0]: | |
raise ValueError(f'shapes of a {a1.shape} and b {b1.shape} are incompatible') | |
overwrite_b = overwrite_b or _datacopied(b1, b) | |
trans = {'N': 0, 'T': 1, 'C': 2}.get(trans, trans) | |
trtrs, = get_lapack_funcs(('trtrs',), (a1, b1)) | |
if a1.flags.f_contiguous or trans == 2: | |
x, info = trtrs(a1, b1, overwrite_b=overwrite_b, lower=lower, | |
trans=trans, unitdiag=unit_diagonal) | |
else: | |
# transposed system is solved since trtrs expects Fortran ordering | |
x, info = trtrs(a1.T, b1, overwrite_b=overwrite_b, lower=not lower, | |
trans=not trans, unitdiag=unit_diagonal) | |
if info == 0: | |
return x | |
if info > 0: | |
raise LinAlgError("singular matrix: resolution failed at diagonal %d" % | |
(info-1)) | |
raise ValueError('illegal value in %dth argument of internal trtrs' % | |
(-info)) | |
def solve_banded(l_and_u, ab, b, overwrite_ab=False, overwrite_b=False, | |
check_finite=True): | |
""" | |
Solve the equation a x = b for x, assuming a is banded matrix. | |
The matrix a is stored in `ab` using the matrix diagonal ordered form:: | |
ab[u + i - j, j] == a[i,j] | |
Example of `ab` (shape of a is (6,6), `u` =1, `l` =2):: | |
* a01 a12 a23 a34 a45 | |
a00 a11 a22 a33 a44 a55 | |
a10 a21 a32 a43 a54 * | |
a20 a31 a42 a53 * * | |
Parameters | |
---------- | |
(l, u) : (integer, integer) | |
Number of non-zero lower and upper diagonals | |
ab : (`l` + `u` + 1, M) array_like | |
Banded matrix | |
b : (M,) or (M, K) array_like | |
Right-hand side | |
overwrite_ab : bool, optional | |
Discard data in `ab` (may enhance performance) | |
overwrite_b : bool, optional | |
Discard data in `b` (may enhance performance) | |
check_finite : bool, optional | |
Whether to check that the input matrices contain only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
Returns | |
------- | |
x : (M,) or (M, K) ndarray | |
The solution to the system a x = b. Returned shape depends on the | |
shape of `b`. | |
Examples | |
-------- | |
Solve the banded system a x = b, where:: | |
[5 2 -1 0 0] [0] | |
[1 4 2 -1 0] [1] | |
a = [0 1 3 2 -1] b = [2] | |
[0 0 1 2 2] [2] | |
[0 0 0 1 1] [3] | |
There is one nonzero diagonal below the main diagonal (l = 1), and | |
two above (u = 2). The diagonal banded form of the matrix is:: | |
[* * -1 -1 -1] | |
ab = [* 2 2 2 2] | |
[5 4 3 2 1] | |
[1 1 1 1 *] | |
>>> import numpy as np | |
>>> from scipy.linalg import solve_banded | |
>>> ab = np.array([[0, 0, -1, -1, -1], | |
... [0, 2, 2, 2, 2], | |
... [5, 4, 3, 2, 1], | |
... [1, 1, 1, 1, 0]]) | |
>>> b = np.array([0, 1, 2, 2, 3]) | |
>>> x = solve_banded((1, 2), ab, b) | |
>>> x | |
array([-2.37288136, 3.93220339, -4. , 4.3559322 , -1.3559322 ]) | |
""" | |
a1 = _asarray_validated(ab, check_finite=check_finite, as_inexact=True) | |
b1 = _asarray_validated(b, check_finite=check_finite, as_inexact=True) | |
# Validate shapes. | |
if a1.shape[-1] != b1.shape[0]: | |
raise ValueError("shapes of ab and b are not compatible.") | |
(nlower, nupper) = l_and_u | |
if nlower + nupper + 1 != a1.shape[0]: | |
raise ValueError("invalid values for the number of lower and upper " | |
"diagonals: l+u+1 (%d) does not equal ab.shape[0] " | |
"(%d)" % (nlower + nupper + 1, ab.shape[0])) | |
overwrite_b = overwrite_b or _datacopied(b1, b) | |
if a1.shape[-1] == 1: | |
b2 = np.array(b1, copy=(not overwrite_b)) | |
b2 /= a1[1, 0] | |
return b2 | |
if nlower == nupper == 1: | |
overwrite_ab = overwrite_ab or _datacopied(a1, ab) | |
gtsv, = get_lapack_funcs(('gtsv',), (a1, b1)) | |
du = a1[0, 1:] | |
d = a1[1, :] | |
dl = a1[2, :-1] | |
du2, d, du, x, info = gtsv(dl, d, du, b1, overwrite_ab, overwrite_ab, | |
overwrite_ab, overwrite_b) | |
else: | |
gbsv, = get_lapack_funcs(('gbsv',), (a1, b1)) | |
a2 = np.zeros((2*nlower + nupper + 1, a1.shape[1]), dtype=gbsv.dtype) | |
a2[nlower:, :] = a1 | |
lu, piv, x, info = gbsv(nlower, nupper, a2, b1, overwrite_ab=True, | |
overwrite_b=overwrite_b) | |
if info == 0: | |
return x | |
if info > 0: | |
raise LinAlgError("singular matrix") | |
raise ValueError('illegal value in %d-th argument of internal ' | |
'gbsv/gtsv' % -info) | |
def solveh_banded(ab, b, overwrite_ab=False, overwrite_b=False, lower=False, | |
check_finite=True): | |
""" | |
Solve equation a x = b. a is Hermitian positive-definite banded matrix. | |
Uses Thomas' Algorithm, which is more efficient than standard LU | |
factorization, but should only be used for Hermitian positive-definite | |
matrices. | |
The matrix ``a`` is stored in `ab` either in lower diagonal or upper | |
diagonal ordered form: | |
ab[u + i - j, j] == a[i,j] (if upper form; i <= j) | |
ab[ i - j, j] == a[i,j] (if lower form; i >= j) | |
Example of `ab` (shape of ``a`` is (6, 6), number of upper diagonals, | |
``u`` =2):: | |
upper form: | |
* * a02 a13 a24 a35 | |
* a01 a12 a23 a34 a45 | |
a00 a11 a22 a33 a44 a55 | |
lower form: | |
a00 a11 a22 a33 a44 a55 | |
a10 a21 a32 a43 a54 * | |
a20 a31 a42 a53 * * | |
Cells marked with * are not used. | |
Parameters | |
---------- | |
ab : (``u`` + 1, M) array_like | |
Banded matrix | |
b : (M,) or (M, K) array_like | |
Right-hand side | |
overwrite_ab : bool, optional | |
Discard data in `ab` (may enhance performance) | |
overwrite_b : bool, optional | |
Discard data in `b` (may enhance performance) | |
lower : bool, optional | |
Is the matrix in the lower form. (Default is upper form) | |
check_finite : bool, optional | |
Whether to check that the input matrices contain only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
Returns | |
------- | |
x : (M,) or (M, K) ndarray | |
The solution to the system ``a x = b``. Shape of return matches shape | |
of `b`. | |
Notes | |
----- | |
In the case of a non-positive definite matrix ``a``, the solver | |
`solve_banded` may be used. | |
Examples | |
-------- | |
Solve the banded system ``A x = b``, where:: | |
[ 4 2 -1 0 0 0] [1] | |
[ 2 5 2 -1 0 0] [2] | |
A = [-1 2 6 2 -1 0] b = [2] | |
[ 0 -1 2 7 2 -1] [3] | |
[ 0 0 -1 2 8 2] [3] | |
[ 0 0 0 -1 2 9] [3] | |
>>> import numpy as np | |
>>> from scipy.linalg import solveh_banded | |
``ab`` contains the main diagonal and the nonzero diagonals below the | |
main diagonal. That is, we use the lower form: | |
>>> ab = np.array([[ 4, 5, 6, 7, 8, 9], | |
... [ 2, 2, 2, 2, 2, 0], | |
... [-1, -1, -1, -1, 0, 0]]) | |
>>> b = np.array([1, 2, 2, 3, 3, 3]) | |
>>> x = solveh_banded(ab, b, lower=True) | |
>>> x | |
array([ 0.03431373, 0.45938375, 0.05602241, 0.47759104, 0.17577031, | |
0.34733894]) | |
Solve the Hermitian banded system ``H x = b``, where:: | |
[ 8 2-1j 0 0 ] [ 1 ] | |
H = [2+1j 5 1j 0 ] b = [1+1j] | |
[ 0 -1j 9 -2-1j] [1-2j] | |
[ 0 0 -2+1j 6 ] [ 0 ] | |
In this example, we put the upper diagonals in the array ``hb``: | |
>>> hb = np.array([[0, 2-1j, 1j, -2-1j], | |
... [8, 5, 9, 6 ]]) | |
>>> b = np.array([1, 1+1j, 1-2j, 0]) | |
>>> x = solveh_banded(hb, b) | |
>>> x | |
array([ 0.07318536-0.02939412j, 0.11877624+0.17696461j, | |
0.10077984-0.23035393j, -0.00479904-0.09358128j]) | |
""" | |
a1 = _asarray_validated(ab, check_finite=check_finite) | |
b1 = _asarray_validated(b, check_finite=check_finite) | |
# Validate shapes. | |
if a1.shape[-1] != b1.shape[0]: | |
raise ValueError("shapes of ab and b are not compatible.") | |
overwrite_b = overwrite_b or _datacopied(b1, b) | |
overwrite_ab = overwrite_ab or _datacopied(a1, ab) | |
if a1.shape[0] == 2: | |
ptsv, = get_lapack_funcs(('ptsv',), (a1, b1)) | |
if lower: | |
d = a1[0, :].real | |
e = a1[1, :-1] | |
else: | |
d = a1[1, :].real | |
e = a1[0, 1:].conj() | |
d, du, x, info = ptsv(d, e, b1, overwrite_ab, overwrite_ab, | |
overwrite_b) | |
else: | |
pbsv, = get_lapack_funcs(('pbsv',), (a1, b1)) | |
c, x, info = pbsv(a1, b1, lower=lower, overwrite_ab=overwrite_ab, | |
overwrite_b=overwrite_b) | |
if info > 0: | |
raise LinAlgError("%dth leading minor not positive definite" % info) | |
if info < 0: | |
raise ValueError('illegal value in %dth argument of internal ' | |
'pbsv' % -info) | |
return x | |
def solve_toeplitz(c_or_cr, b, check_finite=True): | |
"""Solve a Toeplitz system using Levinson Recursion | |
The Toeplitz matrix has constant diagonals, with c as its first column | |
and r as its first row. If r is not given, ``r == conjugate(c)`` is | |
assumed. | |
Parameters | |
---------- | |
c_or_cr : array_like or tuple of (array_like, array_like) | |
The vector ``c``, or a tuple of arrays (``c``, ``r``). Whatever the | |
actual shape of ``c``, it will be converted to a 1-D array. If not | |
supplied, ``r = conjugate(c)`` is assumed; in this case, if c[0] is | |
real, the Toeplitz matrix is Hermitian. r[0] is ignored; the first row | |
of the Toeplitz matrix is ``[c[0], r[1:]]``. Whatever the actual shape | |
of ``r``, it will be converted to a 1-D array. | |
b : (M,) or (M, K) array_like | |
Right-hand side in ``T x = b``. | |
check_finite : bool, optional | |
Whether to check that the input matrices contain only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(result entirely NaNs) if the inputs do contain infinities or NaNs. | |
Returns | |
------- | |
x : (M,) or (M, K) ndarray | |
The solution to the system ``T x = b``. Shape of return matches shape | |
of `b`. | |
See Also | |
-------- | |
toeplitz : Toeplitz matrix | |
Notes | |
----- | |
The solution is computed using Levinson-Durbin recursion, which is faster | |
than generic least-squares methods, but can be less numerically stable. | |
Examples | |
-------- | |
Solve the Toeplitz system T x = b, where:: | |
[ 1 -1 -2 -3] [1] | |
T = [ 3 1 -1 -2] b = [2] | |
[ 6 3 1 -1] [2] | |
[10 6 3 1] [5] | |
To specify the Toeplitz matrix, only the first column and the first | |
row are needed. | |
>>> import numpy as np | |
>>> c = np.array([1, 3, 6, 10]) # First column of T | |
>>> r = np.array([1, -1, -2, -3]) # First row of T | |
>>> b = np.array([1, 2, 2, 5]) | |
>>> from scipy.linalg import solve_toeplitz, toeplitz | |
>>> x = solve_toeplitz((c, r), b) | |
>>> x | |
array([ 1.66666667, -1. , -2.66666667, 2.33333333]) | |
Check the result by creating the full Toeplitz matrix and | |
multiplying it by `x`. We should get `b`. | |
>>> T = toeplitz(c, r) | |
>>> T.dot(x) | |
array([ 1., 2., 2., 5.]) | |
""" | |
# If numerical stability of this algorithm is a problem, a future | |
# developer might consider implementing other O(N^2) Toeplitz solvers, | |
# such as GKO (https://www.jstor.org/stable/2153371) or Bareiss. | |
r, c, b, dtype, b_shape = _validate_args_for_toeplitz_ops( | |
c_or_cr, b, check_finite, keep_b_shape=True) | |
# Form a 1-D array of values to be used in the matrix, containing a | |
# reversed copy of r[1:], followed by c. | |
vals = np.concatenate((r[-1:0:-1], c)) | |
if b is None: | |
raise ValueError('illegal value, `b` is a required argument') | |
if b.ndim == 1: | |
x, _ = levinson(vals, np.ascontiguousarray(b)) | |
else: | |
x = np.column_stack([levinson(vals, np.ascontiguousarray(b[:, i]))[0] | |
for i in range(b.shape[1])]) | |
x = x.reshape(*b_shape) | |
return x | |
def _get_axis_len(aname, a, axis): | |
ax = axis | |
if ax < 0: | |
ax += a.ndim | |
if 0 <= ax < a.ndim: | |
return a.shape[ax] | |
raise ValueError(f"'{aname}axis' entry is out of bounds") | |
def solve_circulant(c, b, singular='raise', tol=None, | |
caxis=-1, baxis=0, outaxis=0): | |
"""Solve C x = b for x, where C is a circulant matrix. | |
`C` is the circulant matrix associated with the vector `c`. | |
The system is solved by doing division in Fourier space. The | |
calculation is:: | |
x = ifft(fft(b) / fft(c)) | |
where `fft` and `ifft` are the fast Fourier transform and its inverse, | |
respectively. For a large vector `c`, this is *much* faster than | |
solving the system with the full circulant matrix. | |
Parameters | |
---------- | |
c : array_like | |
The coefficients of the circulant matrix. | |
b : array_like | |
Right-hand side matrix in ``a x = b``. | |
singular : str, optional | |
This argument controls how a near singular circulant matrix is | |
handled. If `singular` is "raise" and the circulant matrix is | |
near singular, a `LinAlgError` is raised. If `singular` is | |
"lstsq", the least squares solution is returned. Default is "raise". | |
tol : float, optional | |
If any eigenvalue of the circulant matrix has an absolute value | |
that is less than or equal to `tol`, the matrix is considered to be | |
near singular. If not given, `tol` is set to:: | |
tol = abs_eigs.max() * abs_eigs.size * np.finfo(np.float64).eps | |
where `abs_eigs` is the array of absolute values of the eigenvalues | |
of the circulant matrix. | |
caxis : int | |
When `c` has dimension greater than 1, it is viewed as a collection | |
of circulant vectors. In this case, `caxis` is the axis of `c` that | |
holds the vectors of circulant coefficients. | |
baxis : int | |
When `b` has dimension greater than 1, it is viewed as a collection | |
of vectors. In this case, `baxis` is the axis of `b` that holds the | |
right-hand side vectors. | |
outaxis : int | |
When `c` or `b` are multidimensional, the value returned by | |
`solve_circulant` is multidimensional. In this case, `outaxis` is | |
the axis of the result that holds the solution vectors. | |
Returns | |
------- | |
x : ndarray | |
Solution to the system ``C x = b``. | |
Raises | |
------ | |
LinAlgError | |
If the circulant matrix associated with `c` is near singular. | |
See Also | |
-------- | |
circulant : circulant matrix | |
Notes | |
----- | |
For a 1-D vector `c` with length `m`, and an array `b` | |
with shape ``(m, ...)``, | |
solve_circulant(c, b) | |
returns the same result as | |
solve(circulant(c), b) | |
where `solve` and `circulant` are from `scipy.linalg`. | |
.. versionadded:: 0.16.0 | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import solve_circulant, solve, circulant, lstsq | |
>>> c = np.array([2, 2, 4]) | |
>>> b = np.array([1, 2, 3]) | |
>>> solve_circulant(c, b) | |
array([ 0.75, -0.25, 0.25]) | |
Compare that result to solving the system with `scipy.linalg.solve`: | |
>>> solve(circulant(c), b) | |
array([ 0.75, -0.25, 0.25]) | |
A singular example: | |
>>> c = np.array([1, 1, 0, 0]) | |
>>> b = np.array([1, 2, 3, 4]) | |
Calling ``solve_circulant(c, b)`` will raise a `LinAlgError`. For the | |
least square solution, use the option ``singular='lstsq'``: | |
>>> solve_circulant(c, b, singular='lstsq') | |
array([ 0.25, 1.25, 2.25, 1.25]) | |
Compare to `scipy.linalg.lstsq`: | |
>>> x, resid, rnk, s = lstsq(circulant(c), b) | |
>>> x | |
array([ 0.25, 1.25, 2.25, 1.25]) | |
A broadcasting example: | |
Suppose we have the vectors of two circulant matrices stored in an array | |
with shape (2, 5), and three `b` vectors stored in an array with shape | |
(3, 5). For example, | |
>>> c = np.array([[1.5, 2, 3, 0, 0], [1, 1, 4, 3, 2]]) | |
>>> b = np.arange(15).reshape(-1, 5) | |
We want to solve all combinations of circulant matrices and `b` vectors, | |
with the result stored in an array with shape (2, 3, 5). When we | |
disregard the axes of `c` and `b` that hold the vectors of coefficients, | |
the shapes of the collections are (2,) and (3,), respectively, which are | |
not compatible for broadcasting. To have a broadcast result with shape | |
(2, 3), we add a trivial dimension to `c`: ``c[:, np.newaxis, :]`` has | |
shape (2, 1, 5). The last dimension holds the coefficients of the | |
circulant matrices, so when we call `solve_circulant`, we can use the | |
default ``caxis=-1``. The coefficients of the `b` vectors are in the last | |
dimension of the array `b`, so we use ``baxis=-1``. If we use the | |
default `outaxis`, the result will have shape (5, 2, 3), so we'll use | |
``outaxis=-1`` to put the solution vectors in the last dimension. | |
>>> x = solve_circulant(c[:, np.newaxis, :], b, baxis=-1, outaxis=-1) | |
>>> x.shape | |
(2, 3, 5) | |
>>> np.set_printoptions(precision=3) # For compact output of numbers. | |
>>> x | |
array([[[-0.118, 0.22 , 1.277, -0.142, 0.302], | |
[ 0.651, 0.989, 2.046, 0.627, 1.072], | |
[ 1.42 , 1.758, 2.816, 1.396, 1.841]], | |
[[ 0.401, 0.304, 0.694, -0.867, 0.377], | |
[ 0.856, 0.758, 1.149, -0.412, 0.831], | |
[ 1.31 , 1.213, 1.603, 0.042, 1.286]]]) | |
Check by solving one pair of `c` and `b` vectors (cf. ``x[1, 1, :]``): | |
>>> solve_circulant(c[1], b[1, :]) | |
array([ 0.856, 0.758, 1.149, -0.412, 0.831]) | |
""" | |
c = np.atleast_1d(c) | |
nc = _get_axis_len("c", c, caxis) | |
b = np.atleast_1d(b) | |
nb = _get_axis_len("b", b, baxis) | |
if nc != nb: | |
raise ValueError(f'Shapes of c {c.shape} and b {b.shape} are incompatible') | |
fc = np.fft.fft(np.moveaxis(c, caxis, -1), axis=-1) | |
abs_fc = np.abs(fc) | |
if tol is None: | |
# This is the same tolerance as used in np.linalg.matrix_rank. | |
tol = abs_fc.max(axis=-1) * nc * np.finfo(np.float64).eps | |
if tol.shape != (): | |
tol.shape = tol.shape + (1,) | |
else: | |
tol = np.atleast_1d(tol) | |
near_zeros = abs_fc <= tol | |
is_near_singular = np.any(near_zeros) | |
if is_near_singular: | |
if singular == 'raise': | |
raise LinAlgError("near singular circulant matrix.") | |
else: | |
# Replace the small values with 1 to avoid errors in the | |
# division fb/fc below. | |
fc[near_zeros] = 1 | |
fb = np.fft.fft(np.moveaxis(b, baxis, -1), axis=-1) | |
q = fb / fc | |
if is_near_singular: | |
# `near_zeros` is a boolean array, same shape as `c`, that is | |
# True where `fc` is (near) zero. `q` is the broadcasted result | |
# of fb / fc, so to set the values of `q` to 0 where `fc` is near | |
# zero, we use a mask that is the broadcast result of an array | |
# of True values shaped like `b` with `near_zeros`. | |
mask = np.ones_like(b, dtype=bool) & near_zeros | |
q[mask] = 0 | |
x = np.fft.ifft(q, axis=-1) | |
if not (np.iscomplexobj(c) or np.iscomplexobj(b)): | |
x = x.real | |
if outaxis != -1: | |
x = np.moveaxis(x, -1, outaxis) | |
return x | |
# matrix inversion | |
def inv(a, overwrite_a=False, check_finite=True): | |
""" | |
Compute the inverse of a matrix. | |
Parameters | |
---------- | |
a : array_like | |
Square matrix to be inverted. | |
overwrite_a : bool, optional | |
Discard data in `a` (may improve performance). Default is False. | |
check_finite : bool, optional | |
Whether to check that the input matrix contains only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
Returns | |
------- | |
ainv : ndarray | |
Inverse of the matrix `a`. | |
Raises | |
------ | |
LinAlgError | |
If `a` is singular. | |
ValueError | |
If `a` is not square, or not 2D. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy import linalg | |
>>> a = np.array([[1., 2.], [3., 4.]]) | |
>>> linalg.inv(a) | |
array([[-2. , 1. ], | |
[ 1.5, -0.5]]) | |
>>> np.dot(a, linalg.inv(a)) | |
array([[ 1., 0.], | |
[ 0., 1.]]) | |
""" | |
a1 = _asarray_validated(a, check_finite=check_finite) | |
if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]: | |
raise ValueError('expected square matrix') | |
overwrite_a = overwrite_a or _datacopied(a1, a) | |
getrf, getri, getri_lwork = get_lapack_funcs(('getrf', 'getri', | |
'getri_lwork'), | |
(a1,)) | |
lu, piv, info = getrf(a1, overwrite_a=overwrite_a) | |
if info == 0: | |
lwork = _compute_lwork(getri_lwork, a1.shape[0]) | |
# XXX: the following line fixes curious SEGFAULT when | |
# benchmarking 500x500 matrix inverse. This seems to | |
# be a bug in LAPACK ?getri routine because if lwork is | |
# minimal (when using lwork[0] instead of lwork[1]) then | |
# all tests pass. Further investigation is required if | |
# more such SEGFAULTs occur. | |
lwork = int(1.01 * lwork) | |
inv_a, info = getri(lu, piv, lwork=lwork, overwrite_lu=1) | |
if info > 0: | |
raise LinAlgError("singular matrix") | |
if info < 0: | |
raise ValueError('illegal value in %d-th argument of internal ' | |
'getrf|getri' % -info) | |
return inv_a | |
# Determinant | |
def det(a, overwrite_a=False, check_finite=True): | |
""" | |
Compute the determinant of a matrix | |
The determinant is a scalar that is a function of the associated square | |
matrix coefficients. The determinant value is zero for singular matrices. | |
Parameters | |
---------- | |
a : (..., M, M) array_like | |
Input array to compute determinants for. | |
overwrite_a : bool, optional | |
Allow overwriting data in a (may enhance performance). | |
check_finite : bool, optional | |
Whether to check that the input matrix contains only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
Returns | |
------- | |
det : (...) float or complex | |
Determinant of `a`. For stacked arrays, a scalar is returned for each | |
(m, m) slice in the last two dimensions of the input. For example, an | |
input of shape (p, q, m, m) will produce a result of shape (p, q). If | |
all dimensions are 1 a scalar is returned regardless of ndim. | |
Notes | |
----- | |
The determinant is computed by performing an LU factorization of the | |
input with LAPACK routine 'getrf', and then calculating the product of | |
diagonal entries of the U factor. | |
Even the input array is single precision (float32 or complex64), the result | |
will be returned in double precision (float64 or complex128) to prevent | |
overflows. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy import linalg | |
>>> a = np.array([[1,2,3], [4,5,6], [7,8,9]]) # A singular matrix | |
>>> linalg.det(a) | |
0.0 | |
>>> b = np.array([[0,2,3], [4,5,6], [7,8,9]]) | |
>>> linalg.det(b) | |
3.0 | |
>>> # An array with the shape (3, 2, 2, 2) | |
>>> c = np.array([[[[1., 2.], [3., 4.]], | |
... [[5., 6.], [7., 8.]]], | |
... [[[9., 10.], [11., 12.]], | |
... [[13., 14.], [15., 16.]]], | |
... [[[17., 18.], [19., 20.]], | |
... [[21., 22.], [23., 24.]]]]) | |
>>> linalg.det(c) # The resulting shape is (3, 2) | |
array([[-2., -2.], | |
[-2., -2.], | |
[-2., -2.]]) | |
>>> linalg.det(c[0, 0]) # Confirm the (0, 0) slice, [[1, 2], [3, 4]] | |
-2.0 | |
""" | |
# The goal is to end up with a writable contiguous array to pass to Cython | |
# First we check and make arrays. | |
a1 = np.asarray_chkfinite(a) if check_finite else np.asarray(a) | |
if a1.ndim < 2: | |
raise ValueError('The input array must be at least two-dimensional.') | |
if a1.shape[-1] != a1.shape[-2]: | |
raise ValueError('Last 2 dimensions of the array must be square' | |
f' but received shape {a1.shape}.') | |
# Also check if dtype is LAPACK compatible | |
if a1.dtype.char not in 'fdFD': | |
dtype_char = lapack_cast_dict[a1.dtype.char] | |
if not dtype_char: # No casting possible | |
raise TypeError(f'The dtype "{a1.dtype.name}" cannot be cast ' | |
'to float(32, 64) or complex(64, 128).') | |
a1 = a1.astype(dtype_char[0]) # makes a copy, free to scratch | |
overwrite_a = True | |
# Empty array has determinant 1 because math. | |
if min(*a1.shape) == 0: | |
if a1.ndim == 2: | |
return np.float64(1.) | |
else: | |
return np.ones(shape=a1.shape[:-2], dtype=np.float64) | |
# Scalar case | |
if a1.shape[-2:] == (1, 1): | |
# Either ndarray with spurious singletons or a single element | |
if max(*a1.shape) > 1: | |
temp = np.squeeze(a1) | |
if a1.dtype.char in 'dD': | |
return temp | |
else: | |
return (temp.astype('d') if a1.dtype.char == 'f' else | |
temp.astype('D')) | |
else: | |
return (np.float64(a1.item()) if a1.dtype.char in 'fd' else | |
np.complex128(a1.item())) | |
# Then check overwrite permission | |
if not _datacopied(a1, a): # "a" still alive through "a1" | |
if not overwrite_a: | |
# Data belongs to "a" so make a copy | |
a1 = a1.copy(order='C') | |
# else: Do nothing we'll use "a" if possible | |
# else: a1 has its own data thus free to scratch | |
# Then layout checks, might happen that overwrite is allowed but original | |
# array was read-only or non-C-contiguous. | |
if not (a1.flags['C_CONTIGUOUS'] and a1.flags['WRITEABLE']): | |
a1 = a1.copy(order='C') | |
if a1.ndim == 2: | |
det = find_det_from_lu(a1) | |
# Convert float, complex to to NumPy scalars | |
return (np.float64(det) if np.isrealobj(det) else np.complex128(det)) | |
# loop over the stacked array, and avoid overflows for single precision | |
# Cf. np.linalg.det(np.diag([1e+38, 1e+38]).astype(np.float32)) | |
dtype_char = a1.dtype.char | |
if dtype_char in 'fF': | |
dtype_char = 'd' if dtype_char.islower() else 'D' | |
det = np.empty(a1.shape[:-2], dtype=dtype_char) | |
for ind in product(*[range(x) for x in a1.shape[:-2]]): | |
det[ind] = find_det_from_lu(a1[ind]) | |
return det | |
# Linear Least Squares | |
def lstsq(a, b, cond=None, overwrite_a=False, overwrite_b=False, | |
check_finite=True, lapack_driver=None): | |
""" | |
Compute least-squares solution to equation Ax = b. | |
Compute a vector x such that the 2-norm ``|b - A x|`` is minimized. | |
Parameters | |
---------- | |
a : (M, N) array_like | |
Left-hand side array | |
b : (M,) or (M, K) array_like | |
Right hand side array | |
cond : float, optional | |
Cutoff for 'small' singular values; used to determine effective | |
rank of a. Singular values smaller than | |
``cond * largest_singular_value`` are considered zero. | |
overwrite_a : bool, optional | |
Discard data in `a` (may enhance performance). Default is False. | |
overwrite_b : bool, optional | |
Discard data in `b` (may enhance performance). Default is False. | |
check_finite : bool, optional | |
Whether to check that the input matrices contain only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
lapack_driver : str, optional | |
Which LAPACK driver is used to solve the least-squares problem. | |
Options are ``'gelsd'``, ``'gelsy'``, ``'gelss'``. Default | |
(``'gelsd'``) is a good choice. However, ``'gelsy'`` can be slightly | |
faster on many problems. ``'gelss'`` was used historically. It is | |
generally slow but uses less memory. | |
.. versionadded:: 0.17.0 | |
Returns | |
------- | |
x : (N,) or (N, K) ndarray | |
Least-squares solution. | |
residues : (K,) ndarray or float | |
Square of the 2-norm for each column in ``b - a x``, if ``M > N`` and | |
``rank(A) == n`` (returns a scalar if ``b`` is 1-D). Otherwise a | |
(0,)-shaped array is returned. | |
rank : int | |
Effective rank of `a`. | |
s : (min(M, N),) ndarray or None | |
Singular values of `a`. The condition number of ``a`` is | |
``s[0] / s[-1]``. | |
Raises | |
------ | |
LinAlgError | |
If computation does not converge. | |
ValueError | |
When parameters are not compatible. | |
See Also | |
-------- | |
scipy.optimize.nnls : linear least squares with non-negativity constraint | |
Notes | |
----- | |
When ``'gelsy'`` is used as a driver, `residues` is set to a (0,)-shaped | |
array and `s` is always ``None``. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import lstsq | |
>>> import matplotlib.pyplot as plt | |
Suppose we have the following data: | |
>>> x = np.array([1, 2.5, 3.5, 4, 5, 7, 8.5]) | |
>>> y = np.array([0.3, 1.1, 1.5, 2.0, 3.2, 6.6, 8.6]) | |
We want to fit a quadratic polynomial of the form ``y = a + b*x**2`` | |
to this data. We first form the "design matrix" M, with a constant | |
column of 1s and a column containing ``x**2``: | |
>>> M = x[:, np.newaxis]**[0, 2] | |
>>> M | |
array([[ 1. , 1. ], | |
[ 1. , 6.25], | |
[ 1. , 12.25], | |
[ 1. , 16. ], | |
[ 1. , 25. ], | |
[ 1. , 49. ], | |
[ 1. , 72.25]]) | |
We want to find the least-squares solution to ``M.dot(p) = y``, | |
where ``p`` is a vector with length 2 that holds the parameters | |
``a`` and ``b``. | |
>>> p, res, rnk, s = lstsq(M, y) | |
>>> p | |
array([ 0.20925829, 0.12013861]) | |
Plot the data and the fitted curve. | |
>>> plt.plot(x, y, 'o', label='data') | |
>>> xx = np.linspace(0, 9, 101) | |
>>> yy = p[0] + p[1]*xx**2 | |
>>> plt.plot(xx, yy, label='least squares fit, $y = a + bx^2$') | |
>>> plt.xlabel('x') | |
>>> plt.ylabel('y') | |
>>> plt.legend(framealpha=1, shadow=True) | |
>>> plt.grid(alpha=0.25) | |
>>> plt.show() | |
""" | |
a1 = _asarray_validated(a, check_finite=check_finite) | |
b1 = _asarray_validated(b, check_finite=check_finite) | |
if len(a1.shape) != 2: | |
raise ValueError('Input array a should be 2D') | |
m, n = a1.shape | |
if len(b1.shape) == 2: | |
nrhs = b1.shape[1] | |
else: | |
nrhs = 1 | |
if m != b1.shape[0]: | |
raise ValueError('Shape mismatch: a and b should have the same number' | |
f' of rows ({m} != {b1.shape[0]}).') | |
if m == 0 or n == 0: # Zero-sized problem, confuses LAPACK | |
x = np.zeros((n,) + b1.shape[1:], dtype=np.common_type(a1, b1)) | |
if n == 0: | |
residues = np.linalg.norm(b1, axis=0)**2 | |
else: | |
residues = np.empty((0,)) | |
return x, residues, 0, np.empty((0,)) | |
driver = lapack_driver | |
if driver is None: | |
driver = lstsq.default_lapack_driver | |
if driver not in ('gelsd', 'gelsy', 'gelss'): | |
raise ValueError('LAPACK driver "%s" is not found' % driver) | |
lapack_func, lapack_lwork = get_lapack_funcs((driver, | |
'%s_lwork' % driver), | |
(a1, b1)) | |
real_data = True if (lapack_func.dtype.kind == 'f') else False | |
if m < n: | |
# need to extend b matrix as it will be filled with | |
# a larger solution matrix | |
if len(b1.shape) == 2: | |
b2 = np.zeros((n, nrhs), dtype=lapack_func.dtype) | |
b2[:m, :] = b1 | |
else: | |
b2 = np.zeros(n, dtype=lapack_func.dtype) | |
b2[:m] = b1 | |
b1 = b2 | |
overwrite_a = overwrite_a or _datacopied(a1, a) | |
overwrite_b = overwrite_b or _datacopied(b1, b) | |
if cond is None: | |
cond = np.finfo(lapack_func.dtype).eps | |
if driver in ('gelss', 'gelsd'): | |
if driver == 'gelss': | |
lwork = _compute_lwork(lapack_lwork, m, n, nrhs, cond) | |
v, x, s, rank, work, info = lapack_func(a1, b1, cond, lwork, | |
overwrite_a=overwrite_a, | |
overwrite_b=overwrite_b) | |
elif driver == 'gelsd': | |
if real_data: | |
lwork, iwork = _compute_lwork(lapack_lwork, m, n, nrhs, cond) | |
x, s, rank, info = lapack_func(a1, b1, lwork, | |
iwork, cond, False, False) | |
else: # complex data | |
lwork, rwork, iwork = _compute_lwork(lapack_lwork, m, n, | |
nrhs, cond) | |
x, s, rank, info = lapack_func(a1, b1, lwork, rwork, iwork, | |
cond, False, False) | |
if info > 0: | |
raise LinAlgError("SVD did not converge in Linear Least Squares") | |
if info < 0: | |
raise ValueError('illegal value in %d-th argument of internal %s' | |
% (-info, lapack_driver)) | |
resids = np.asarray([], dtype=x.dtype) | |
if m > n: | |
x1 = x[:n] | |
if rank == n: | |
resids = np.sum(np.abs(x[n:])**2, axis=0) | |
x = x1 | |
return x, resids, rank, s | |
elif driver == 'gelsy': | |
lwork = _compute_lwork(lapack_lwork, m, n, nrhs, cond) | |
jptv = np.zeros((a1.shape[1], 1), dtype=np.int32) | |
v, x, j, rank, info = lapack_func(a1, b1, jptv, cond, | |
lwork, False, False) | |
if info < 0: | |
raise ValueError("illegal value in %d-th argument of internal " | |
"gelsy" % -info) | |
if m > n: | |
x1 = x[:n] | |
x = x1 | |
return x, np.array([], x.dtype), rank, None | |
lstsq.default_lapack_driver = 'gelsd' | |
def pinv(a, *, atol=None, rtol=None, return_rank=False, check_finite=True, | |
cond=_NoValue, rcond=_NoValue): | |
""" | |
Compute the (Moore-Penrose) pseudo-inverse of a matrix. | |
Calculate a generalized inverse of a matrix using its | |
singular-value decomposition ``U @ S @ V`` in the economy mode and picking | |
up only the columns/rows that are associated with significant singular | |
values. | |
If ``s`` is the maximum singular value of ``a``, then the | |
significance cut-off value is determined by ``atol + rtol * s``. Any | |
singular value below this value is assumed insignificant. | |
Parameters | |
---------- | |
a : (M, N) array_like | |
Matrix to be pseudo-inverted. | |
atol : float, optional | |
Absolute threshold term, default value is 0. | |
.. versionadded:: 1.7.0 | |
rtol : float, optional | |
Relative threshold term, default value is ``max(M, N) * eps`` where | |
``eps`` is the machine precision value of the datatype of ``a``. | |
.. versionadded:: 1.7.0 | |
return_rank : bool, optional | |
If True, return the effective rank of the matrix. | |
check_finite : bool, optional | |
Whether to check that the input matrix contains only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
cond, rcond : float, optional | |
In older versions, these values were meant to be used as ``atol`` with | |
``rtol=0``. If both were given ``rcond`` overwrote ``cond`` and hence | |
the code was not correct. Thus using these are strongly discouraged and | |
the tolerances above are recommended instead. In fact, if provided, | |
atol, rtol takes precedence over these keywords. | |
.. deprecated:: 1.7.0 | |
Deprecated in favor of ``rtol`` and ``atol`` parameters above and | |
will be removed in SciPy 1.14.0. | |
.. versionchanged:: 1.3.0 | |
Previously the default cutoff value was just ``eps*f`` where ``f`` | |
was ``1e3`` for single precision and ``1e6`` for double precision. | |
Returns | |
------- | |
B : (N, M) ndarray | |
The pseudo-inverse of matrix `a`. | |
rank : int | |
The effective rank of the matrix. Returned if `return_rank` is True. | |
Raises | |
------ | |
LinAlgError | |
If SVD computation does not converge. | |
See Also | |
-------- | |
pinvh : Moore-Penrose pseudoinverse of a hermitian matrix. | |
Notes | |
----- | |
If ``A`` is invertible then the Moore-Penrose pseudoinverse is exactly | |
the inverse of ``A`` [1]_. If ``A`` is not invertible then the | |
Moore-Penrose pseudoinverse computes the ``x`` solution to ``Ax = b`` such | |
that ``||Ax - b||`` is minimized [1]_. | |
References | |
---------- | |
.. [1] Penrose, R. (1956). On best approximate solutions of linear matrix | |
equations. Mathematical Proceedings of the Cambridge Philosophical | |
Society, 52(1), 17-19. doi:10.1017/S0305004100030929 | |
Examples | |
-------- | |
Given an ``m x n`` matrix ``A`` and an ``n x m`` matrix ``B`` the four | |
Moore-Penrose conditions are: | |
1. ``ABA = A`` (``B`` is a generalized inverse of ``A``), | |
2. ``BAB = B`` (``A`` is a generalized inverse of ``B``), | |
3. ``(AB)* = AB`` (``AB`` is hermitian), | |
4. ``(BA)* = BA`` (``BA`` is hermitian) [1]_. | |
Here, ``A*`` denotes the conjugate transpose. The Moore-Penrose | |
pseudoinverse is a unique ``B`` that satisfies all four of these | |
conditions and exists for any ``A``. Note that, unlike the standard | |
matrix inverse, ``A`` does not have to be a square matrix or have | |
linearly independent columns/rows. | |
As an example, we can calculate the Moore-Penrose pseudoinverse of a | |
random non-square matrix and verify it satisfies the four conditions. | |
>>> import numpy as np | |
>>> from scipy import linalg | |
>>> rng = np.random.default_rng() | |
>>> A = rng.standard_normal((9, 6)) | |
>>> B = linalg.pinv(A) | |
>>> np.allclose(A @ B @ A, A) # Condition 1 | |
True | |
>>> np.allclose(B @ A @ B, B) # Condition 2 | |
True | |
>>> np.allclose((A @ B).conj().T, A @ B) # Condition 3 | |
True | |
>>> np.allclose((B @ A).conj().T, B @ A) # Condition 4 | |
True | |
""" | |
a = _asarray_validated(a, check_finite=check_finite) | |
u, s, vh = _decomp_svd.svd(a, full_matrices=False, check_finite=False) | |
t = u.dtype.char.lower() | |
maxS = np.max(s) | |
if rcond is not _NoValue or cond is not _NoValue: | |
warn('Use of the "cond" and "rcond" keywords are deprecated and ' | |
'will be removed in SciPy 1.14.0. Use "atol" and ' | |
'"rtol" keywords instead', DeprecationWarning, stacklevel=2) | |
# backwards compatible only atol and rtol are both missing | |
if ((rcond not in (_NoValue, None) or cond not in (_NoValue, None)) | |
and (atol is None) and (rtol is None)): | |
atol = rcond if rcond not in (_NoValue, None) else cond | |
rtol = 0. | |
atol = 0. if atol is None else atol | |
rtol = max(a.shape) * np.finfo(t).eps if (rtol is None) else rtol | |
if (atol < 0.) or (rtol < 0.): | |
raise ValueError("atol and rtol values must be positive.") | |
val = atol + maxS * rtol | |
rank = np.sum(s > val) | |
u = u[:, :rank] | |
u /= s[:rank] | |
B = (u @ vh[:rank]).conj().T | |
if return_rank: | |
return B, rank | |
else: | |
return B | |
def pinvh(a, atol=None, rtol=None, lower=True, return_rank=False, | |
check_finite=True): | |
""" | |
Compute the (Moore-Penrose) pseudo-inverse of a Hermitian matrix. | |
Calculate a generalized inverse of a complex Hermitian/real symmetric | |
matrix using its eigenvalue decomposition and including all eigenvalues | |
with 'large' absolute value. | |
Parameters | |
---------- | |
a : (N, N) array_like | |
Real symmetric or complex hermetian matrix to be pseudo-inverted | |
atol : float, optional | |
Absolute threshold term, default value is 0. | |
.. versionadded:: 1.7.0 | |
rtol : float, optional | |
Relative threshold term, default value is ``N * eps`` where | |
``eps`` is the machine precision value of the datatype of ``a``. | |
.. versionadded:: 1.7.0 | |
lower : bool, optional | |
Whether the pertinent array data is taken from the lower or upper | |
triangle of `a`. (Default: lower) | |
return_rank : bool, optional | |
If True, return the effective rank of the matrix. | |
check_finite : bool, optional | |
Whether to check that the input matrix contains only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(crashes, non-termination) if the inputs do contain infinities or NaNs. | |
Returns | |
------- | |
B : (N, N) ndarray | |
The pseudo-inverse of matrix `a`. | |
rank : int | |
The effective rank of the matrix. Returned if `return_rank` is True. | |
Raises | |
------ | |
LinAlgError | |
If eigenvalue algorithm does not converge. | |
See Also | |
-------- | |
pinv : Moore-Penrose pseudoinverse of a matrix. | |
Examples | |
-------- | |
For a more detailed example see `pinv`. | |
>>> import numpy as np | |
>>> from scipy.linalg import pinvh | |
>>> rng = np.random.default_rng() | |
>>> a = rng.standard_normal((9, 6)) | |
>>> a = np.dot(a, a.T) | |
>>> B = pinvh(a) | |
>>> np.allclose(a, a @ B @ a) | |
True | |
>>> np.allclose(B, B @ a @ B) | |
True | |
""" | |
a = _asarray_validated(a, check_finite=check_finite) | |
s, u = _decomp.eigh(a, lower=lower, check_finite=False) | |
t = u.dtype.char.lower() | |
maxS = np.max(np.abs(s)) | |
atol = 0. if atol is None else atol | |
rtol = max(a.shape) * np.finfo(t).eps if (rtol is None) else rtol | |
if (atol < 0.) or (rtol < 0.): | |
raise ValueError("atol and rtol values must be positive.") | |
val = atol + maxS * rtol | |
above_cutoff = (abs(s) > val) | |
psigma_diag = 1.0 / s[above_cutoff] | |
u = u[:, above_cutoff] | |
B = (u * psigma_diag) @ u.conj().T | |
if return_rank: | |
return B, len(psigma_diag) | |
else: | |
return B | |
def matrix_balance(A, permute=True, scale=True, separate=False, | |
overwrite_a=False): | |
""" | |
Compute a diagonal similarity transformation for row/column balancing. | |
The balancing tries to equalize the row and column 1-norms by applying | |
a similarity transformation such that the magnitude variation of the | |
matrix entries is reflected to the scaling matrices. | |
Moreover, if enabled, the matrix is first permuted to isolate the upper | |
triangular parts of the matrix and, again if scaling is also enabled, | |
only the remaining subblocks are subjected to scaling. | |
The balanced matrix satisfies the following equality | |
.. math:: | |
B = T^{-1} A T | |
The scaling coefficients are approximated to the nearest power of 2 | |
to avoid round-off errors. | |
Parameters | |
---------- | |
A : (n, n) array_like | |
Square data matrix for the balancing. | |
permute : bool, optional | |
The selector to define whether permutation of A is also performed | |
prior to scaling. | |
scale : bool, optional | |
The selector to turn on and off the scaling. If False, the matrix | |
will not be scaled. | |
separate : bool, optional | |
This switches from returning a full matrix of the transformation | |
to a tuple of two separate 1-D permutation and scaling arrays. | |
overwrite_a : bool, optional | |
This is passed to xGEBAL directly. Essentially, overwrites the result | |
to the data. It might increase the space efficiency. See LAPACK manual | |
for details. This is False by default. | |
Returns | |
------- | |
B : (n, n) ndarray | |
Balanced matrix | |
T : (n, n) ndarray | |
A possibly permuted diagonal matrix whose nonzero entries are | |
integer powers of 2 to avoid numerical truncation errors. | |
scale, perm : (n,) ndarray | |
If ``separate`` keyword is set to True then instead of the array | |
``T`` above, the scaling and the permutation vectors are given | |
separately as a tuple without allocating the full array ``T``. | |
Notes | |
----- | |
This algorithm is particularly useful for eigenvalue and matrix | |
decompositions and in many cases it is already called by various | |
LAPACK routines. | |
The algorithm is based on the well-known technique of [1]_ and has | |
been modified to account for special cases. See [2]_ for details | |
which have been implemented since LAPACK v3.5.0. Before this version | |
there are corner cases where balancing can actually worsen the | |
conditioning. See [3]_ for such examples. | |
The code is a wrapper around LAPACK's xGEBAL routine family for matrix | |
balancing. | |
.. versionadded:: 0.19.0 | |
References | |
---------- | |
.. [1] B.N. Parlett and C. Reinsch, "Balancing a Matrix for | |
Calculation of Eigenvalues and Eigenvectors", Numerische Mathematik, | |
Vol.13(4), 1969, :doi:`10.1007/BF02165404` | |
.. [2] R. James, J. Langou, B.R. Lowery, "On matrix balancing and | |
eigenvector computation", 2014, :arxiv:`1401.5766` | |
.. [3] D.S. Watkins. A case where balancing is harmful. | |
Electron. Trans. Numer. Anal, Vol.23, 2006. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy import linalg | |
>>> x = np.array([[1,2,0], [9,1,0.01], [1,2,10*np.pi]]) | |
>>> y, permscale = linalg.matrix_balance(x) | |
>>> np.abs(x).sum(axis=0) / np.abs(x).sum(axis=1) | |
array([ 3.66666667, 0.4995005 , 0.91312162]) | |
>>> np.abs(y).sum(axis=0) / np.abs(y).sum(axis=1) | |
array([ 1.2 , 1.27041742, 0.92658316]) # may vary | |
>>> permscale # only powers of 2 (0.5 == 2^(-1)) | |
array([[ 0.5, 0. , 0. ], # may vary | |
[ 0. , 1. , 0. ], | |
[ 0. , 0. , 1. ]]) | |
""" | |
A = np.atleast_2d(_asarray_validated(A, check_finite=True)) | |
if not np.equal(*A.shape): | |
raise ValueError('The data matrix for balancing should be square.') | |
gebal = get_lapack_funcs(('gebal'), (A,)) | |
B, lo, hi, ps, info = gebal(A, scale=scale, permute=permute, | |
overwrite_a=overwrite_a) | |
if info < 0: | |
raise ValueError('xGEBAL exited with the internal error ' | |
f'"illegal value in argument number {-info}.". See ' | |
'LAPACK documentation for the xGEBAL error codes.') | |
# Separate the permutations from the scalings and then convert to int | |
scaling = np.ones_like(ps, dtype=float) | |
scaling[lo:hi+1] = ps[lo:hi+1] | |
# gebal uses 1-indexing | |
ps = ps.astype(int, copy=False) - 1 | |
n = A.shape[0] | |
perm = np.arange(n) | |
# LAPACK permutes with the ordering n --> hi, then 0--> lo | |
if hi < n: | |
for ind, x in enumerate(ps[hi+1:][::-1], 1): | |
if n-ind == x: | |
continue | |
perm[[x, n-ind]] = perm[[n-ind, x]] | |
if lo > 0: | |
for ind, x in enumerate(ps[:lo]): | |
if ind == x: | |
continue | |
perm[[x, ind]] = perm[[ind, x]] | |
if separate: | |
return B, (scaling, perm) | |
# get the inverse permutation | |
iperm = np.empty_like(perm) | |
iperm[perm] = np.arange(n) | |
return B, np.diag(scaling)[iperm, :] | |
def _validate_args_for_toeplitz_ops(c_or_cr, b, check_finite, keep_b_shape, | |
enforce_square=True): | |
"""Validate arguments and format inputs for toeplitz functions | |
Parameters | |
---------- | |
c_or_cr : array_like or tuple of (array_like, array_like) | |
The vector ``c``, or a tuple of arrays (``c``, ``r``). Whatever the | |
actual shape of ``c``, it will be converted to a 1-D array. If not | |
supplied, ``r = conjugate(c)`` is assumed; in this case, if c[0] is | |
real, the Toeplitz matrix is Hermitian. r[0] is ignored; the first row | |
of the Toeplitz matrix is ``[c[0], r[1:]]``. Whatever the actual shape | |
of ``r``, it will be converted to a 1-D array. | |
b : (M,) or (M, K) array_like | |
Right-hand side in ``T x = b``. | |
check_finite : bool | |
Whether to check that the input matrices contain only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(result entirely NaNs) if the inputs do contain infinities or NaNs. | |
keep_b_shape : bool | |
Whether to convert a (M,) dimensional b into a (M, 1) dimensional | |
matrix. | |
enforce_square : bool, optional | |
If True (default), this verifies that the Toeplitz matrix is square. | |
Returns | |
------- | |
r : array | |
1d array corresponding to the first row of the Toeplitz matrix. | |
c: array | |
1d array corresponding to the first column of the Toeplitz matrix. | |
b: array | |
(M,), (M, 1) or (M, K) dimensional array, post validation, | |
corresponding to ``b``. | |
dtype: numpy datatype | |
``dtype`` stores the datatype of ``r``, ``c`` and ``b``. If any of | |
``r``, ``c`` or ``b`` are complex, ``dtype`` is ``np.complex128``, | |
otherwise, it is ``np.float``. | |
b_shape: tuple | |
Shape of ``b`` after passing it through ``_asarray_validated``. | |
""" | |
if isinstance(c_or_cr, tuple): | |
c, r = c_or_cr | |
c = _asarray_validated(c, check_finite=check_finite).ravel() | |
r = _asarray_validated(r, check_finite=check_finite).ravel() | |
else: | |
c = _asarray_validated(c_or_cr, check_finite=check_finite).ravel() | |
r = c.conjugate() | |
if b is None: | |
raise ValueError('`b` must be an array, not None.') | |
b = _asarray_validated(b, check_finite=check_finite) | |
b_shape = b.shape | |
is_not_square = r.shape[0] != c.shape[0] | |
if (enforce_square and is_not_square) or b.shape[0] != r.shape[0]: | |
raise ValueError('Incompatible dimensions.') | |
is_cmplx = np.iscomplexobj(r) or np.iscomplexobj(c) or np.iscomplexobj(b) | |
dtype = np.complex128 if is_cmplx else np.float64 | |
r, c, b = (np.asarray(i, dtype=dtype) for i in (r, c, b)) | |
if b.ndim == 1 and not keep_b_shape: | |
b = b.reshape(-1, 1) | |
elif b.ndim != 1: | |
b = b.reshape(b.shape[0], -1) | |
return r, c, b, dtype, b_shape | |
def matmul_toeplitz(c_or_cr, x, check_finite=False, workers=None): | |
"""Efficient Toeplitz Matrix-Matrix Multiplication using FFT | |
This function returns the matrix multiplication between a Toeplitz | |
matrix and a dense matrix. | |
The Toeplitz matrix has constant diagonals, with c as its first column | |
and r as its first row. If r is not given, ``r == conjugate(c)`` is | |
assumed. | |
Parameters | |
---------- | |
c_or_cr : array_like or tuple of (array_like, array_like) | |
The vector ``c``, or a tuple of arrays (``c``, ``r``). Whatever the | |
actual shape of ``c``, it will be converted to a 1-D array. If not | |
supplied, ``r = conjugate(c)`` is assumed; in this case, if c[0] is | |
real, the Toeplitz matrix is Hermitian. r[0] is ignored; the first row | |
of the Toeplitz matrix is ``[c[0], r[1:]]``. Whatever the actual shape | |
of ``r``, it will be converted to a 1-D array. | |
x : (M,) or (M, K) array_like | |
Matrix with which to multiply. | |
check_finite : bool, optional | |
Whether to check that the input matrices contain only finite numbers. | |
Disabling may give a performance gain, but may result in problems | |
(result entirely NaNs) if the inputs do contain infinities or NaNs. | |
workers : int, optional | |
To pass to scipy.fft.fft and ifft. Maximum number of workers to use | |
for parallel computation. If negative, the value wraps around from | |
``os.cpu_count()``. See scipy.fft.fft for more details. | |
Returns | |
------- | |
T @ x : (M,) or (M, K) ndarray | |
The result of the matrix multiplication ``T @ x``. Shape of return | |
matches shape of `x`. | |
See Also | |
-------- | |
toeplitz : Toeplitz matrix | |
solve_toeplitz : Solve a Toeplitz system using Levinson Recursion | |
Notes | |
----- | |
The Toeplitz matrix is embedded in a circulant matrix and the FFT is used | |
to efficiently calculate the matrix-matrix product. | |
Because the computation is based on the FFT, integer inputs will | |
result in floating point outputs. This is unlike NumPy's `matmul`, | |
which preserves the data type of the input. | |
This is partly based on the implementation that can be found in [1]_, | |
licensed under the MIT license. More information about the method can be | |
found in reference [2]_. References [3]_ and [4]_ have more reference | |
implementations in Python. | |
.. versionadded:: 1.6.0 | |
References | |
---------- | |
.. [1] Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian | |
Q Weinberger, Andrew Gordon Wilson, "GPyTorch: Blackbox Matrix-Matrix | |
Gaussian Process Inference with GPU Acceleration" with contributions | |
from Max Balandat and Ruihan Wu. Available online: | |
https://github.com/cornellius-gp/gpytorch | |
.. [2] J. Demmel, P. Koev, and X. Li, "A Brief Survey of Direct Linear | |
Solvers". In Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der | |
Vorst, editors. Templates for the Solution of Algebraic Eigenvalue | |
Problems: A Practical Guide. SIAM, Philadelphia, 2000. Available at: | |
http://www.netlib.org/utk/people/JackDongarra/etemplates/node384.html | |
.. [3] R. Scheibler, E. Bezzam, I. Dokmanic, Pyroomacoustics: A Python | |
package for audio room simulations and array processing algorithms, | |
Proc. IEEE ICASSP, Calgary, CA, 2018. | |
https://github.com/LCAV/pyroomacoustics/blob/pypi-release/ | |
pyroomacoustics/adaptive/util.py | |
.. [4] Marano S, Edwards B, Ferrari G and Fah D (2017), "Fitting | |
Earthquake Spectra: Colored Noise and Incomplete Data", Bulletin of | |
the Seismological Society of America., January, 2017. Vol. 107(1), | |
pp. 276-291. | |
Examples | |
-------- | |
Multiply the Toeplitz matrix T with matrix x:: | |
[ 1 -1 -2 -3] [1 10] | |
T = [ 3 1 -1 -2] x = [2 11] | |
[ 6 3 1 -1] [2 11] | |
[10 6 3 1] [5 19] | |
To specify the Toeplitz matrix, only the first column and the first | |
row are needed. | |
>>> import numpy as np | |
>>> c = np.array([1, 3, 6, 10]) # First column of T | |
>>> r = np.array([1, -1, -2, -3]) # First row of T | |
>>> x = np.array([[1, 10], [2, 11], [2, 11], [5, 19]]) | |
>>> from scipy.linalg import toeplitz, matmul_toeplitz | |
>>> matmul_toeplitz((c, r), x) | |
array([[-20., -80.], | |
[ -7., -8.], | |
[ 9., 85.], | |
[ 33., 218.]]) | |
Check the result by creating the full Toeplitz matrix and | |
multiplying it by ``x``. | |
>>> toeplitz(c, r) @ x | |
array([[-20, -80], | |
[ -7, -8], | |
[ 9, 85], | |
[ 33, 218]]) | |
The full matrix is never formed explicitly, so this routine | |
is suitable for very large Toeplitz matrices. | |
>>> n = 1000000 | |
>>> matmul_toeplitz([1] + [0]*(n-1), np.ones(n)) | |
array([1., 1., 1., ..., 1., 1., 1.]) | |
""" | |
from ..fft import fft, ifft, rfft, irfft | |
r, c, x, dtype, x_shape = _validate_args_for_toeplitz_ops( | |
c_or_cr, x, check_finite, keep_b_shape=False, enforce_square=False) | |
n, m = x.shape | |
T_nrows = len(c) | |
T_ncols = len(r) | |
p = T_nrows + T_ncols - 1 # equivalent to len(embedded_col) | |
embedded_col = np.concatenate((c, r[-1:0:-1])) | |
if np.iscomplexobj(embedded_col) or np.iscomplexobj(x): | |
fft_mat = fft(embedded_col, axis=0, workers=workers).reshape(-1, 1) | |
fft_x = fft(x, n=p, axis=0, workers=workers) | |
mat_times_x = ifft(fft_mat*fft_x, axis=0, | |
workers=workers)[:T_nrows, :] | |
else: | |
# Real inputs; using rfft is faster | |
fft_mat = rfft(embedded_col, axis=0, workers=workers).reshape(-1, 1) | |
fft_x = rfft(x, n=p, axis=0, workers=workers) | |
mat_times_x = irfft(fft_mat*fft_x, axis=0, | |
workers=workers, n=p)[:T_nrows, :] | |
return_shape = (T_nrows,) if len(x_shape) == 1 else (T_nrows, m) | |
return mat_times_x.reshape(*return_shape) | |