peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/linalg
/_decomp_cossin.py
from collections.abc import Iterable | |
import numpy as np | |
from scipy._lib._util import _asarray_validated | |
from scipy.linalg import block_diag, LinAlgError | |
from .lapack import _compute_lwork, get_lapack_funcs | |
__all__ = ['cossin'] | |
def cossin(X, p=None, q=None, separate=False, | |
swap_sign=False, compute_u=True, compute_vh=True): | |
""" | |
Compute the cosine-sine (CS) decomposition of an orthogonal/unitary matrix. | |
X is an ``(m, m)`` orthogonal/unitary matrix, partitioned as the following | |
where upper left block has the shape of ``(p, q)``:: | |
β β | |
β I 0 0 β 0 0 0 β | |
β β β ββ 0 C 0 β 0 -S 0 ββ β* | |
β X11 β X12 β β U1 β ββ 0 0 0 β 0 0 -I ββ V1 β β | |
β βββββΌββββ β = ββββββΌββββββββββββββββΌββββββββββββββββΌβββββ | |
β X21 β X22 β β β U2 ββ 0 0 0 β I 0 0 ββ β V2 β | |
β β β ββ 0 S 0 β 0 C 0 ββ β | |
β 0 0 I β 0 0 0 β | |
β β | |
``U1``, ``U2``, ``V1``, ``V2`` are square orthogonal/unitary matrices of | |
dimensions ``(p,p)``, ``(m-p,m-p)``, ``(q,q)``, and ``(m-q,m-q)`` | |
respectively, and ``C`` and ``S`` are ``(r, r)`` nonnegative diagonal | |
matrices satisfying ``C^2 + S^2 = I`` where ``r = min(p, m-p, q, m-q)``. | |
Moreover, the rank of the identity matrices are ``min(p, q) - r``, | |
``min(p, m - q) - r``, ``min(m - p, q) - r``, and ``min(m - p, m - q) - r`` | |
respectively. | |
X can be supplied either by itself and block specifications p, q or its | |
subblocks in an iterable from which the shapes would be derived. See the | |
examples below. | |
Parameters | |
---------- | |
X : array_like, iterable | |
complex unitary or real orthogonal matrix to be decomposed, or iterable | |
of subblocks ``X11``, ``X12``, ``X21``, ``X22``, when ``p``, ``q`` are | |
omitted. | |
p : int, optional | |
Number of rows of the upper left block ``X11``, used only when X is | |
given as an array. | |
q : int, optional | |
Number of columns of the upper left block ``X11``, used only when X is | |
given as an array. | |
separate : bool, optional | |
if ``True``, the low level components are returned instead of the | |
matrix factors, i.e. ``(u1,u2)``, ``theta``, ``(v1h,v2h)`` instead of | |
``u``, ``cs``, ``vh``. | |
swap_sign : bool, optional | |
if ``True``, the ``-S``, ``-I`` block will be the bottom left, | |
otherwise (by default) they will be in the upper right block. | |
compute_u : bool, optional | |
if ``False``, ``u`` won't be computed and an empty array is returned. | |
compute_vh : bool, optional | |
if ``False``, ``vh`` won't be computed and an empty array is returned. | |
Returns | |
------- | |
u : ndarray | |
When ``compute_u=True``, contains the block diagonal orthogonal/unitary | |
matrix consisting of the blocks ``U1`` (``p`` x ``p``) and ``U2`` | |
(``m-p`` x ``m-p``) orthogonal/unitary matrices. If ``separate=True``, | |
this contains the tuple of ``(U1, U2)``. | |
cs : ndarray | |
The cosine-sine factor with the structure described above. | |
If ``separate=True``, this contains the ``theta`` array containing the | |
angles in radians. | |
vh : ndarray | |
When ``compute_vh=True`, contains the block diagonal orthogonal/unitary | |
matrix consisting of the blocks ``V1H`` (``q`` x ``q``) and ``V2H`` | |
(``m-q`` x ``m-q``) orthogonal/unitary matrices. If ``separate=True``, | |
this contains the tuple of ``(V1H, V2H)``. | |
References | |
---------- | |
.. [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. | |
Algorithms, 50(1):33-65, 2009. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import cossin | |
>>> from scipy.stats import unitary_group | |
>>> x = unitary_group.rvs(4) | |
>>> u, cs, vdh = cossin(x, p=2, q=2) | |
>>> np.allclose(x, u @ cs @ vdh) | |
True | |
Same can be entered via subblocks without the need of ``p`` and ``q``. Also | |
let's skip the computation of ``u`` | |
>>> ue, cs, vdh = cossin((x[:2, :2], x[:2, 2:], x[2:, :2], x[2:, 2:]), | |
... compute_u=False) | |
>>> print(ue) | |
[] | |
>>> np.allclose(x, u @ cs @ vdh) | |
True | |
""" | |
if p or q: | |
p = 1 if p is None else int(p) | |
q = 1 if q is None else int(q) | |
X = _asarray_validated(X, check_finite=True) | |
if not np.equal(*X.shape): | |
raise ValueError("Cosine Sine decomposition only supports square" | |
f" matrices, got {X.shape}") | |
m = X.shape[0] | |
if p >= m or p <= 0: | |
raise ValueError(f"invalid p={p}, 0<p<{X.shape[0]} must hold") | |
if q >= m or q <= 0: | |
raise ValueError(f"invalid q={q}, 0<q<{X.shape[0]} must hold") | |
x11, x12, x21, x22 = X[:p, :q], X[:p, q:], X[p:, :q], X[p:, q:] | |
elif not isinstance(X, Iterable): | |
raise ValueError("When p and q are None, X must be an Iterable" | |
" containing the subblocks of X") | |
else: | |
if len(X) != 4: | |
raise ValueError("When p and q are None, exactly four arrays" | |
f" should be in X, got {len(X)}") | |
x11, x12, x21, x22 = (np.atleast_2d(x) for x in X) | |
for name, block in zip(["x11", "x12", "x21", "x22"], | |
[x11, x12, x21, x22]): | |
if block.shape[1] == 0: | |
raise ValueError(f"{name} can't be empty") | |
p, q = x11.shape | |
mmp, mmq = x22.shape | |
if x12.shape != (p, mmq): | |
raise ValueError(f"Invalid x12 dimensions: desired {(p, mmq)}, " | |
f"got {x12.shape}") | |
if x21.shape != (mmp, q): | |
raise ValueError(f"Invalid x21 dimensions: desired {(mmp, q)}, " | |
f"got {x21.shape}") | |
if p + mmp != q + mmq: | |
raise ValueError("The subblocks have compatible sizes but " | |
"don't form a square array (instead they form a" | |
" {}x{} array). This might be due to missing " | |
"p, q arguments.".format(p + mmp, q + mmq)) | |
m = p + mmp | |
cplx = any([np.iscomplexobj(x) for x in [x11, x12, x21, x22]]) | |
driver = "uncsd" if cplx else "orcsd" | |
csd, csd_lwork = get_lapack_funcs([driver, driver + "_lwork"], | |
[x11, x12, x21, x22]) | |
lwork = _compute_lwork(csd_lwork, m=m, p=p, q=q) | |
lwork_args = ({'lwork': lwork[0], 'lrwork': lwork[1]} if cplx else | |
{'lwork': lwork}) | |
*_, theta, u1, u2, v1h, v2h, info = csd(x11=x11, x12=x12, x21=x21, x22=x22, | |
compute_u1=compute_u, | |
compute_u2=compute_u, | |
compute_v1t=compute_vh, | |
compute_v2t=compute_vh, | |
trans=False, signs=swap_sign, | |
**lwork_args) | |
method_name = csd.typecode + driver | |
if info < 0: | |
raise ValueError(f'illegal value in argument {-info} ' | |
f'of internal {method_name}') | |
if info > 0: | |
raise LinAlgError(f"{method_name} did not converge: {info}") | |
if separate: | |
return (u1, u2), theta, (v1h, v2h) | |
U = block_diag(u1, u2) | |
VDH = block_diag(v1h, v2h) | |
# Construct the middle factor CS | |
c = np.diag(np.cos(theta)) | |
s = np.diag(np.sin(theta)) | |
r = min(p, q, m - p, m - q) | |
n11 = min(p, q) - r | |
n12 = min(p, m - q) - r | |
n21 = min(m - p, q) - r | |
n22 = min(m - p, m - q) - r | |
Id = np.eye(np.max([n11, n12, n21, n22, r]), dtype=theta.dtype) | |
CS = np.zeros((m, m), dtype=theta.dtype) | |
CS[:n11, :n11] = Id[:n11, :n11] | |
xs = n11 + r | |
xe = n11 + r + n12 | |
ys = n11 + n21 + n22 + 2 * r | |
ye = n11 + n21 + n22 + 2 * r + n12 | |
CS[xs: xe, ys:ye] = Id[:n12, :n12] if swap_sign else -Id[:n12, :n12] | |
xs = p + n22 + r | |
xe = p + n22 + r + + n21 | |
ys = n11 + r | |
ye = n11 + r + n21 | |
CS[xs:xe, ys:ye] = -Id[:n21, :n21] if swap_sign else Id[:n21, :n21] | |
CS[p:p + n22, q:q + n22] = Id[:n22, :n22] | |
CS[n11:n11 + r, n11:n11 + r] = c | |
CS[p + n22:p + n22 + r, r + n21 + n22:2 * r + n21 + n22] = c | |
xs = n11 | |
xe = n11 + r | |
ys = n11 + n21 + n22 + r | |
ye = n11 + n21 + n22 + 2 * r | |
CS[xs:xe, ys:ye] = s if swap_sign else -s | |
CS[p + n22:p + n22 + r, n11:n11 + r] = -s if swap_sign else s | |
return U, CS, VDH | |