peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/optimize
/tests
/test_linesearch.py
""" | |
Tests for line search routines | |
""" | |
from numpy.testing import (assert_equal, assert_array_almost_equal, | |
assert_array_almost_equal_nulp, assert_warns, | |
suppress_warnings) | |
import scipy.optimize._linesearch as ls | |
from scipy.optimize._linesearch import LineSearchWarning | |
import numpy as np | |
def assert_wolfe(s, phi, derphi, c1=1e-4, c2=0.9, err_msg=""): | |
""" | |
Check that strong Wolfe conditions apply | |
""" | |
phi1 = phi(s) | |
phi0 = phi(0) | |
derphi0 = derphi(0) | |
derphi1 = derphi(s) | |
msg = (f"s = {s}; phi(0) = {phi0}; phi(s) = {phi1}; phi'(0) = {derphi0};" | |
f" phi'(s) = {derphi1}; {err_msg}") | |
assert phi1 <= phi0 + c1*s*derphi0, "Wolfe 1 failed: " + msg | |
assert abs(derphi1) <= abs(c2*derphi0), "Wolfe 2 failed: " + msg | |
def assert_armijo(s, phi, c1=1e-4, err_msg=""): | |
""" | |
Check that Armijo condition applies | |
""" | |
phi1 = phi(s) | |
phi0 = phi(0) | |
msg = f"s = {s}; phi(0) = {phi0}; phi(s) = {phi1}; {err_msg}" | |
assert phi1 <= (1 - c1*s)*phi0, msg | |
def assert_line_wolfe(x, p, s, f, fprime, **kw): | |
assert_wolfe(s, phi=lambda sp: f(x + p*sp), | |
derphi=lambda sp: np.dot(fprime(x + p*sp), p), **kw) | |
def assert_line_armijo(x, p, s, f, **kw): | |
assert_armijo(s, phi=lambda sp: f(x + p*sp), **kw) | |
def assert_fp_equal(x, y, err_msg="", nulp=50): | |
"""Assert two arrays are equal, up to some floating-point rounding error""" | |
try: | |
assert_array_almost_equal_nulp(x, y, nulp) | |
except AssertionError as e: | |
raise AssertionError(f"{e}\n{err_msg}") from e | |
class TestLineSearch: | |
# -- scalar functions; must have dphi(0.) < 0 | |
def _scalar_func_1(self, s): # skip name check | |
self.fcount += 1 | |
p = -s - s**3 + s**4 | |
dp = -1 - 3*s**2 + 4*s**3 | |
return p, dp | |
def _scalar_func_2(self, s): # skip name check | |
self.fcount += 1 | |
p = np.exp(-4*s) + s**2 | |
dp = -4*np.exp(-4*s) + 2*s | |
return p, dp | |
def _scalar_func_3(self, s): # skip name check | |
self.fcount += 1 | |
p = -np.sin(10*s) | |
dp = -10*np.cos(10*s) | |
return p, dp | |
# -- n-d functions | |
def _line_func_1(self, x): # skip name check | |
self.fcount += 1 | |
f = np.dot(x, x) | |
df = 2*x | |
return f, df | |
def _line_func_2(self, x): # skip name check | |
self.fcount += 1 | |
f = np.dot(x, np.dot(self.A, x)) + 1 | |
df = np.dot(self.A + self.A.T, x) | |
return f, df | |
# -- | |
def setup_method(self): | |
self.scalar_funcs = [] | |
self.line_funcs = [] | |
self.N = 20 | |
self.fcount = 0 | |
def bind_index(func, idx): | |
# Remember Python's closure semantics! | |
return lambda *a, **kw: func(*a, **kw)[idx] | |
for name in sorted(dir(self)): | |
if name.startswith('_scalar_func_'): | |
value = getattr(self, name) | |
self.scalar_funcs.append( | |
(name, bind_index(value, 0), bind_index(value, 1))) | |
elif name.startswith('_line_func_'): | |
value = getattr(self, name) | |
self.line_funcs.append( | |
(name, bind_index(value, 0), bind_index(value, 1))) | |
np.random.seed(1234) | |
self.A = np.random.randn(self.N, self.N) | |
def scalar_iter(self): | |
for name, phi, derphi in self.scalar_funcs: | |
for old_phi0 in np.random.randn(3): | |
yield name, phi, derphi, old_phi0 | |
def line_iter(self): | |
for name, f, fprime in self.line_funcs: | |
k = 0 | |
while k < 9: | |
x = np.random.randn(self.N) | |
p = np.random.randn(self.N) | |
if np.dot(p, fprime(x)) >= 0: | |
# always pick a descent direction | |
continue | |
k += 1 | |
old_fv = float(np.random.randn()) | |
yield name, f, fprime, x, p, old_fv | |
# -- Generic scalar searches | |
def test_scalar_search_wolfe1(self): | |
c = 0 | |
for name, phi, derphi, old_phi0 in self.scalar_iter(): | |
c += 1 | |
s, phi1, phi0 = ls.scalar_search_wolfe1(phi, derphi, phi(0), | |
old_phi0, derphi(0)) | |
assert_fp_equal(phi0, phi(0), name) | |
assert_fp_equal(phi1, phi(s), name) | |
assert_wolfe(s, phi, derphi, err_msg=name) | |
assert c > 3 # check that the iterator really works... | |
def test_scalar_search_wolfe2(self): | |
for name, phi, derphi, old_phi0 in self.scalar_iter(): | |
s, phi1, phi0, derphi1 = ls.scalar_search_wolfe2( | |
phi, derphi, phi(0), old_phi0, derphi(0)) | |
assert_fp_equal(phi0, phi(0), name) | |
assert_fp_equal(phi1, phi(s), name) | |
if derphi1 is not None: | |
assert_fp_equal(derphi1, derphi(s), name) | |
assert_wolfe(s, phi, derphi, err_msg=f"{name} {old_phi0:g}") | |
def test_scalar_search_wolfe2_with_low_amax(self): | |
def phi(alpha): | |
return (alpha - 5) ** 2 | |
def derphi(alpha): | |
return 2 * (alpha - 5) | |
alpha_star, _, _, derphi_star = ls.scalar_search_wolfe2(phi, derphi, amax=0.001) | |
assert alpha_star is None # Not converged | |
assert derphi_star is None # Not converged | |
def test_scalar_search_wolfe2_regression(self): | |
# Regression test for gh-12157 | |
# This phi has its minimum at alpha=4/3 ~ 1.333. | |
def phi(alpha): | |
if alpha < 1: | |
return - 3*np.pi/2 * (alpha - 1) | |
else: | |
return np.cos(3*np.pi/2 * alpha - np.pi) | |
def derphi(alpha): | |
if alpha < 1: | |
return - 3*np.pi/2 | |
else: | |
return - 3*np.pi/2 * np.sin(3*np.pi/2 * alpha - np.pi) | |
s, _, _, _ = ls.scalar_search_wolfe2(phi, derphi) | |
# Without the fix in gh-13073, the scalar_search_wolfe2 | |
# returned s=2.0 instead. | |
assert s < 1.5 | |
def test_scalar_search_armijo(self): | |
for name, phi, derphi, old_phi0 in self.scalar_iter(): | |
s, phi1 = ls.scalar_search_armijo(phi, phi(0), derphi(0)) | |
assert_fp_equal(phi1, phi(s), name) | |
assert_armijo(s, phi, err_msg=f"{name} {old_phi0:g}") | |
# -- Generic line searches | |
def test_line_search_wolfe1(self): | |
c = 0 | |
smax = 100 | |
for name, f, fprime, x, p, old_f in self.line_iter(): | |
f0 = f(x) | |
g0 = fprime(x) | |
self.fcount = 0 | |
s, fc, gc, fv, ofv, gv = ls.line_search_wolfe1(f, fprime, x, p, | |
g0, f0, old_f, | |
amax=smax) | |
assert_equal(self.fcount, fc+gc) | |
assert_fp_equal(ofv, f(x)) | |
if s is None: | |
continue | |
assert_fp_equal(fv, f(x + s*p)) | |
assert_array_almost_equal(gv, fprime(x + s*p), decimal=14) | |
if s < smax: | |
c += 1 | |
assert_line_wolfe(x, p, s, f, fprime, err_msg=name) | |
assert c > 3 # check that the iterator really works... | |
def test_line_search_wolfe2(self): | |
c = 0 | |
smax = 512 | |
for name, f, fprime, x, p, old_f in self.line_iter(): | |
f0 = f(x) | |
g0 = fprime(x) | |
self.fcount = 0 | |
with suppress_warnings() as sup: | |
sup.filter(LineSearchWarning, | |
"The line search algorithm could not find a solution") | |
sup.filter(LineSearchWarning, | |
"The line search algorithm did not converge") | |
s, fc, gc, fv, ofv, gv = ls.line_search_wolfe2(f, fprime, x, p, | |
g0, f0, old_f, | |
amax=smax) | |
assert_equal(self.fcount, fc+gc) | |
assert_fp_equal(ofv, f(x)) | |
assert_fp_equal(fv, f(x + s*p)) | |
if gv is not None: | |
assert_array_almost_equal(gv, fprime(x + s*p), decimal=14) | |
if s < smax: | |
c += 1 | |
assert_line_wolfe(x, p, s, f, fprime, err_msg=name) | |
assert c > 3 # check that the iterator really works... | |
def test_line_search_wolfe2_bounds(self): | |
# See gh-7475 | |
# For this f and p, starting at a point on axis 0, the strong Wolfe | |
# condition 2 is met if and only if the step length s satisfies | |
# |x + s| <= c2 * |x| | |
def f(x): | |
return np.dot(x, x) | |
def fp(x): | |
return 2 * x | |
p = np.array([1, 0]) | |
# Smallest s satisfying strong Wolfe conditions for these arguments is 30 | |
x = -60 * p | |
c2 = 0.5 | |
s, _, _, _, _, _ = ls.line_search_wolfe2(f, fp, x, p, amax=30, c2=c2) | |
assert_line_wolfe(x, p, s, f, fp) | |
s, _, _, _, _, _ = assert_warns(LineSearchWarning, | |
ls.line_search_wolfe2, f, fp, x, p, | |
amax=29, c2=c2) | |
assert s is None | |
# s=30 will only be tried on the 6th iteration, so this won't converge | |
assert_warns(LineSearchWarning, ls.line_search_wolfe2, f, fp, x, p, | |
c2=c2, maxiter=5) | |
def test_line_search_armijo(self): | |
c = 0 | |
for name, f, fprime, x, p, old_f in self.line_iter(): | |
f0 = f(x) | |
g0 = fprime(x) | |
self.fcount = 0 | |
s, fc, fv = ls.line_search_armijo(f, x, p, g0, f0) | |
c += 1 | |
assert_equal(self.fcount, fc) | |
assert_fp_equal(fv, f(x + s*p)) | |
assert_line_armijo(x, p, s, f, err_msg=name) | |
assert c >= 9 | |
# -- More specific tests | |
def test_armijo_terminate_1(self): | |
# Armijo should evaluate the function only once if the trial step | |
# is already suitable | |
count = [0] | |
def phi(s): | |
count[0] += 1 | |
return -s + 0.01*s**2 | |
s, phi1 = ls.scalar_search_armijo(phi, phi(0), -1, alpha0=1) | |
assert_equal(s, 1) | |
assert_equal(count[0], 2) | |
assert_armijo(s, phi) | |
def test_wolfe_terminate(self): | |
# wolfe1 and wolfe2 should also evaluate the function only a few | |
# times if the trial step is already suitable | |
def phi(s): | |
count[0] += 1 | |
return -s + 0.05*s**2 | |
def derphi(s): | |
count[0] += 1 | |
return -1 + 0.05*2*s | |
for func in [ls.scalar_search_wolfe1, ls.scalar_search_wolfe2]: | |
count = [0] | |
r = func(phi, derphi, phi(0), None, derphi(0)) | |
assert r[0] is not None, (r, func) | |
assert count[0] <= 2 + 2, (count, func) | |
assert_wolfe(r[0], phi, derphi, err_msg=str(func)) | |