peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/linalg
/tests
/test_interpolative.py
#****************************************************************************** | |
# Copyright (C) 2013 Kenneth L. Ho | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions are met: | |
# | |
# Redistributions of source code must retain the above copyright notice, this | |
# list of conditions and the following disclaimer. Redistributions in binary | |
# form must reproduce the above copyright notice, this list of conditions and | |
# the following disclaimer in the documentation and/or other materials | |
# provided with the distribution. | |
# | |
# None of the names of the copyright holders may be used to endorse or | |
# promote products derived from this software without specific prior written | |
# permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE | |
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
# POSSIBILITY OF SUCH DAMAGE. | |
#****************************************************************************** | |
import scipy.linalg.interpolative as pymatrixid | |
import numpy as np | |
from scipy.linalg import hilbert, svdvals, norm | |
from scipy.sparse.linalg import aslinearoperator | |
from scipy.linalg.interpolative import interp_decomp | |
from numpy.testing import (assert_, assert_allclose, assert_equal, | |
assert_array_equal) | |
import pytest | |
from pytest import raises as assert_raises | |
import sys | |
_IS_32BIT = (sys.maxsize < 2**32) | |
def eps(): | |
yield 1e-12 | |
def A(request): | |
# construct Hilbert matrix | |
# set parameters | |
n = 300 | |
yield hilbert(n).astype(request.param) | |
def L(A): | |
yield aslinearoperator(A) | |
def rank(A, eps): | |
S = np.linalg.svd(A, compute_uv=False) | |
try: | |
rank = np.nonzero(S < eps)[0][0] | |
except IndexError: | |
rank = A.shape[0] | |
return rank | |
class TestInterpolativeDecomposition: | |
def test_real_id_fixed_precision(self, A, L, eps, rand, lin_op): | |
if _IS_32BIT and A.dtype == np.complex128 and rand: | |
pytest.xfail("bug in external fortran code") | |
# Test ID routines on a Hilbert matrix. | |
A_or_L = A if not lin_op else L | |
k, idx, proj = pymatrixid.interp_decomp(A_or_L, eps, rand=rand) | |
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj) | |
assert_allclose(A, B, rtol=eps, atol=1e-08) | |
def test_real_id_fixed_rank(self, A, L, eps, rank, rand, lin_op): | |
if _IS_32BIT and A.dtype == np.complex128 and rand: | |
pytest.xfail("bug in external fortran code") | |
k = rank | |
A_or_L = A if not lin_op else L | |
idx, proj = pymatrixid.interp_decomp(A_or_L, k, rand=rand) | |
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj) | |
assert_allclose(A, B, rtol=eps, atol=1e-08) | |
def test_real_id_skel_and_interp_matrices( | |
self, A, L, eps, rank, rand, lin_op): | |
k = rank | |
A_or_L = A if not lin_op else L | |
idx, proj = pymatrixid.interp_decomp(A_or_L, k, rand=rand) | |
P = pymatrixid.reconstruct_interp_matrix(idx, proj) | |
B = pymatrixid.reconstruct_skel_matrix(A, k, idx) | |
assert_allclose(B, A[:, idx[:k]], rtol=eps, atol=1e-08) | |
assert_allclose(B @ P, A, rtol=eps, atol=1e-08) | |
def test_svd_fixed_precison(self, A, L, eps, rand, lin_op): | |
if _IS_32BIT and A.dtype == np.complex128 and rand: | |
pytest.xfail("bug in external fortran code") | |
A_or_L = A if not lin_op else L | |
U, S, V = pymatrixid.svd(A_or_L, eps, rand=rand) | |
B = U * S @ V.T.conj() | |
assert_allclose(A, B, rtol=eps, atol=1e-08) | |
def test_svd_fixed_rank(self, A, L, eps, rank, rand, lin_op): | |
if _IS_32BIT and A.dtype == np.complex128 and rand: | |
pytest.xfail("bug in external fortran code") | |
k = rank | |
A_or_L = A if not lin_op else L | |
U, S, V = pymatrixid.svd(A_or_L, k, rand=rand) | |
B = U * S @ V.T.conj() | |
assert_allclose(A, B, rtol=eps, atol=1e-08) | |
def test_id_to_svd(self, A, eps, rank): | |
k = rank | |
idx, proj = pymatrixid.interp_decomp(A, k, rand=False) | |
U, S, V = pymatrixid.id_to_svd(A[:, idx[:k]], idx, proj) | |
B = U * S @ V.T.conj() | |
assert_allclose(A, B, rtol=eps, atol=1e-08) | |
def test_estimate_spectral_norm(self, A): | |
s = svdvals(A) | |
norm_2_est = pymatrixid.estimate_spectral_norm(A) | |
assert_allclose(norm_2_est, s[0], rtol=1e-6, atol=1e-8) | |
def test_estimate_spectral_norm_diff(self, A): | |
B = A.copy() | |
B[:, 0] *= 1.2 | |
s = svdvals(A - B) | |
norm_2_est = pymatrixid.estimate_spectral_norm_diff(A, B) | |
assert_allclose(norm_2_est, s[0], rtol=1e-6, atol=1e-8) | |
def test_rank_estimates_array(self, A): | |
B = np.array([[1, 1, 0], [0, 0, 1], [0, 0, 1]], dtype=A.dtype) | |
for M in [A, B]: | |
rank_tol = 1e-9 | |
rank_np = np.linalg.matrix_rank(M, norm(M, 2) * rank_tol) | |
rank_est = pymatrixid.estimate_rank(M, rank_tol) | |
assert_(rank_est >= rank_np) | |
assert_(rank_est <= rank_np + 10) | |
def test_rank_estimates_lin_op(self, A): | |
B = np.array([[1, 1, 0], [0, 0, 1], [0, 0, 1]], dtype=A.dtype) | |
for M in [A, B]: | |
ML = aslinearoperator(M) | |
rank_tol = 1e-9 | |
rank_np = np.linalg.matrix_rank(M, norm(M, 2) * rank_tol) | |
rank_est = pymatrixid.estimate_rank(ML, rank_tol) | |
assert_(rank_est >= rank_np - 4) | |
assert_(rank_est <= rank_np + 4) | |
def test_rand(self): | |
pymatrixid.seed('default') | |
assert_allclose(pymatrixid.rand(2), [0.8932059, 0.64500803], | |
rtol=1e-4, atol=1e-8) | |
pymatrixid.seed(1234) | |
x1 = pymatrixid.rand(2) | |
assert_allclose(x1, [0.7513823, 0.06861718], rtol=1e-4, atol=1e-8) | |
np.random.seed(1234) | |
pymatrixid.seed() | |
x2 = pymatrixid.rand(2) | |
np.random.seed(1234) | |
pymatrixid.seed(np.random.rand(55)) | |
x3 = pymatrixid.rand(2) | |
assert_allclose(x1, x2) | |
assert_allclose(x1, x3) | |
def test_badcall(self): | |
A = hilbert(5).astype(np.float32) | |
with assert_raises(ValueError): | |
pymatrixid.interp_decomp(A, 1e-6, rand=False) | |
def test_rank_too_large(self): | |
# svd(array, k) should not segfault | |
a = np.ones((4, 3)) | |
with assert_raises(ValueError): | |
pymatrixid.svd(a, 4) | |
def test_full_rank(self): | |
eps = 1.0e-12 | |
# fixed precision | |
A = np.random.rand(16, 8) | |
k, idx, proj = pymatrixid.interp_decomp(A, eps) | |
assert_equal(k, A.shape[1]) | |
P = pymatrixid.reconstruct_interp_matrix(idx, proj) | |
B = pymatrixid.reconstruct_skel_matrix(A, k, idx) | |
assert_allclose(A, B @ P) | |
# fixed rank | |
idx, proj = pymatrixid.interp_decomp(A, k) | |
P = pymatrixid.reconstruct_interp_matrix(idx, proj) | |
B = pymatrixid.reconstruct_skel_matrix(A, k, idx) | |
assert_allclose(A, B @ P) | |
def test_bug_9793(self, dtype, rand, eps): | |
if _IS_32BIT and dtype == np.complex128 and rand: | |
pytest.xfail("bug in external fortran code") | |
A = np.array([[-1, -1, -1, 0, 0, 0], | |
[0, 0, 0, 1, 1, 1], | |
[1, 0, 0, 1, 0, 0], | |
[0, 1, 0, 0, 1, 0], | |
[0, 0, 1, 0, 0, 1]], | |
dtype=dtype, order="C") | |
B = A.copy() | |
interp_decomp(A.T, eps, rand=rand) | |
assert_array_equal(A, B) | |