peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/optimize
/tests
/test_nonlin.py
""" Unit tests for nonlinear solvers | |
Author: Ondrej Certik | |
May 2007 | |
""" | |
from numpy.testing import assert_ | |
import pytest | |
from scipy.optimize import _nonlin as nonlin, root | |
from scipy.sparse import csr_array | |
from numpy import diag, dot | |
from numpy.linalg import inv | |
import numpy as np | |
import scipy | |
from .test_minpack import pressure_network | |
SOLVERS = {'anderson': nonlin.anderson, | |
'diagbroyden': nonlin.diagbroyden, | |
'linearmixing': nonlin.linearmixing, | |
'excitingmixing': nonlin.excitingmixing, | |
'broyden1': nonlin.broyden1, | |
'broyden2': nonlin.broyden2, | |
'krylov': nonlin.newton_krylov} | |
MUST_WORK = {'anderson': nonlin.anderson, 'broyden1': nonlin.broyden1, | |
'broyden2': nonlin.broyden2, 'krylov': nonlin.newton_krylov} | |
# ---------------------------------------------------------------------------- | |
# Test problems | |
# ---------------------------------------------------------------------------- | |
def F(x): | |
x = np.asarray(x).T | |
d = diag([3, 2, 1.5, 1, 0.5]) | |
c = 0.01 | |
f = -d @ x - c * float(x.T @ x) * x | |
return f | |
F.xin = [1, 1, 1, 1, 1] | |
F.KNOWN_BAD = {} | |
F.JAC_KSP_BAD = {} | |
F.ROOT_JAC_KSP_BAD = {} | |
def F2(x): | |
return x | |
F2.xin = [1, 2, 3, 4, 5, 6] | |
F2.KNOWN_BAD = {'linearmixing': nonlin.linearmixing, | |
'excitingmixing': nonlin.excitingmixing} | |
F2.JAC_KSP_BAD = {} | |
F2.ROOT_JAC_KSP_BAD = {} | |
def F2_lucky(x): | |
return x | |
F2_lucky.xin = [0, 0, 0, 0, 0, 0] | |
F2_lucky.KNOWN_BAD = {} | |
F2_lucky.JAC_KSP_BAD = {} | |
F2_lucky.ROOT_JAC_KSP_BAD = {} | |
def F3(x): | |
A = np.array([[-2, 1, 0.], [1, -2, 1], [0, 1, -2]]) | |
b = np.array([1, 2, 3.]) | |
return A @ x - b | |
F3.xin = [1, 2, 3] | |
F3.KNOWN_BAD = {} | |
F3.JAC_KSP_BAD = {} | |
F3.ROOT_JAC_KSP_BAD = {} | |
def F4_powell(x): | |
A = 1e4 | |
return [A*x[0]*x[1] - 1, np.exp(-x[0]) + np.exp(-x[1]) - (1 + 1/A)] | |
F4_powell.xin = [-1, -2] | |
F4_powell.KNOWN_BAD = {'linearmixing': nonlin.linearmixing, | |
'excitingmixing': nonlin.excitingmixing, | |
'diagbroyden': nonlin.diagbroyden} | |
# In the extreme case, it does not converge for nolinear problem solved by | |
# MINRES and root problem solved by GMRES/BiCGStab/CGS/MINRES/TFQMR when using | |
# Krylov method to approximate Jacobian | |
F4_powell.JAC_KSP_BAD = {'minres'} | |
F4_powell.ROOT_JAC_KSP_BAD = {'gmres', 'bicgstab', 'cgs', 'minres', 'tfqmr'} | |
def F5(x): | |
return pressure_network(x, 4, np.array([.5, .5, .5, .5])) | |
F5.xin = [2., 0, 2, 0] | |
F5.KNOWN_BAD = {'excitingmixing': nonlin.excitingmixing, | |
'linearmixing': nonlin.linearmixing, | |
'diagbroyden': nonlin.diagbroyden} | |
# In the extreme case, the Jacobian inversion yielded zero vector for nonlinear | |
# problem solved by CGS/MINRES and it does not converge for root problem solved | |
# by MINRES and when using Krylov method to approximate Jacobian | |
F5.JAC_KSP_BAD = {'cgs', 'minres'} | |
F5.ROOT_JAC_KSP_BAD = {'minres'} | |
def F6(x): | |
x1, x2 = x | |
J0 = np.array([[-4.256, 14.7], | |
[0.8394989, 0.59964207]]) | |
v = np.array([(x1 + 3) * (x2**5 - 7) + 3*6, | |
np.sin(x2 * np.exp(x1) - 1)]) | |
return -np.linalg.solve(J0, v) | |
F6.xin = [-0.5, 1.4] | |
F6.KNOWN_BAD = {'excitingmixing': nonlin.excitingmixing, | |
'linearmixing': nonlin.linearmixing, | |
'diagbroyden': nonlin.diagbroyden} | |
F6.JAC_KSP_BAD = {} | |
F6.ROOT_JAC_KSP_BAD = {} | |
# ---------------------------------------------------------------------------- | |
# Tests | |
# ---------------------------------------------------------------------------- | |
class TestNonlin: | |
""" | |
Check the Broyden methods for a few test problems. | |
broyden1, broyden2, and newton_krylov must succeed for | |
all functions. Some of the others don't -- tests in KNOWN_BAD are skipped. | |
""" | |
def _check_nonlin_func(self, f, func, f_tol=1e-2): | |
# Test all methods mentioned in the class `KrylovJacobian` | |
if func == SOLVERS['krylov']: | |
for method in ['gmres', 'bicgstab', 'cgs', 'minres', 'tfqmr']: | |
if method in f.JAC_KSP_BAD: | |
continue | |
x = func(f, f.xin, method=method, line_search=None, | |
f_tol=f_tol, maxiter=200, verbose=0) | |
assert_(np.absolute(f(x)).max() < f_tol) | |
x = func(f, f.xin, f_tol=f_tol, maxiter=200, verbose=0) | |
assert_(np.absolute(f(x)).max() < f_tol) | |
def _check_root(self, f, method, f_tol=1e-2): | |
# Test Krylov methods | |
if method == 'krylov': | |
for jac_method in ['gmres', 'bicgstab', 'cgs', 'minres', 'tfqmr']: | |
if jac_method in f.ROOT_JAC_KSP_BAD: | |
continue | |
res = root(f, f.xin, method=method, | |
options={'ftol': f_tol, 'maxiter': 200, | |
'disp': 0, | |
'jac_options': {'method': jac_method}}) | |
assert_(np.absolute(res.fun).max() < f_tol) | |
res = root(f, f.xin, method=method, | |
options={'ftol': f_tol, 'maxiter': 200, 'disp': 0}) | |
assert_(np.absolute(res.fun).max() < f_tol) | |
def _check_func_fail(self, *a, **kw): | |
pass | |
def test_problem_nonlin(self): | |
for f in [F, F2, F2_lucky, F3, F4_powell, F5, F6]: | |
for func in SOLVERS.values(): | |
if func in f.KNOWN_BAD.values(): | |
if func in MUST_WORK.values(): | |
self._check_func_fail(f, func) | |
continue | |
self._check_nonlin_func(f, func) | |
def test_tol_norm_called(self, method): | |
# Check that supplying tol_norm keyword to nonlin_solve works | |
self._tol_norm_used = False | |
def local_norm_func(x): | |
self._tol_norm_used = True | |
return np.absolute(x).max() | |
nonlin.newton_krylov(F, F.xin, method=method, f_tol=1e-2, | |
maxiter=200, verbose=0, | |
tol_norm=local_norm_func) | |
assert_(self._tol_norm_used) | |
def test_problem_root(self): | |
for f in [F, F2, F2_lucky, F3, F4_powell, F5, F6]: | |
for meth in SOLVERS: | |
if meth in f.KNOWN_BAD: | |
if meth in MUST_WORK: | |
self._check_func_fail(f, meth) | |
continue | |
self._check_root(f, meth) | |
def test_no_convergence(self): | |
def wont_converge(x): | |
return 1e3 + x | |
with pytest.raises(scipy.optimize.NoConvergence): | |
nonlin.newton_krylov(wont_converge, xin=[0], maxiter=1) | |
class TestSecant: | |
"""Check that some Jacobian approximations satisfy the secant condition""" | |
xs = [np.array([1., 2., 3., 4., 5.]), | |
np.array([2., 3., 4., 5., 1.]), | |
np.array([3., 4., 5., 1., 2.]), | |
np.array([4., 5., 1., 2., 3.]), | |
np.array([9., 1., 9., 1., 3.]), | |
np.array([0., 1., 9., 1., 3.]), | |
np.array([5., 5., 7., 1., 1.]), | |
np.array([1., 2., 7., 5., 1.]),] | |
fs = [x**2 - 1 for x in xs] | |
def _check_secant(self, jac_cls, npoints=1, **kw): | |
""" | |
Check that the given Jacobian approximation satisfies secant | |
conditions for last `npoints` points. | |
""" | |
jac = jac_cls(**kw) | |
jac.setup(self.xs[0], self.fs[0], None) | |
for j, (x, f) in enumerate(zip(self.xs[1:], self.fs[1:])): | |
jac.update(x, f) | |
for k in range(min(npoints, j+1)): | |
dx = self.xs[j-k+1] - self.xs[j-k] | |
df = self.fs[j-k+1] - self.fs[j-k] | |
assert_(np.allclose(dx, jac.solve(df))) | |
# Check that the `npoints` secant bound is strict | |
if j >= npoints: | |
dx = self.xs[j-npoints+1] - self.xs[j-npoints] | |
df = self.fs[j-npoints+1] - self.fs[j-npoints] | |
assert_(not np.allclose(dx, jac.solve(df))) | |
def test_broyden1(self): | |
self._check_secant(nonlin.BroydenFirst) | |
def test_broyden2(self): | |
self._check_secant(nonlin.BroydenSecond) | |
def test_broyden1_update(self): | |
# Check that BroydenFirst update works as for a dense matrix | |
jac = nonlin.BroydenFirst(alpha=0.1) | |
jac.setup(self.xs[0], self.fs[0], None) | |
B = np.identity(5) * (-1/0.1) | |
for last_j, (x, f) in enumerate(zip(self.xs[1:], self.fs[1:])): | |
df = f - self.fs[last_j] | |
dx = x - self.xs[last_j] | |
B += (df - dot(B, dx))[:, None] * dx[None, :] / dot(dx, dx) | |
jac.update(x, f) | |
assert_(np.allclose(jac.todense(), B, rtol=1e-10, atol=1e-13)) | |
def test_broyden2_update(self): | |
# Check that BroydenSecond update works as for a dense matrix | |
jac = nonlin.BroydenSecond(alpha=0.1) | |
jac.setup(self.xs[0], self.fs[0], None) | |
H = np.identity(5) * (-0.1) | |
for last_j, (x, f) in enumerate(zip(self.xs[1:], self.fs[1:])): | |
df = f - self.fs[last_j] | |
dx = x - self.xs[last_j] | |
H += (dx - dot(H, df))[:, None] * df[None, :] / dot(df, df) | |
jac.update(x, f) | |
assert_(np.allclose(jac.todense(), inv(H), rtol=1e-10, atol=1e-13)) | |
def test_anderson(self): | |
# Anderson mixing (with w0=0) satisfies secant conditions | |
# for the last M iterates, see [Ey]_ | |
# | |
# .. [Ey] V. Eyert, J. Comp. Phys., 124, 271 (1996). | |
self._check_secant(nonlin.Anderson, M=3, w0=0, npoints=3) | |
class TestLinear: | |
"""Solve a linear equation; | |
some methods find the exact solution in a finite number of steps""" | |
def _check(self, jac, N, maxiter, complex=False, **kw): | |
np.random.seed(123) | |
A = np.random.randn(N, N) | |
if complex: | |
A = A + 1j*np.random.randn(N, N) | |
b = np.random.randn(N) | |
if complex: | |
b = b + 1j*np.random.randn(N) | |
def func(x): | |
return dot(A, x) - b | |
sol = nonlin.nonlin_solve(func, np.zeros(N), jac, maxiter=maxiter, | |
f_tol=1e-6, line_search=None, verbose=0) | |
assert_(np.allclose(dot(A, sol), b, atol=1e-6)) | |
def test_broyden1(self): | |
# Broyden methods solve linear systems exactly in 2*N steps | |
self._check(nonlin.BroydenFirst(alpha=1.0), 20, 41, False) | |
self._check(nonlin.BroydenFirst(alpha=1.0), 20, 41, True) | |
def test_broyden2(self): | |
# Broyden methods solve linear systems exactly in 2*N steps | |
self._check(nonlin.BroydenSecond(alpha=1.0), 20, 41, False) | |
self._check(nonlin.BroydenSecond(alpha=1.0), 20, 41, True) | |
def test_anderson(self): | |
# Anderson is rather similar to Broyden, if given enough storage space | |
self._check(nonlin.Anderson(M=50, alpha=1.0), 20, 29, False) | |
self._check(nonlin.Anderson(M=50, alpha=1.0), 20, 29, True) | |
def test_krylov(self): | |
# Krylov methods solve linear systems exactly in N inner steps | |
self._check(nonlin.KrylovJacobian, 20, 2, False, inner_m=10) | |
self._check(nonlin.KrylovJacobian, 20, 2, True, inner_m=10) | |
def _check_autojac(self, A, b): | |
def func(x): | |
return A.dot(x) - b | |
def jac(v): | |
return A | |
sol = nonlin.nonlin_solve(func, np.zeros(b.shape[0]), jac, maxiter=2, | |
f_tol=1e-6, line_search=None, verbose=0) | |
np.testing.assert_allclose(A @ sol, b, atol=1e-6) | |
# test jac input as array -- not a function | |
sol = nonlin.nonlin_solve(func, np.zeros(b.shape[0]), A, maxiter=2, | |
f_tol=1e-6, line_search=None, verbose=0) | |
np.testing.assert_allclose(A @ sol, b, atol=1e-6) | |
def test_jac_sparse(self): | |
A = csr_array([[1, 2], [2, 1]]) | |
b = np.array([1, -1]) | |
self._check_autojac(A, b) | |
self._check_autojac((1 + 2j) * A, (2 + 2j) * b) | |
def test_jac_ndarray(self): | |
A = np.array([[1, 2], [2, 1]]) | |
b = np.array([1, -1]) | |
self._check_autojac(A, b) | |
self._check_autojac((1 + 2j) * A, (2 + 2j) * b) | |
class TestJacobianDotSolve: | |
""" | |
Check that solve/dot methods in Jacobian approximations are consistent | |
""" | |
def _func(self, x): | |
return x**2 - 1 + np.dot(self.A, x) | |
def _check_dot(self, jac_cls, complex=False, tol=1e-6, **kw): | |
np.random.seed(123) | |
N = 7 | |
def rand(*a): | |
q = np.random.rand(*a) | |
if complex: | |
q = q + 1j*np.random.rand(*a) | |
return q | |
def assert_close(a, b, msg): | |
d = abs(a - b).max() | |
f = tol + abs(b).max()*tol | |
if d > f: | |
raise AssertionError(f'{msg}: err {d:g}') | |
self.A = rand(N, N) | |
# initialize | |
x0 = np.random.rand(N) | |
jac = jac_cls(**kw) | |
jac.setup(x0, self._func(x0), self._func) | |
# check consistency | |
for k in range(2*N): | |
v = rand(N) | |
if hasattr(jac, '__array__'): | |
Jd = np.array(jac) | |
if hasattr(jac, 'solve'): | |
Gv = jac.solve(v) | |
Gv2 = np.linalg.solve(Jd, v) | |
assert_close(Gv, Gv2, 'solve vs array') | |
if hasattr(jac, 'rsolve'): | |
Gv = jac.rsolve(v) | |
Gv2 = np.linalg.solve(Jd.T.conj(), v) | |
assert_close(Gv, Gv2, 'rsolve vs array') | |
if hasattr(jac, 'matvec'): | |
Jv = jac.matvec(v) | |
Jv2 = np.dot(Jd, v) | |
assert_close(Jv, Jv2, 'dot vs array') | |
if hasattr(jac, 'rmatvec'): | |
Jv = jac.rmatvec(v) | |
Jv2 = np.dot(Jd.T.conj(), v) | |
assert_close(Jv, Jv2, 'rmatvec vs array') | |
if hasattr(jac, 'matvec') and hasattr(jac, 'solve'): | |
Jv = jac.matvec(v) | |
Jv2 = jac.solve(jac.matvec(Jv)) | |
assert_close(Jv, Jv2, 'dot vs solve') | |
if hasattr(jac, 'rmatvec') and hasattr(jac, 'rsolve'): | |
Jv = jac.rmatvec(v) | |
Jv2 = jac.rmatvec(jac.rsolve(Jv)) | |
assert_close(Jv, Jv2, 'rmatvec vs rsolve') | |
x = rand(N) | |
jac.update(x, self._func(x)) | |
def test_broyden1(self): | |
self._check_dot(nonlin.BroydenFirst, complex=False) | |
self._check_dot(nonlin.BroydenFirst, complex=True) | |
def test_broyden2(self): | |
self._check_dot(nonlin.BroydenSecond, complex=False) | |
self._check_dot(nonlin.BroydenSecond, complex=True) | |
def test_anderson(self): | |
self._check_dot(nonlin.Anderson, complex=False) | |
self._check_dot(nonlin.Anderson, complex=True) | |
def test_diagbroyden(self): | |
self._check_dot(nonlin.DiagBroyden, complex=False) | |
self._check_dot(nonlin.DiagBroyden, complex=True) | |
def test_linearmixing(self): | |
self._check_dot(nonlin.LinearMixing, complex=False) | |
self._check_dot(nonlin.LinearMixing, complex=True) | |
def test_excitingmixing(self): | |
self._check_dot(nonlin.ExcitingMixing, complex=False) | |
self._check_dot(nonlin.ExcitingMixing, complex=True) | |
def test_krylov(self): | |
self._check_dot(nonlin.KrylovJacobian, complex=False, tol=1e-3) | |
self._check_dot(nonlin.KrylovJacobian, complex=True, tol=1e-3) | |
class TestNonlinOldTests: | |
""" Test case for a simple constrained entropy maximization problem | |
(the machine translation example of Berger et al in | |
Computational Linguistics, vol 22, num 1, pp 39--72, 1996.) | |
""" | |
def test_broyden1(self): | |
x = nonlin.broyden1(F, F.xin, iter=12, alpha=1) | |
assert_(nonlin.norm(x) < 1e-9) | |
assert_(nonlin.norm(F(x)) < 1e-9) | |
def test_broyden2(self): | |
x = nonlin.broyden2(F, F.xin, iter=12, alpha=1) | |
assert_(nonlin.norm(x) < 1e-9) | |
assert_(nonlin.norm(F(x)) < 1e-9) | |
def test_anderson(self): | |
x = nonlin.anderson(F, F.xin, iter=12, alpha=0.03, M=5) | |
assert_(nonlin.norm(x) < 0.33) | |
def test_linearmixing(self): | |
x = nonlin.linearmixing(F, F.xin, iter=60, alpha=0.5) | |
assert_(nonlin.norm(x) < 1e-7) | |
assert_(nonlin.norm(F(x)) < 1e-7) | |
def test_exciting(self): | |
x = nonlin.excitingmixing(F, F.xin, iter=20, alpha=0.5) | |
assert_(nonlin.norm(x) < 1e-5) | |
assert_(nonlin.norm(F(x)) < 1e-5) | |
def test_diagbroyden(self): | |
x = nonlin.diagbroyden(F, F.xin, iter=11, alpha=1) | |
assert_(nonlin.norm(x) < 1e-8) | |
assert_(nonlin.norm(F(x)) < 1e-8) | |
def test_root_broyden1(self): | |
res = root(F, F.xin, method='broyden1', | |
options={'nit': 12, 'jac_options': {'alpha': 1}}) | |
assert_(nonlin.norm(res.x) < 1e-9) | |
assert_(nonlin.norm(res.fun) < 1e-9) | |
def test_root_broyden2(self): | |
res = root(F, F.xin, method='broyden2', | |
options={'nit': 12, 'jac_options': {'alpha': 1}}) | |
assert_(nonlin.norm(res.x) < 1e-9) | |
assert_(nonlin.norm(res.fun) < 1e-9) | |
def test_root_anderson(self): | |
res = root(F, F.xin, method='anderson', | |
options={'nit': 12, | |
'jac_options': {'alpha': 0.03, 'M': 5}}) | |
assert_(nonlin.norm(res.x) < 0.33) | |
def test_root_linearmixing(self): | |
res = root(F, F.xin, method='linearmixing', | |
options={'nit': 60, | |
'jac_options': {'alpha': 0.5}}) | |
assert_(nonlin.norm(res.x) < 1e-7) | |
assert_(nonlin.norm(res.fun) < 1e-7) | |
def test_root_excitingmixing(self): | |
res = root(F, F.xin, method='excitingmixing', | |
options={'nit': 20, | |
'jac_options': {'alpha': 0.5}}) | |
assert_(nonlin.norm(res.x) < 1e-5) | |
assert_(nonlin.norm(res.fun) < 1e-5) | |
def test_root_diagbroyden(self): | |
res = root(F, F.xin, method='diagbroyden', | |
options={'nit': 11, | |
'jac_options': {'alpha': 1}}) | |
assert_(nonlin.norm(res.x) < 1e-8) | |
assert_(nonlin.norm(res.fun) < 1e-8) | |