peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/linalg
/_decomp_qz.py
import warnings | |
import numpy as np | |
from numpy import asarray_chkfinite | |
from ._misc import LinAlgError, _datacopied, LinAlgWarning | |
from .lapack import get_lapack_funcs | |
__all__ = ['qz', 'ordqz'] | |
_double_precision = ['i', 'l', 'd'] | |
def _select_function(sort): | |
if callable(sort): | |
# assume the user knows what they're doing | |
sfunction = sort | |
elif sort == 'lhp': | |
sfunction = _lhp | |
elif sort == 'rhp': | |
sfunction = _rhp | |
elif sort == 'iuc': | |
sfunction = _iuc | |
elif sort == 'ouc': | |
sfunction = _ouc | |
else: | |
raise ValueError("sort parameter must be None, a callable, or " | |
"one of ('lhp','rhp','iuc','ouc')") | |
return sfunction | |
def _lhp(x, y): | |
out = np.empty_like(x, dtype=bool) | |
nonzero = (y != 0) | |
# handles (x, y) = (0, 0) too | |
out[~nonzero] = False | |
out[nonzero] = (np.real(x[nonzero]/y[nonzero]) < 0.0) | |
return out | |
def _rhp(x, y): | |
out = np.empty_like(x, dtype=bool) | |
nonzero = (y != 0) | |
# handles (x, y) = (0, 0) too | |
out[~nonzero] = False | |
out[nonzero] = (np.real(x[nonzero]/y[nonzero]) > 0.0) | |
return out | |
def _iuc(x, y): | |
out = np.empty_like(x, dtype=bool) | |
nonzero = (y != 0) | |
# handles (x, y) = (0, 0) too | |
out[~nonzero] = False | |
out[nonzero] = (abs(x[nonzero]/y[nonzero]) < 1.0) | |
return out | |
def _ouc(x, y): | |
out = np.empty_like(x, dtype=bool) | |
xzero = (x == 0) | |
yzero = (y == 0) | |
out[xzero & yzero] = False | |
out[~xzero & yzero] = True | |
out[~yzero] = (abs(x[~yzero]/y[~yzero]) > 1.0) | |
return out | |
def _qz(A, B, output='real', lwork=None, sort=None, overwrite_a=False, | |
overwrite_b=False, check_finite=True): | |
if sort is not None: | |
# Disabled due to segfaults on win32, see ticket 1717. | |
raise ValueError("The 'sort' input of qz() has to be None and will be " | |
"removed in a future release. Use ordqz instead.") | |
if output not in ['real', 'complex', 'r', 'c']: | |
raise ValueError("argument must be 'real', or 'complex'") | |
if check_finite: | |
a1 = asarray_chkfinite(A) | |
b1 = asarray_chkfinite(B) | |
else: | |
a1 = np.asarray(A) | |
b1 = np.asarray(B) | |
a_m, a_n = a1.shape | |
b_m, b_n = b1.shape | |
if not (a_m == a_n == b_m == b_n): | |
raise ValueError("Array dimensions must be square and agree") | |
typa = a1.dtype.char | |
if output in ['complex', 'c'] and typa not in ['F', 'D']: | |
if typa in _double_precision: | |
a1 = a1.astype('D') | |
typa = 'D' | |
else: | |
a1 = a1.astype('F') | |
typa = 'F' | |
typb = b1.dtype.char | |
if output in ['complex', 'c'] and typb not in ['F', 'D']: | |
if typb in _double_precision: | |
b1 = b1.astype('D') | |
typb = 'D' | |
else: | |
b1 = b1.astype('F') | |
typb = 'F' | |
overwrite_a = overwrite_a or (_datacopied(a1, A)) | |
overwrite_b = overwrite_b or (_datacopied(b1, B)) | |
gges, = get_lapack_funcs(('gges',), (a1, b1)) | |
if lwork is None or lwork == -1: | |
# get optimal work array size | |
result = gges(lambda x: None, a1, b1, lwork=-1) | |
lwork = result[-2][0].real.astype(int) | |
def sfunction(x): | |
return None | |
result = gges(sfunction, a1, b1, lwork=lwork, overwrite_a=overwrite_a, | |
overwrite_b=overwrite_b, sort_t=0) | |
info = result[-1] | |
if info < 0: | |
raise ValueError(f"Illegal value in argument {-info} of gges") | |
elif info > 0 and info <= a_n: | |
warnings.warn("The QZ iteration failed. (a,b) are not in Schur " | |
"form, but ALPHAR(j), ALPHAI(j), and BETA(j) should be " | |
f"correct for J={info-1},...,N", LinAlgWarning, | |
stacklevel=3) | |
elif info == a_n+1: | |
raise LinAlgError("Something other than QZ iteration failed") | |
elif info == a_n+2: | |
raise LinAlgError("After reordering, roundoff changed values of some " | |
"complex eigenvalues so that leading eigenvalues " | |
"in the Generalized Schur form no longer satisfy " | |
"sort=True. This could also be due to scaling.") | |
elif info == a_n+3: | |
raise LinAlgError("Reordering failed in <s,d,c,z>tgsen") | |
return result, gges.typecode | |
def qz(A, B, output='real', lwork=None, sort=None, overwrite_a=False, | |
overwrite_b=False, check_finite=True): | |
""" | |
QZ decomposition for generalized eigenvalues of a pair of matrices. | |
The QZ, or generalized Schur, decomposition for a pair of n-by-n | |
matrices (A,B) is:: | |
(A,B) = (Q @ AA @ Z*, Q @ BB @ Z*) | |
where AA, BB is in generalized Schur form if BB is upper-triangular | |
with non-negative diagonal and AA is upper-triangular, or for real QZ | |
decomposition (``output='real'``) block upper triangular with 1x1 | |
and 2x2 blocks. In this case, the 1x1 blocks correspond to real | |
generalized eigenvalues and 2x2 blocks are 'standardized' by making | |
the corresponding elements of BB have the form:: | |
[ a 0 ] | |
[ 0 b ] | |
and the pair of corresponding 2x2 blocks in AA and BB will have a complex | |
conjugate pair of generalized eigenvalues. If (``output='complex'``) or | |
A and B are complex matrices, Z' denotes the conjugate-transpose of Z. | |
Q and Z are unitary matrices. | |
Parameters | |
---------- | |
A : (N, N) array_like | |
2-D array to decompose | |
B : (N, N) array_like | |
2-D array to decompose | |
output : {'real', 'complex'}, optional | |
Construct the real or complex QZ decomposition for real matrices. | |
Default is 'real'. | |
lwork : int, optional | |
Work array size. If None or -1, it is automatically computed. | |
sort : {None, callable, 'lhp', 'rhp', 'iuc', 'ouc'}, optional | |
NOTE: THIS INPUT IS DISABLED FOR NOW. Use ordqz instead. | |
Specifies whether the upper eigenvalues should be sorted. A callable | |
may be passed that, given a eigenvalue, returns a boolean denoting | |
whether the eigenvalue should be sorted to the top-left (True). For | |
real matrix pairs, the sort function takes three real arguments | |
(alphar, alphai, beta). The eigenvalue | |
``x = (alphar + alphai*1j)/beta``. For complex matrix pairs or | |
output='complex', the sort function takes two complex arguments | |
(alpha, beta). The eigenvalue ``x = (alpha/beta)``. Alternatively, | |
string parameters may be used: | |
- 'lhp' Left-hand plane (x.real < 0.0) | |
- 'rhp' Right-hand plane (x.real > 0.0) | |
- 'iuc' Inside the unit circle (x*x.conjugate() < 1.0) | |
- 'ouc' Outside the unit circle (x*x.conjugate() > 1.0) | |
Defaults to None (no sorting). | |
overwrite_a : bool, optional | |
Whether to overwrite data in a (may improve performance) | |
overwrite_b : bool, optional | |
Whether to overwrite data in b (may improve performance) | |
check_finite : bool, optional | |
If true checks the elements of `A` and `B` are finite numbers. If | |
false does no checking and passes matrix through to | |
underlying algorithm. | |
Returns | |
------- | |
AA : (N, N) ndarray | |
Generalized Schur form of A. | |
BB : (N, N) ndarray | |
Generalized Schur form of B. | |
Q : (N, N) ndarray | |
The left Schur vectors. | |
Z : (N, N) ndarray | |
The right Schur vectors. | |
See Also | |
-------- | |
ordqz | |
Notes | |
----- | |
Q is transposed versus the equivalent function in Matlab. | |
.. versionadded:: 0.11.0 | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import qz | |
>>> A = np.array([[1, 2, -1], [5, 5, 5], [2, 4, -8]]) | |
>>> B = np.array([[1, 1, -3], [3, 1, -1], [5, 6, -2]]) | |
Compute the decomposition. The QZ decomposition is not unique, so | |
depending on the underlying library that is used, there may be | |
differences in the signs of coefficients in the following output. | |
>>> AA, BB, Q, Z = qz(A, B) | |
>>> AA | |
array([[-1.36949157, -4.05459025, 7.44389431], | |
[ 0. , 7.65653432, 5.13476017], | |
[ 0. , -0.65978437, 2.4186015 ]]) # may vary | |
>>> BB | |
array([[ 1.71890633, -1.64723705, -0.72696385], | |
[ 0. , 8.6965692 , -0. ], | |
[ 0. , 0. , 2.27446233]]) # may vary | |
>>> Q | |
array([[-0.37048362, 0.1903278 , 0.90912992], | |
[-0.90073232, 0.16534124, -0.40167593], | |
[ 0.22676676, 0.96769706, -0.11017818]]) # may vary | |
>>> Z | |
array([[-0.67660785, 0.63528924, -0.37230283], | |
[ 0.70243299, 0.70853819, -0.06753907], | |
[ 0.22088393, -0.30721526, -0.92565062]]) # may vary | |
Verify the QZ decomposition. With real output, we only need the | |
transpose of ``Z`` in the following expressions. | |
>>> Q @ AA @ Z.T # Should be A | |
array([[ 1., 2., -1.], | |
[ 5., 5., 5.], | |
[ 2., 4., -8.]]) | |
>>> Q @ BB @ Z.T # Should be B | |
array([[ 1., 1., -3.], | |
[ 3., 1., -1.], | |
[ 5., 6., -2.]]) | |
Repeat the decomposition, but with ``output='complex'``. | |
>>> AA, BB, Q, Z = qz(A, B, output='complex') | |
For conciseness in the output, we use ``np.set_printoptions()`` to set | |
the output precision of NumPy arrays to 3 and display tiny values as 0. | |
>>> np.set_printoptions(precision=3, suppress=True) | |
>>> AA | |
array([[-1.369+0.j , 2.248+4.237j, 4.861-5.022j], | |
[ 0. +0.j , 7.037+2.922j, 0.794+4.932j], | |
[ 0. +0.j , 0. +0.j , 2.655-1.103j]]) # may vary | |
>>> BB | |
array([[ 1.719+0.j , -1.115+1.j , -0.763-0.646j], | |
[ 0. +0.j , 7.24 +0.j , -3.144+3.322j], | |
[ 0. +0.j , 0. +0.j , 2.732+0.j ]]) # may vary | |
>>> Q | |
array([[ 0.326+0.175j, -0.273-0.029j, -0.886-0.052j], | |
[ 0.794+0.426j, -0.093+0.134j, 0.402-0.02j ], | |
[-0.2 -0.107j, -0.816+0.482j, 0.151-0.167j]]) # may vary | |
>>> Z | |
array([[ 0.596+0.32j , -0.31 +0.414j, 0.393-0.347j], | |
[-0.619-0.332j, -0.479+0.314j, 0.154-0.393j], | |
[-0.195-0.104j, 0.576+0.27j , 0.715+0.187j]]) # may vary | |
With complex arrays, we must use ``Z.conj().T`` in the following | |
expressions to verify the decomposition. | |
>>> Q @ AA @ Z.conj().T # Should be A | |
array([[ 1.-0.j, 2.-0.j, -1.-0.j], | |
[ 5.+0.j, 5.+0.j, 5.-0.j], | |
[ 2.+0.j, 4.+0.j, -8.+0.j]]) | |
>>> Q @ BB @ Z.conj().T # Should be B | |
array([[ 1.+0.j, 1.+0.j, -3.+0.j], | |
[ 3.-0.j, 1.-0.j, -1.+0.j], | |
[ 5.+0.j, 6.+0.j, -2.+0.j]]) | |
""" | |
# output for real | |
# AA, BB, sdim, alphar, alphai, beta, vsl, vsr, work, info | |
# output for complex | |
# AA, BB, sdim, alpha, beta, vsl, vsr, work, info | |
result, _ = _qz(A, B, output=output, lwork=lwork, sort=sort, | |
overwrite_a=overwrite_a, overwrite_b=overwrite_b, | |
check_finite=check_finite) | |
return result[0], result[1], result[-4], result[-3] | |
def ordqz(A, B, sort='lhp', output='real', overwrite_a=False, | |
overwrite_b=False, check_finite=True): | |
"""QZ decomposition for a pair of matrices with reordering. | |
Parameters | |
---------- | |
A : (N, N) array_like | |
2-D array to decompose | |
B : (N, N) array_like | |
2-D array to decompose | |
sort : {callable, 'lhp', 'rhp', 'iuc', 'ouc'}, optional | |
Specifies whether the upper eigenvalues should be sorted. A | |
callable may be passed that, given an ordered pair ``(alpha, | |
beta)`` representing the eigenvalue ``x = (alpha/beta)``, | |
returns a boolean denoting whether the eigenvalue should be | |
sorted to the top-left (True). For the real matrix pairs | |
``beta`` is real while ``alpha`` can be complex, and for | |
complex matrix pairs both ``alpha`` and ``beta`` can be | |
complex. The callable must be able to accept a NumPy | |
array. Alternatively, string parameters may be used: | |
- 'lhp' Left-hand plane (x.real < 0.0) | |
- 'rhp' Right-hand plane (x.real > 0.0) | |
- 'iuc' Inside the unit circle (x*x.conjugate() < 1.0) | |
- 'ouc' Outside the unit circle (x*x.conjugate() > 1.0) | |
With the predefined sorting functions, an infinite eigenvalue | |
(i.e., ``alpha != 0`` and ``beta = 0``) is considered to lie in | |
neither the left-hand nor the right-hand plane, but it is | |
considered to lie outside the unit circle. For the eigenvalue | |
``(alpha, beta) = (0, 0)``, the predefined sorting functions | |
all return `False`. | |
output : str {'real','complex'}, optional | |
Construct the real or complex QZ decomposition for real matrices. | |
Default is 'real'. | |
overwrite_a : bool, optional | |
If True, the contents of A are overwritten. | |
overwrite_b : bool, optional | |
If True, the contents of B are overwritten. | |
check_finite : bool, optional | |
If true checks the elements of `A` and `B` are finite numbers. If | |
false does no checking and passes matrix through to | |
underlying algorithm. | |
Returns | |
------- | |
AA : (N, N) ndarray | |
Generalized Schur form of A. | |
BB : (N, N) ndarray | |
Generalized Schur form of B. | |
alpha : (N,) ndarray | |
alpha = alphar + alphai * 1j. See notes. | |
beta : (N,) ndarray | |
See notes. | |
Q : (N, N) ndarray | |
The left Schur vectors. | |
Z : (N, N) ndarray | |
The right Schur vectors. | |
See Also | |
-------- | |
qz | |
Notes | |
----- | |
On exit, ``(ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N``, will be the | |
generalized eigenvalues. ``ALPHAR(j) + ALPHAI(j)*i`` and | |
``BETA(j),j=1,...,N`` are the diagonals of the complex Schur form (S,T) | |
that would result if the 2-by-2 diagonal blocks of the real generalized | |
Schur form of (A,B) were further reduced to triangular form using complex | |
unitary transformations. If ALPHAI(j) is zero, then the jth eigenvalue is | |
real; if positive, then the ``j``\\ th and ``(j+1)``\\ st eigenvalues are a | |
complex conjugate pair, with ``ALPHAI(j+1)`` negative. | |
.. versionadded:: 0.17.0 | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.linalg import ordqz | |
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]]) | |
>>> B = np.array([[0, 6, 0, 0], [5, 0, 2, 1], [5, 2, 6, 6], [4, 7, 7, 7]]) | |
>>> AA, BB, alpha, beta, Q, Z = ordqz(A, B, sort='lhp') | |
Since we have sorted for left half plane eigenvalues, negatives come first | |
>>> (alpha/beta).real < 0 | |
array([ True, True, False, False], dtype=bool) | |
""" | |
(AA, BB, _, *ab, Q, Z, _, _), typ = _qz(A, B, output=output, sort=None, | |
overwrite_a=overwrite_a, | |
overwrite_b=overwrite_b, | |
check_finite=check_finite) | |
if typ == 's': | |
alpha, beta = ab[0] + ab[1]*np.complex64(1j), ab[2] | |
elif typ == 'd': | |
alpha, beta = ab[0] + ab[1]*1.j, ab[2] | |
else: | |
alpha, beta = ab | |
sfunction = _select_function(sort) | |
select = sfunction(alpha, beta) | |
tgsen = get_lapack_funcs('tgsen', (AA, BB)) | |
# the real case needs 4n + 16 lwork | |
lwork = 4*AA.shape[0] + 16 if typ in 'sd' else 1 | |
AAA, BBB, *ab, QQ, ZZ, _, _, _, _, info = tgsen(select, AA, BB, Q, Z, | |
ijob=0, | |
lwork=lwork, liwork=1) | |
# Once more for tgsen output | |
if typ == 's': | |
alpha, beta = ab[0] + ab[1]*np.complex64(1j), ab[2] | |
elif typ == 'd': | |
alpha, beta = ab[0] + ab[1]*1.j, ab[2] | |
else: | |
alpha, beta = ab | |
if info < 0: | |
raise ValueError(f"Illegal value in argument {-info} of tgsen") | |
elif info == 1: | |
raise ValueError("Reordering of (A, B) failed because the transformed" | |
" matrix pair (A, B) would be too far from " | |
"generalized Schur form; the problem is very " | |
"ill-conditioned. (A, B) may have been partially " | |
"reordered.") | |
return AAA, BBB, alpha, beta, QQ, ZZ | |