peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/optimize
/_minpack_py.py
import warnings | |
from . import _minpack | |
import numpy as np | |
from numpy import (atleast_1d, triu, shape, transpose, zeros, prod, greater, | |
asarray, inf, | |
finfo, inexact, issubdtype, dtype) | |
from scipy import linalg | |
from scipy.linalg import svd, cholesky, solve_triangular, LinAlgError | |
from scipy._lib._util import _asarray_validated, _lazywhere, _contains_nan | |
from scipy._lib._util import getfullargspec_no_self as _getfullargspec | |
from ._optimize import OptimizeResult, _check_unknown_options, OptimizeWarning | |
from ._lsq import least_squares | |
# from ._lsq.common import make_strictly_feasible | |
from ._lsq.least_squares import prepare_bounds | |
from scipy.optimize._minimize import Bounds | |
# deprecated imports to be removed in SciPy 1.13.0 | |
from numpy import dot, eye, take # noqa: F401 | |
from numpy.linalg import inv # noqa: F401 | |
error = _minpack.error | |
__all__ = ['fsolve', 'leastsq', 'fixed_point', 'curve_fit'] | |
def _check_func(checker, argname, thefunc, x0, args, numinputs, | |
output_shape=None): | |
res = atleast_1d(thefunc(*((x0[:numinputs],) + args))) | |
if (output_shape is not None) and (shape(res) != output_shape): | |
if (output_shape[0] != 1): | |
if len(output_shape) > 1: | |
if output_shape[1] == 1: | |
return shape(res) | |
msg = f"{checker}: there is a mismatch between the input and output " \ | |
f"shape of the '{argname}' argument" | |
func_name = getattr(thefunc, '__name__', None) | |
if func_name: | |
msg += " '%s'." % func_name | |
else: | |
msg += "." | |
msg += f'Shape should be {output_shape} but it is {shape(res)}.' | |
raise TypeError(msg) | |
if issubdtype(res.dtype, inexact): | |
dt = res.dtype | |
else: | |
dt = dtype(float) | |
return shape(res), dt | |
def fsolve(func, x0, args=(), fprime=None, full_output=0, | |
col_deriv=0, xtol=1.49012e-8, maxfev=0, band=None, | |
epsfcn=None, factor=100, diag=None): | |
""" | |
Find the roots of a function. | |
Return the roots of the (non-linear) equations defined by | |
``func(x) = 0`` given a starting estimate. | |
Parameters | |
---------- | |
func : callable ``f(x, *args)`` | |
A function that takes at least one (possibly vector) argument, | |
and returns a value of the same length. | |
x0 : ndarray | |
The starting estimate for the roots of ``func(x) = 0``. | |
args : tuple, optional | |
Any extra arguments to `func`. | |
fprime : callable ``f(x, *args)``, optional | |
A function to compute the Jacobian of `func` with derivatives | |
across the rows. By default, the Jacobian will be estimated. | |
full_output : bool, optional | |
If True, return optional outputs. | |
col_deriv : bool, optional | |
Specify whether the Jacobian function computes derivatives down | |
the columns (faster, because there is no transpose operation). | |
xtol : float, optional | |
The calculation will terminate if the relative error between two | |
consecutive iterates is at most `xtol`. | |
maxfev : int, optional | |
The maximum number of calls to the function. If zero, then | |
``100*(N+1)`` is the maximum where N is the number of elements | |
in `x0`. | |
band : tuple, optional | |
If set to a two-sequence containing the number of sub- and | |
super-diagonals within the band of the Jacobi matrix, the | |
Jacobi matrix is considered banded (only for ``fprime=None``). | |
epsfcn : float, optional | |
A suitable step length for the forward-difference | |
approximation of the Jacobian (for ``fprime=None``). If | |
`epsfcn` is less than the machine precision, it is assumed | |
that the relative errors in the functions are of the order of | |
the machine precision. | |
factor : float, optional | |
A parameter determining the initial step bound | |
(``factor * || diag * x||``). Should be in the interval | |
``(0.1, 100)``. | |
diag : sequence, optional | |
N positive entries that serve as a scale factors for the | |
variables. | |
Returns | |
------- | |
x : ndarray | |
The solution (or the result of the last iteration for | |
an unsuccessful call). | |
infodict : dict | |
A dictionary of optional outputs with the keys: | |
``nfev`` | |
number of function calls | |
``njev`` | |
number of Jacobian calls | |
``fvec`` | |
function evaluated at the output | |
``fjac`` | |
the orthogonal matrix, q, produced by the QR | |
factorization of the final approximate Jacobian | |
matrix, stored column wise | |
``r`` | |
upper triangular matrix produced by QR factorization | |
of the same matrix | |
``qtf`` | |
the vector ``(transpose(q) * fvec)`` | |
ier : int | |
An integer flag. Set to 1 if a solution was found, otherwise refer | |
to `mesg` for more information. | |
mesg : str | |
If no solution is found, `mesg` details the cause of failure. | |
See Also | |
-------- | |
root : Interface to root finding algorithms for multivariate | |
functions. See the ``method='hybr'`` in particular. | |
Notes | |
----- | |
``fsolve`` is a wrapper around MINPACK's hybrd and hybrj algorithms. | |
Examples | |
-------- | |
Find a solution to the system of equations: | |
``x0*cos(x1) = 4, x1*x0 - x1 = 5``. | |
>>> import numpy as np | |
>>> from scipy.optimize import fsolve | |
>>> def func(x): | |
... return [x[0] * np.cos(x[1]) - 4, | |
... x[1] * x[0] - x[1] - 5] | |
>>> root = fsolve(func, [1, 1]) | |
>>> root | |
array([6.50409711, 0.90841421]) | |
>>> np.isclose(func(root), [0.0, 0.0]) # func(root) should be almost 0.0. | |
array([ True, True]) | |
""" | |
options = {'col_deriv': col_deriv, | |
'xtol': xtol, | |
'maxfev': maxfev, | |
'band': band, | |
'eps': epsfcn, | |
'factor': factor, | |
'diag': diag} | |
res = _root_hybr(func, x0, args, jac=fprime, **options) | |
if full_output: | |
x = res['x'] | |
info = {k: res.get(k) | |
for k in ('nfev', 'njev', 'fjac', 'r', 'qtf') if k in res} | |
info['fvec'] = res['fun'] | |
return x, info, res['status'], res['message'] | |
else: | |
status = res['status'] | |
msg = res['message'] | |
if status == 0: | |
raise TypeError(msg) | |
elif status == 1: | |
pass | |
elif status in [2, 3, 4, 5]: | |
warnings.warn(msg, RuntimeWarning, stacklevel=2) | |
else: | |
raise TypeError(msg) | |
return res['x'] | |
def _root_hybr(func, x0, args=(), jac=None, | |
col_deriv=0, xtol=1.49012e-08, maxfev=0, band=None, eps=None, | |
factor=100, diag=None, **unknown_options): | |
""" | |
Find the roots of a multivariate function using MINPACK's hybrd and | |
hybrj routines (modified Powell method). | |
Options | |
------- | |
col_deriv : bool | |
Specify whether the Jacobian function computes derivatives down | |
the columns (faster, because there is no transpose operation). | |
xtol : float | |
The calculation will terminate if the relative error between two | |
consecutive iterates is at most `xtol`. | |
maxfev : int | |
The maximum number of calls to the function. If zero, then | |
``100*(N+1)`` is the maximum where N is the number of elements | |
in `x0`. | |
band : tuple | |
If set to a two-sequence containing the number of sub- and | |
super-diagonals within the band of the Jacobi matrix, the | |
Jacobi matrix is considered banded (only for ``fprime=None``). | |
eps : float | |
A suitable step length for the forward-difference | |
approximation of the Jacobian (for ``fprime=None``). If | |
`eps` is less than the machine precision, it is assumed | |
that the relative errors in the functions are of the order of | |
the machine precision. | |
factor : float | |
A parameter determining the initial step bound | |
(``factor * || diag * x||``). Should be in the interval | |
``(0.1, 100)``. | |
diag : sequence | |
N positive entries that serve as a scale factors for the | |
variables. | |
""" | |
_check_unknown_options(unknown_options) | |
epsfcn = eps | |
x0 = asarray(x0).flatten() | |
n = len(x0) | |
if not isinstance(args, tuple): | |
args = (args,) | |
shape, dtype = _check_func('fsolve', 'func', func, x0, args, n, (n,)) | |
if epsfcn is None: | |
epsfcn = finfo(dtype).eps | |
Dfun = jac | |
if Dfun is None: | |
if band is None: | |
ml, mu = -10, -10 | |
else: | |
ml, mu = band[:2] | |
if maxfev == 0: | |
maxfev = 200 * (n + 1) | |
retval = _minpack._hybrd(func, x0, args, 1, xtol, maxfev, | |
ml, mu, epsfcn, factor, diag) | |
else: | |
_check_func('fsolve', 'fprime', Dfun, x0, args, n, (n, n)) | |
if (maxfev == 0): | |
maxfev = 100 * (n + 1) | |
retval = _minpack._hybrj(func, Dfun, x0, args, 1, | |
col_deriv, xtol, maxfev, factor, diag) | |
x, status = retval[0], retval[-1] | |
errors = {0: "Improper input parameters were entered.", | |
1: "The solution converged.", | |
2: "The number of calls to function has " | |
"reached maxfev = %d." % maxfev, | |
3: "xtol=%f is too small, no further improvement " | |
"in the approximate\n solution " | |
"is possible." % xtol, | |
4: "The iteration is not making good progress, as measured " | |
"by the \n improvement from the last five " | |
"Jacobian evaluations.", | |
5: "The iteration is not making good progress, " | |
"as measured by the \n improvement from the last " | |
"ten iterations.", | |
'unknown': "An error occurred."} | |
info = retval[1] | |
info['fun'] = info.pop('fvec') | |
sol = OptimizeResult(x=x, success=(status == 1), status=status, | |
method="hybr") | |
sol.update(info) | |
try: | |
sol['message'] = errors[status] | |
except KeyError: | |
sol['message'] = errors['unknown'] | |
return sol | |
LEASTSQ_SUCCESS = [1, 2, 3, 4] | |
LEASTSQ_FAILURE = [5, 6, 7, 8] | |
def leastsq(func, x0, args=(), Dfun=None, full_output=False, | |
col_deriv=False, ftol=1.49012e-8, xtol=1.49012e-8, | |
gtol=0.0, maxfev=0, epsfcn=None, factor=100, diag=None): | |
""" | |
Minimize the sum of squares of a set of equations. | |
:: | |
x = arg min(sum(func(y)**2,axis=0)) | |
y | |
Parameters | |
---------- | |
func : callable | |
Should take at least one (possibly length ``N`` vector) argument and | |
returns ``M`` floating point numbers. It must not return NaNs or | |
fitting might fail. ``M`` must be greater than or equal to ``N``. | |
x0 : ndarray | |
The starting estimate for the minimization. | |
args : tuple, optional | |
Any extra arguments to func are placed in this tuple. | |
Dfun : callable, optional | |
A function or method to compute the Jacobian of func with derivatives | |
across the rows. If this is None, the Jacobian will be estimated. | |
full_output : bool, optional | |
If ``True``, return all optional outputs (not just `x` and `ier`). | |
col_deriv : bool, optional | |
If ``True``, specify that the Jacobian function computes derivatives | |
down the columns (faster, because there is no transpose operation). | |
ftol : float, optional | |
Relative error desired in the sum of squares. | |
xtol : float, optional | |
Relative error desired in the approximate solution. | |
gtol : float, optional | |
Orthogonality desired between the function vector and the columns of | |
the Jacobian. | |
maxfev : int, optional | |
The maximum number of calls to the function. If `Dfun` is provided, | |
then the default `maxfev` is 100*(N+1) where N is the number of elements | |
in x0, otherwise the default `maxfev` is 200*(N+1). | |
epsfcn : float, optional | |
A variable used in determining a suitable step length for the forward- | |
difference approximation of the Jacobian (for Dfun=None). | |
Normally the actual step length will be sqrt(epsfcn)*x | |
If epsfcn is less than the machine precision, it is assumed that the | |
relative errors are of the order of the machine precision. | |
factor : float, optional | |
A parameter determining the initial step bound | |
(``factor * || diag * x||``). Should be in interval ``(0.1, 100)``. | |
diag : sequence, optional | |
N positive entries that serve as a scale factors for the variables. | |
Returns | |
------- | |
x : ndarray | |
The solution (or the result of the last iteration for an unsuccessful | |
call). | |
cov_x : ndarray | |
The inverse of the Hessian. `fjac` and `ipvt` are used to construct an | |
estimate of the Hessian. A value of None indicates a singular matrix, | |
which means the curvature in parameters `x` is numerically flat. To | |
obtain the covariance matrix of the parameters `x`, `cov_x` must be | |
multiplied by the variance of the residuals -- see curve_fit. Only | |
returned if `full_output` is ``True``. | |
infodict : dict | |
a dictionary of optional outputs with the keys: | |
``nfev`` | |
The number of function calls | |
``fvec`` | |
The function evaluated at the output | |
``fjac`` | |
A permutation of the R matrix of a QR | |
factorization of the final approximate | |
Jacobian matrix, stored column wise. | |
Together with ipvt, the covariance of the | |
estimate can be approximated. | |
``ipvt`` | |
An integer array of length N which defines | |
a permutation matrix, p, such that | |
fjac*p = q*r, where r is upper triangular | |
with diagonal elements of nonincreasing | |
magnitude. Column j of p is column ipvt(j) | |
of the identity matrix. | |
``qtf`` | |
The vector (transpose(q) * fvec). | |
Only returned if `full_output` is ``True``. | |
mesg : str | |
A string message giving information about the cause of failure. | |
Only returned if `full_output` is ``True``. | |
ier : int | |
An integer flag. If it is equal to 1, 2, 3 or 4, the solution was | |
found. Otherwise, the solution was not found. In either case, the | |
optional output variable 'mesg' gives more information. | |
See Also | |
-------- | |
least_squares : Newer interface to solve nonlinear least-squares problems | |
with bounds on the variables. See ``method='lm'`` in particular. | |
Notes | |
----- | |
"leastsq" is a wrapper around MINPACK's lmdif and lmder algorithms. | |
cov_x is a Jacobian approximation to the Hessian of the least squares | |
objective function. | |
This approximation assumes that the objective function is based on the | |
difference between some observed target data (ydata) and a (non-linear) | |
function of the parameters `f(xdata, params)` :: | |
func(params) = ydata - f(xdata, params) | |
so that the objective function is :: | |
min sum((ydata - f(xdata, params))**2, axis=0) | |
params | |
The solution, `x`, is always a 1-D array, regardless of the shape of `x0`, | |
or whether `x0` is a scalar. | |
Examples | |
-------- | |
>>> from scipy.optimize import leastsq | |
>>> def func(x): | |
... return 2*(x-3)**2+1 | |
>>> leastsq(func, 0) | |
(array([2.99999999]), 1) | |
""" | |
x0 = asarray(x0).flatten() | |
n = len(x0) | |
if not isinstance(args, tuple): | |
args = (args,) | |
shape, dtype = _check_func('leastsq', 'func', func, x0, args, n) | |
m = shape[0] | |
if n > m: | |
raise TypeError(f"Improper input: func input vector length N={n} must" | |
f" not exceed func output vector length M={m}") | |
if epsfcn is None: | |
epsfcn = finfo(dtype).eps | |
if Dfun is None: | |
if maxfev == 0: | |
maxfev = 200*(n + 1) | |
retval = _minpack._lmdif(func, x0, args, full_output, ftol, xtol, | |
gtol, maxfev, epsfcn, factor, diag) | |
else: | |
if col_deriv: | |
_check_func('leastsq', 'Dfun', Dfun, x0, args, n, (n, m)) | |
else: | |
_check_func('leastsq', 'Dfun', Dfun, x0, args, n, (m, n)) | |
if maxfev == 0: | |
maxfev = 100 * (n + 1) | |
retval = _minpack._lmder(func, Dfun, x0, args, full_output, | |
col_deriv, ftol, xtol, gtol, maxfev, | |
factor, diag) | |
errors = {0: ["Improper input parameters.", TypeError], | |
1: ["Both actual and predicted relative reductions " | |
"in the sum of squares\n are at most %f" % ftol, None], | |
2: ["The relative error between two consecutive " | |
"iterates is at most %f" % xtol, None], | |
3: ["Both actual and predicted relative reductions in " | |
f"the sum of squares\n are at most {ftol:f} and the " | |
"relative error between two consecutive " | |
f"iterates is at \n most {xtol:f}", None], | |
4: ["The cosine of the angle between func(x) and any " | |
"column of the\n Jacobian is at most %f in " | |
"absolute value" % gtol, None], | |
5: ["Number of calls to function has reached " | |
"maxfev = %d." % maxfev, ValueError], | |
6: ["ftol=%f is too small, no further reduction " | |
"in the sum of squares\n is possible." % ftol, | |
ValueError], | |
7: ["xtol=%f is too small, no further improvement in " | |
"the approximate\n solution is possible." % xtol, | |
ValueError], | |
8: ["gtol=%f is too small, func(x) is orthogonal to the " | |
"columns of\n the Jacobian to machine " | |
"precision." % gtol, ValueError]} | |
# The FORTRAN return value (possible return values are >= 0 and <= 8) | |
info = retval[-1] | |
if full_output: | |
cov_x = None | |
if info in LEASTSQ_SUCCESS: | |
# This was | |
# perm = take(eye(n), retval[1]['ipvt'] - 1, 0) | |
# r = triu(transpose(retval[1]['fjac'])[:n, :]) | |
# R = dot(r, perm) | |
# cov_x = inv(dot(transpose(R), R)) | |
# but the explicit dot product was not necessary and sometimes | |
# the result was not symmetric positive definite. See gh-4555. | |
perm = retval[1]['ipvt'] - 1 | |
n = len(perm) | |
r = triu(transpose(retval[1]['fjac'])[:n, :]) | |
inv_triu = linalg.get_lapack_funcs('trtri', (r,)) | |
try: | |
# inverse of permuted matrix is a permutation of matrix inverse | |
invR, trtri_info = inv_triu(r) # default: upper, non-unit diag | |
if trtri_info != 0: # explicit comparison for readability | |
raise LinAlgError(f'trtri returned info {trtri_info}') | |
invR[perm] = invR.copy() | |
cov_x = invR @ invR.T | |
except (LinAlgError, ValueError): | |
pass | |
return (retval[0], cov_x) + retval[1:-1] + (errors[info][0], info) | |
else: | |
if info in LEASTSQ_FAILURE: | |
warnings.warn(errors[info][0], RuntimeWarning, stacklevel=2) | |
elif info == 0: | |
raise errors[info][1](errors[info][0]) | |
return retval[0], info | |
def _lightweight_memoizer(f): | |
# very shallow memoization to address gh-13670: only remember the first set | |
# of parameters and corresponding function value, and only attempt to use | |
# them twice (the number of times the function is evaluated at x0). | |
def _memoized_func(params): | |
if _memoized_func.skip_lookup: | |
return f(params) | |
if np.all(_memoized_func.last_params == params): | |
return _memoized_func.last_val | |
elif _memoized_func.last_params is not None: | |
_memoized_func.skip_lookup = True | |
val = f(params) | |
if _memoized_func.last_params is None: | |
_memoized_func.last_params = np.copy(params) | |
_memoized_func.last_val = val | |
return val | |
_memoized_func.last_params = None | |
_memoized_func.last_val = None | |
_memoized_func.skip_lookup = False | |
return _memoized_func | |
def _wrap_func(func, xdata, ydata, transform): | |
if transform is None: | |
def func_wrapped(params): | |
return func(xdata, *params) - ydata | |
elif transform.size == 1 or transform.ndim == 1: | |
def func_wrapped(params): | |
return transform * (func(xdata, *params) - ydata) | |
else: | |
# Chisq = (y - yd)^T C^{-1} (y-yd) | |
# transform = L such that C = L L^T | |
# C^{-1} = L^{-T} L^{-1} | |
# Chisq = (y - yd)^T L^{-T} L^{-1} (y-yd) | |
# Define (y-yd)' = L^{-1} (y-yd) | |
# by solving | |
# L (y-yd)' = (y-yd) | |
# and minimize (y-yd)'^T (y-yd)' | |
def func_wrapped(params): | |
return solve_triangular(transform, func(xdata, *params) - ydata, lower=True) | |
return func_wrapped | |
def _wrap_jac(jac, xdata, transform): | |
if transform is None: | |
def jac_wrapped(params): | |
return jac(xdata, *params) | |
elif transform.ndim == 1: | |
def jac_wrapped(params): | |
return transform[:, np.newaxis] * np.asarray(jac(xdata, *params)) | |
else: | |
def jac_wrapped(params): | |
return solve_triangular(transform, | |
np.asarray(jac(xdata, *params)), | |
lower=True) | |
return jac_wrapped | |
def _initialize_feasible(lb, ub): | |
p0 = np.ones_like(lb) | |
lb_finite = np.isfinite(lb) | |
ub_finite = np.isfinite(ub) | |
mask = lb_finite & ub_finite | |
p0[mask] = 0.5 * (lb[mask] + ub[mask]) | |
mask = lb_finite & ~ub_finite | |
p0[mask] = lb[mask] + 1 | |
mask = ~lb_finite & ub_finite | |
p0[mask] = ub[mask] - 1 | |
return p0 | |
def curve_fit(f, xdata, ydata, p0=None, sigma=None, absolute_sigma=False, | |
check_finite=None, bounds=(-np.inf, np.inf), method=None, | |
jac=None, *, full_output=False, nan_policy=None, | |
**kwargs): | |
""" | |
Use non-linear least squares to fit a function, f, to data. | |
Assumes ``ydata = f(xdata, *params) + eps``. | |
Parameters | |
---------- | |
f : callable | |
The model function, f(x, ...). It must take the independent | |
variable as the first argument and the parameters to fit as | |
separate remaining arguments. | |
xdata : array_like | |
The independent variable where the data is measured. | |
Should usually be an M-length sequence or an (k,M)-shaped array for | |
functions with k predictors, and each element should be float | |
convertible if it is an array like object. | |
ydata : array_like | |
The dependent data, a length M array - nominally ``f(xdata, ...)``. | |
p0 : array_like, optional | |
Initial guess for the parameters (length N). If None, then the | |
initial values will all be 1 (if the number of parameters for the | |
function can be determined using introspection, otherwise a | |
ValueError is raised). | |
sigma : None or scalar or M-length sequence or MxM array, optional | |
Determines the uncertainty in `ydata`. If we define residuals as | |
``r = ydata - f(xdata, *popt)``, then the interpretation of `sigma` | |
depends on its number of dimensions: | |
- A scalar or 1-D `sigma` should contain values of standard deviations of | |
errors in `ydata`. In this case, the optimized function is | |
``chisq = sum((r / sigma) ** 2)``. | |
- A 2-D `sigma` should contain the covariance matrix of | |
errors in `ydata`. In this case, the optimized function is | |
``chisq = r.T @ inv(sigma) @ r``. | |
.. versionadded:: 0.19 | |
None (default) is equivalent of 1-D `sigma` filled with ones. | |
absolute_sigma : bool, optional | |
If True, `sigma` is used in an absolute sense and the estimated parameter | |
covariance `pcov` reflects these absolute values. | |
If False (default), only the relative magnitudes of the `sigma` values matter. | |
The returned parameter covariance matrix `pcov` is based on scaling | |
`sigma` by a constant factor. This constant is set by demanding that the | |
reduced `chisq` for the optimal parameters `popt` when using the | |
*scaled* `sigma` equals unity. In other words, `sigma` is scaled to | |
match the sample variance of the residuals after the fit. Default is False. | |
Mathematically, | |
``pcov(absolute_sigma=False) = pcov(absolute_sigma=True) * chisq(popt)/(M-N)`` | |
check_finite : bool, optional | |
If True, check that the input arrays do not contain nans of infs, | |
and raise a ValueError if they do. Setting this parameter to | |
False may silently produce nonsensical results if the input arrays | |
do contain nans. Default is True if `nan_policy` is not specified | |
explicitly and False otherwise. | |
bounds : 2-tuple of array_like or `Bounds`, optional | |
Lower and upper bounds on parameters. Defaults to no bounds. | |
There are two ways to specify the bounds: | |
- Instance of `Bounds` class. | |
- 2-tuple of array_like: Each element of the tuple must be either | |
an array with the length equal to the number of parameters, or a | |
scalar (in which case the bound is taken to be the same for all | |
parameters). Use ``np.inf`` with an appropriate sign to disable | |
bounds on all or some parameters. | |
method : {'lm', 'trf', 'dogbox'}, optional | |
Method to use for optimization. See `least_squares` for more details. | |
Default is 'lm' for unconstrained problems and 'trf' if `bounds` are | |
provided. The method 'lm' won't work when the number of observations | |
is less than the number of variables, use 'trf' or 'dogbox' in this | |
case. | |
.. versionadded:: 0.17 | |
jac : callable, string or None, optional | |
Function with signature ``jac(x, ...)`` which computes the Jacobian | |
matrix of the model function with respect to parameters as a dense | |
array_like structure. It will be scaled according to provided `sigma`. | |
If None (default), the Jacobian will be estimated numerically. | |
String keywords for 'trf' and 'dogbox' methods can be used to select | |
a finite difference scheme, see `least_squares`. | |
.. versionadded:: 0.18 | |
full_output : boolean, optional | |
If True, this function returns additioal information: `infodict`, | |
`mesg`, and `ier`. | |
.. versionadded:: 1.9 | |
nan_policy : {'raise', 'omit', None}, optional | |
Defines how to handle when input contains nan. | |
The following options are available (default is None): | |
* 'raise': throws an error | |
* 'omit': performs the calculations ignoring nan values | |
* None: no special handling of NaNs is performed | |
(except what is done by check_finite); the behavior when NaNs | |
are present is implementation-dependent and may change. | |
Note that if this value is specified explicitly (not None), | |
`check_finite` will be set as False. | |
.. versionadded:: 1.11 | |
**kwargs | |
Keyword arguments passed to `leastsq` for ``method='lm'`` or | |
`least_squares` otherwise. | |
Returns | |
------- | |
popt : array | |
Optimal values for the parameters so that the sum of the squared | |
residuals of ``f(xdata, *popt) - ydata`` is minimized. | |
pcov : 2-D array | |
The estimated approximate covariance of popt. The diagonals provide | |
the variance of the parameter estimate. To compute one standard | |
deviation errors on the parameters, use | |
``perr = np.sqrt(np.diag(pcov))``. Note that the relationship between | |
`cov` and parameter error estimates is derived based on a linear | |
approximation to the model function around the optimum [1]. | |
When this approximation becomes inaccurate, `cov` may not provide an | |
accurate measure of uncertainty. | |
How the `sigma` parameter affects the estimated covariance | |
depends on `absolute_sigma` argument, as described above. | |
If the Jacobian matrix at the solution doesn't have a full rank, then | |
'lm' method returns a matrix filled with ``np.inf``, on the other hand | |
'trf' and 'dogbox' methods use Moore-Penrose pseudoinverse to compute | |
the covariance matrix. Covariance matrices with large condition numbers | |
(e.g. computed with `numpy.linalg.cond`) may indicate that results are | |
unreliable. | |
infodict : dict (returned only if `full_output` is True) | |
a dictionary of optional outputs with the keys: | |
``nfev`` | |
The number of function calls. Methods 'trf' and 'dogbox' do not | |
count function calls for numerical Jacobian approximation, | |
as opposed to 'lm' method. | |
``fvec`` | |
The residual values evaluated at the solution, for a 1-D `sigma` | |
this is ``(f(x, *popt) - ydata)/sigma``. | |
``fjac`` | |
A permutation of the R matrix of a QR | |
factorization of the final approximate | |
Jacobian matrix, stored column wise. | |
Together with ipvt, the covariance of the | |
estimate can be approximated. | |
Method 'lm' only provides this information. | |
``ipvt`` | |
An integer array of length N which defines | |
a permutation matrix, p, such that | |
fjac*p = q*r, where r is upper triangular | |
with diagonal elements of nonincreasing | |
magnitude. Column j of p is column ipvt(j) | |
of the identity matrix. | |
Method 'lm' only provides this information. | |
``qtf`` | |
The vector (transpose(q) * fvec). | |
Method 'lm' only provides this information. | |
.. versionadded:: 1.9 | |
mesg : str (returned only if `full_output` is True) | |
A string message giving information about the solution. | |
.. versionadded:: 1.9 | |
ier : int (returned only if `full_output` is True) | |
An integer flag. If it is equal to 1, 2, 3 or 4, the solution was | |
found. Otherwise, the solution was not found. In either case, the | |
optional output variable `mesg` gives more information. | |
.. versionadded:: 1.9 | |
Raises | |
------ | |
ValueError | |
if either `ydata` or `xdata` contain NaNs, or if incompatible options | |
are used. | |
RuntimeError | |
if the least-squares minimization fails. | |
OptimizeWarning | |
if covariance of the parameters can not be estimated. | |
See Also | |
-------- | |
least_squares : Minimize the sum of squares of nonlinear functions. | |
scipy.stats.linregress : Calculate a linear least squares regression for | |
two sets of measurements. | |
Notes | |
----- | |
Users should ensure that inputs `xdata`, `ydata`, and the output of `f` | |
are ``float64``, or else the optimization may return incorrect results. | |
With ``method='lm'``, the algorithm uses the Levenberg-Marquardt algorithm | |
through `leastsq`. Note that this algorithm can only deal with | |
unconstrained problems. | |
Box constraints can be handled by methods 'trf' and 'dogbox'. Refer to | |
the docstring of `least_squares` for more information. | |
Parameters to be fitted must have similar scale. Differences of multiple | |
orders of magnitude can lead to incorrect results. For the 'trf' and | |
'dogbox' methods, the `x_scale` keyword argument can be used to scale | |
the parameters. | |
References | |
---------- | |
[1] K. Vugrin et al. Confidence region estimation techniques for nonlinear | |
regression in groundwater flow: Three case studies. Water Resources | |
Research, Vol. 43, W03423, :doi:`10.1029/2005WR004804` | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> import matplotlib.pyplot as plt | |
>>> from scipy.optimize import curve_fit | |
>>> def func(x, a, b, c): | |
... return a * np.exp(-b * x) + c | |
Define the data to be fit with some noise: | |
>>> xdata = np.linspace(0, 4, 50) | |
>>> y = func(xdata, 2.5, 1.3, 0.5) | |
>>> rng = np.random.default_rng() | |
>>> y_noise = 0.2 * rng.normal(size=xdata.size) | |
>>> ydata = y + y_noise | |
>>> plt.plot(xdata, ydata, 'b-', label='data') | |
Fit for the parameters a, b, c of the function `func`: | |
>>> popt, pcov = curve_fit(func, xdata, ydata) | |
>>> popt | |
array([2.56274217, 1.37268521, 0.47427475]) | |
>>> plt.plot(xdata, func(xdata, *popt), 'r-', | |
... label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt)) | |
Constrain the optimization to the region of ``0 <= a <= 3``, | |
``0 <= b <= 1`` and ``0 <= c <= 0.5``: | |
>>> popt, pcov = curve_fit(func, xdata, ydata, bounds=(0, [3., 1., 0.5])) | |
>>> popt | |
array([2.43736712, 1. , 0.34463856]) | |
>>> plt.plot(xdata, func(xdata, *popt), 'g--', | |
... label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt)) | |
>>> plt.xlabel('x') | |
>>> plt.ylabel('y') | |
>>> plt.legend() | |
>>> plt.show() | |
For reliable results, the model `func` should not be overparametrized; | |
redundant parameters can cause unreliable covariance matrices and, in some | |
cases, poorer quality fits. As a quick check of whether the model may be | |
overparameterized, calculate the condition number of the covariance matrix: | |
>>> np.linalg.cond(pcov) | |
34.571092161547405 # may vary | |
The value is small, so it does not raise much concern. If, however, we were | |
to add a fourth parameter ``d`` to `func` with the same effect as ``a``: | |
>>> def func2(x, a, b, c, d): | |
... return a * d * np.exp(-b * x) + c # a and d are redundant | |
>>> popt, pcov = curve_fit(func2, xdata, ydata) | |
>>> np.linalg.cond(pcov) | |
1.13250718925596e+32 # may vary | |
Such a large value is cause for concern. The diagonal elements of the | |
covariance matrix, which is related to uncertainty of the fit, gives more | |
information: | |
>>> np.diag(pcov) | |
array([1.48814742e+29, 3.78596560e-02, 5.39253738e-03, 2.76417220e+28]) # may vary | |
Note that the first and last terms are much larger than the other elements, | |
suggesting that the optimal values of these parameters are ambiguous and | |
that only one of these parameters is needed in the model. | |
If the optimal parameters of `f` differ by multiple orders of magnitude, the | |
resulting fit can be inaccurate. Sometimes, `curve_fit` can fail to find any | |
results: | |
>>> ydata = func(xdata, 500000, 0.01, 15) | |
>>> try: | |
... popt, pcov = curve_fit(func, xdata, ydata, method = 'trf') | |
... except RuntimeError as e: | |
... print(e) | |
Optimal parameters not found: The maximum number of function evaluations is exceeded. | |
If parameter scale is roughly known beforehand, it can be defined in | |
`x_scale` argument: | |
>>> popt, pcov = curve_fit(func, xdata, ydata, method = 'trf', | |
... x_scale = [1000, 1, 1]) | |
>>> popt | |
array([5.00000000e+05, 1.00000000e-02, 1.49999999e+01]) | |
""" | |
if p0 is None: | |
# determine number of parameters by inspecting the function | |
sig = _getfullargspec(f) | |
args = sig.args | |
if len(args) < 2: | |
raise ValueError("Unable to determine number of fit parameters.") | |
n = len(args) - 1 | |
else: | |
p0 = np.atleast_1d(p0) | |
n = p0.size | |
if isinstance(bounds, Bounds): | |
lb, ub = bounds.lb, bounds.ub | |
else: | |
lb, ub = prepare_bounds(bounds, n) | |
if p0 is None: | |
p0 = _initialize_feasible(lb, ub) | |
bounded_problem = np.any((lb > -np.inf) | (ub < np.inf)) | |
if method is None: | |
if bounded_problem: | |
method = 'trf' | |
else: | |
method = 'lm' | |
if method == 'lm' and bounded_problem: | |
raise ValueError("Method 'lm' only works for unconstrained problems. " | |
"Use 'trf' or 'dogbox' instead.") | |
if check_finite is None: | |
check_finite = True if nan_policy is None else False | |
# optimization may produce garbage for float32 inputs, cast them to float64 | |
if check_finite: | |
ydata = np.asarray_chkfinite(ydata, float) | |
else: | |
ydata = np.asarray(ydata, float) | |
if isinstance(xdata, (list, tuple, np.ndarray)): | |
# `xdata` is passed straight to the user-defined `f`, so allow | |
# non-array_like `xdata`. | |
if check_finite: | |
xdata = np.asarray_chkfinite(xdata, float) | |
else: | |
xdata = np.asarray(xdata, float) | |
if ydata.size == 0: | |
raise ValueError("`ydata` must not be empty!") | |
# nan handling is needed only if check_finite is False because if True, | |
# the x-y data are already checked, and they don't contain nans. | |
if not check_finite and nan_policy is not None: | |
if nan_policy == "propagate": | |
raise ValueError("`nan_policy='propagate'` is not supported " | |
"by this function.") | |
policies = [None, 'raise', 'omit'] | |
x_contains_nan, nan_policy = _contains_nan(xdata, nan_policy, | |
policies=policies) | |
y_contains_nan, nan_policy = _contains_nan(ydata, nan_policy, | |
policies=policies) | |
if (x_contains_nan or y_contains_nan) and nan_policy == 'omit': | |
# ignore NaNs for N dimensional arrays | |
has_nan = np.isnan(xdata) | |
has_nan = has_nan.any(axis=tuple(range(has_nan.ndim-1))) | |
has_nan |= np.isnan(ydata) | |
xdata = xdata[..., ~has_nan] | |
ydata = ydata[~has_nan] | |
# Determine type of sigma | |
if sigma is not None: | |
sigma = np.asarray(sigma) | |
# if 1-D or a scalar, sigma are errors, define transform = 1/sigma | |
if sigma.size == 1 or sigma.shape == (ydata.size, ): | |
transform = 1.0 / sigma | |
# if 2-D, sigma is the covariance matrix, | |
# define transform = L such that L L^T = C | |
elif sigma.shape == (ydata.size, ydata.size): | |
try: | |
# scipy.linalg.cholesky requires lower=True to return L L^T = A | |
transform = cholesky(sigma, lower=True) | |
except LinAlgError as e: | |
raise ValueError("`sigma` must be positive definite.") from e | |
else: | |
raise ValueError("`sigma` has incorrect shape.") | |
else: | |
transform = None | |
func = _lightweight_memoizer(_wrap_func(f, xdata, ydata, transform)) | |
if callable(jac): | |
jac = _lightweight_memoizer(_wrap_jac(jac, xdata, transform)) | |
elif jac is None and method != 'lm': | |
jac = '2-point' | |
if 'args' in kwargs: | |
# The specification for the model function `f` does not support | |
# additional arguments. Refer to the `curve_fit` docstring for | |
# acceptable call signatures of `f`. | |
raise ValueError("'args' is not a supported keyword argument.") | |
if method == 'lm': | |
# if ydata.size == 1, this might be used for broadcast. | |
if ydata.size != 1 and n > ydata.size: | |
raise TypeError(f"The number of func parameters={n} must not" | |
f" exceed the number of data points={ydata.size}") | |
res = leastsq(func, p0, Dfun=jac, full_output=1, **kwargs) | |
popt, pcov, infodict, errmsg, ier = res | |
ysize = len(infodict['fvec']) | |
cost = np.sum(infodict['fvec'] ** 2) | |
if ier not in [1, 2, 3, 4]: | |
raise RuntimeError("Optimal parameters not found: " + errmsg) | |
else: | |
# Rename maxfev (leastsq) to max_nfev (least_squares), if specified. | |
if 'max_nfev' not in kwargs: | |
kwargs['max_nfev'] = kwargs.pop('maxfev', None) | |
res = least_squares(func, p0, jac=jac, bounds=bounds, method=method, | |
**kwargs) | |
if not res.success: | |
raise RuntimeError("Optimal parameters not found: " + res.message) | |
infodict = dict(nfev=res.nfev, fvec=res.fun) | |
ier = res.status | |
errmsg = res.message | |
ysize = len(res.fun) | |
cost = 2 * res.cost # res.cost is half sum of squares! | |
popt = res.x | |
# Do Moore-Penrose inverse discarding zero singular values. | |
_, s, VT = svd(res.jac, full_matrices=False) | |
threshold = np.finfo(float).eps * max(res.jac.shape) * s[0] | |
s = s[s > threshold] | |
VT = VT[:s.size] | |
pcov = np.dot(VT.T / s**2, VT) | |
warn_cov = False | |
if pcov is None or np.isnan(pcov).any(): | |
# indeterminate covariance | |
pcov = zeros((len(popt), len(popt)), dtype=float) | |
pcov.fill(inf) | |
warn_cov = True | |
elif not absolute_sigma: | |
if ysize > p0.size: | |
s_sq = cost / (ysize - p0.size) | |
pcov = pcov * s_sq | |
else: | |
pcov.fill(inf) | |
warn_cov = True | |
if warn_cov: | |
warnings.warn('Covariance of the parameters could not be estimated', | |
category=OptimizeWarning, stacklevel=2) | |
if full_output: | |
return popt, pcov, infodict, errmsg, ier | |
else: | |
return popt, pcov | |
def check_gradient(fcn, Dfcn, x0, args=(), col_deriv=0): | |
"""Perform a simple check on the gradient for correctness. | |
""" | |
x = atleast_1d(x0) | |
n = len(x) | |
x = x.reshape((n,)) | |
fvec = atleast_1d(fcn(x, *args)) | |
m = len(fvec) | |
fvec = fvec.reshape((m,)) | |
ldfjac = m | |
fjac = atleast_1d(Dfcn(x, *args)) | |
fjac = fjac.reshape((m, n)) | |
if col_deriv == 0: | |
fjac = transpose(fjac) | |
xp = zeros((n,), float) | |
err = zeros((m,), float) | |
fvecp = None | |
_minpack._chkder(m, n, x, fvec, fjac, ldfjac, xp, fvecp, 1, err) | |
fvecp = atleast_1d(fcn(xp, *args)) | |
fvecp = fvecp.reshape((m,)) | |
_minpack._chkder(m, n, x, fvec, fjac, ldfjac, xp, fvecp, 2, err) | |
good = (prod(greater(err, 0.5), axis=0)) | |
return (good, err) | |
def _del2(p0, p1, d): | |
return p0 - np.square(p1 - p0) / d | |
def _relerr(actual, desired): | |
return (actual - desired) / desired | |
def _fixed_point_helper(func, x0, args, xtol, maxiter, use_accel): | |
p0 = x0 | |
for i in range(maxiter): | |
p1 = func(p0, *args) | |
if use_accel: | |
p2 = func(p1, *args) | |
d = p2 - 2.0 * p1 + p0 | |
p = _lazywhere(d != 0, (p0, p1, d), f=_del2, fillvalue=p2) | |
else: | |
p = p1 | |
relerr = _lazywhere(p0 != 0, (p, p0), f=_relerr, fillvalue=p) | |
if np.all(np.abs(relerr) < xtol): | |
return p | |
p0 = p | |
msg = "Failed to converge after %d iterations, value is %s" % (maxiter, p) | |
raise RuntimeError(msg) | |
def fixed_point(func, x0, args=(), xtol=1e-8, maxiter=500, method='del2'): | |
""" | |
Find a fixed point of the function. | |
Given a function of one or more variables and a starting point, find a | |
fixed point of the function: i.e., where ``func(x0) == x0``. | |
Parameters | |
---------- | |
func : function | |
Function to evaluate. | |
x0 : array_like | |
Fixed point of function. | |
args : tuple, optional | |
Extra arguments to `func`. | |
xtol : float, optional | |
Convergence tolerance, defaults to 1e-08. | |
maxiter : int, optional | |
Maximum number of iterations, defaults to 500. | |
method : {"del2", "iteration"}, optional | |
Method of finding the fixed-point, defaults to "del2", | |
which uses Steffensen's Method with Aitken's ``Del^2`` | |
convergence acceleration [1]_. The "iteration" method simply iterates | |
the function until convergence is detected, without attempting to | |
accelerate the convergence. | |
References | |
---------- | |
.. [1] Burden, Faires, "Numerical Analysis", 5th edition, pg. 80 | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy import optimize | |
>>> def func(x, c1, c2): | |
... return np.sqrt(c1/(x+c2)) | |
>>> c1 = np.array([10,12.]) | |
>>> c2 = np.array([3, 5.]) | |
>>> optimize.fixed_point(func, [1.2, 1.3], args=(c1,c2)) | |
array([ 1.4920333 , 1.37228132]) | |
""" | |
use_accel = {'del2': True, 'iteration': False}[method] | |
x0 = _asarray_validated(x0, as_inexact=True) | |
return _fixed_point_helper(func, x0, args, xtol, maxiter, use_accel) | |