peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/signal
/_bsplines.py
from numpy import (asarray, pi, zeros_like, | |
array, arctan2, tan, ones, arange, floor, | |
r_, atleast_1d, sqrt, exp, greater, cos, add, sin) | |
# From splinemodule.c | |
from ._spline import cspline2d, sepfir2d | |
from ._signaltools import lfilter, sosfilt, lfiltic | |
from scipy.interpolate import BSpline | |
__all__ = ['spline_filter', 'gauss_spline', | |
'cspline1d', 'qspline1d', 'cspline1d_eval', 'qspline1d_eval'] | |
def spline_filter(Iin, lmbda=5.0): | |
"""Smoothing spline (cubic) filtering of a rank-2 array. | |
Filter an input data set, `Iin`, using a (cubic) smoothing spline of | |
fall-off `lmbda`. | |
Parameters | |
---------- | |
Iin : array_like | |
input data set | |
lmbda : float, optional | |
spline smooghing fall-off value, default is `5.0`. | |
Returns | |
------- | |
res : ndarray | |
filtered input data | |
Examples | |
-------- | |
We can filter an multi dimensional signal (ex: 2D image) using cubic | |
B-spline filter: | |
>>> import numpy as np | |
>>> from scipy.signal import spline_filter | |
>>> import matplotlib.pyplot as plt | |
>>> orig_img = np.eye(20) # create an image | |
>>> orig_img[10, :] = 1.0 | |
>>> sp_filter = spline_filter(orig_img, lmbda=0.1) | |
>>> f, ax = plt.subplots(1, 2, sharex=True) | |
>>> for ind, data in enumerate([[orig_img, "original image"], | |
... [sp_filter, "spline filter"]]): | |
... ax[ind].imshow(data[0], cmap='gray_r') | |
... ax[ind].set_title(data[1]) | |
>>> plt.tight_layout() | |
>>> plt.show() | |
""" | |
intype = Iin.dtype.char | |
hcol = array([1.0, 4.0, 1.0], 'f') / 6.0 | |
if intype in ['F', 'D']: | |
Iin = Iin.astype('F') | |
ckr = cspline2d(Iin.real, lmbda) | |
cki = cspline2d(Iin.imag, lmbda) | |
outr = sepfir2d(ckr, hcol, hcol) | |
outi = sepfir2d(cki, hcol, hcol) | |
out = (outr + 1j * outi).astype(intype) | |
elif intype in ['f', 'd']: | |
ckr = cspline2d(Iin, lmbda) | |
out = sepfir2d(ckr, hcol, hcol) | |
out = out.astype(intype) | |
else: | |
raise TypeError("Invalid data type for Iin") | |
return out | |
_splinefunc_cache = {} | |
def gauss_spline(x, n): | |
r"""Gaussian approximation to B-spline basis function of order n. | |
Parameters | |
---------- | |
x : array_like | |
a knot vector | |
n : int | |
The order of the spline. Must be non-negative, i.e., n >= 0 | |
Returns | |
------- | |
res : ndarray | |
B-spline basis function values approximated by a zero-mean Gaussian | |
function. | |
Notes | |
----- | |
The B-spline basis function can be approximated well by a zero-mean | |
Gaussian function with standard-deviation equal to :math:`\sigma=(n+1)/12` | |
for large `n` : | |
.. math:: \frac{1}{\sqrt {2\pi\sigma^2}}exp(-\frac{x^2}{2\sigma}) | |
References | |
---------- | |
.. [1] Bouma H., Vilanova A., Bescos J.O., ter Haar Romeny B.M., Gerritsen | |
F.A. (2007) Fast and Accurate Gaussian Derivatives Based on B-Splines. In: | |
Sgallari F., Murli A., Paragios N. (eds) Scale Space and Variational | |
Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer | |
Science, vol 4485. Springer, Berlin, Heidelberg | |
.. [2] http://folk.uio.no/inf3330/scripting/doc/python/SciPy/tutorial/old/node24.html | |
Examples | |
-------- | |
We can calculate B-Spline basis functions approximated by a gaussian | |
distribution: | |
>>> import numpy as np | |
>>> from scipy.signal import gauss_spline | |
>>> knots = np.array([-1.0, 0.0, -1.0]) | |
>>> gauss_spline(knots, 3) | |
array([0.15418033, 0.6909883, 0.15418033]) # may vary | |
""" | |
x = asarray(x) | |
signsq = (n + 1) / 12.0 | |
return 1 / sqrt(2 * pi * signsq) * exp(-x ** 2 / 2 / signsq) | |
def _cubic(x): | |
x = asarray(x, dtype=float) | |
b = BSpline.basis_element([-2, -1, 0, 1, 2], extrapolate=False) | |
out = b(x) | |
out[(x < -2) | (x > 2)] = 0 | |
return out | |
def _quadratic(x): | |
x = abs(asarray(x, dtype=float)) | |
b = BSpline.basis_element([-1.5, -0.5, 0.5, 1.5], extrapolate=False) | |
out = b(x) | |
out[(x < -1.5) | (x > 1.5)] = 0 | |
return out | |
def _coeff_smooth(lam): | |
xi = 1 - 96 * lam + 24 * lam * sqrt(3 + 144 * lam) | |
omeg = arctan2(sqrt(144 * lam - 1), sqrt(xi)) | |
rho = (24 * lam - 1 - sqrt(xi)) / (24 * lam) | |
rho = rho * sqrt((48 * lam + 24 * lam * sqrt(3 + 144 * lam)) / xi) | |
return rho, omeg | |
def _hc(k, cs, rho, omega): | |
return (cs / sin(omega) * (rho ** k) * sin(omega * (k + 1)) * | |
greater(k, -1)) | |
def _hs(k, cs, rho, omega): | |
c0 = (cs * cs * (1 + rho * rho) / (1 - rho * rho) / | |
(1 - 2 * rho * rho * cos(2 * omega) + rho ** 4)) | |
gamma = (1 - rho * rho) / (1 + rho * rho) / tan(omega) | |
ak = abs(k) | |
return c0 * rho ** ak * (cos(omega * ak) + gamma * sin(omega * ak)) | |
def _cubic_smooth_coeff(signal, lamb): | |
rho, omega = _coeff_smooth(lamb) | |
cs = 1 - 2 * rho * cos(omega) + rho * rho | |
K = len(signal) | |
k = arange(K) | |
zi_2 = (_hc(0, cs, rho, omega) * signal[0] + | |
add.reduce(_hc(k + 1, cs, rho, omega) * signal)) | |
zi_1 = (_hc(0, cs, rho, omega) * signal[0] + | |
_hc(1, cs, rho, omega) * signal[1] + | |
add.reduce(_hc(k + 2, cs, rho, omega) * signal)) | |
# Forward filter: | |
# for n in range(2, K): | |
# yp[n] = (cs * signal[n] + 2 * rho * cos(omega) * yp[n - 1] - | |
# rho * rho * yp[n - 2]) | |
zi = lfiltic(cs, r_[1, -2 * rho * cos(omega), rho * rho], r_[zi_1, zi_2]) | |
zi = zi.reshape(1, -1) | |
sos = r_[cs, 0, 0, 1, -2 * rho * cos(omega), rho * rho] | |
sos = sos.reshape(1, -1) | |
yp, _ = sosfilt(sos, signal[2:], zi=zi) | |
yp = r_[zi_2, zi_1, yp] | |
# Reverse filter: | |
# for n in range(K - 3, -1, -1): | |
# y[n] = (cs * yp[n] + 2 * rho * cos(omega) * y[n + 1] - | |
# rho * rho * y[n + 2]) | |
zi_2 = add.reduce((_hs(k, cs, rho, omega) + | |
_hs(k + 1, cs, rho, omega)) * signal[::-1]) | |
zi_1 = add.reduce((_hs(k - 1, cs, rho, omega) + | |
_hs(k + 2, cs, rho, omega)) * signal[::-1]) | |
zi = lfiltic(cs, r_[1, -2 * rho * cos(omega), rho * rho], r_[zi_1, zi_2]) | |
zi = zi.reshape(1, -1) | |
y, _ = sosfilt(sos, yp[-3::-1], zi=zi) | |
y = r_[y[::-1], zi_1, zi_2] | |
return y | |
def _cubic_coeff(signal): | |
zi = -2 + sqrt(3) | |
K = len(signal) | |
powers = zi ** arange(K) | |
if K == 1: | |
yplus = signal[0] + zi * add.reduce(powers * signal) | |
output = zi / (zi - 1) * yplus | |
return atleast_1d(output) | |
# Forward filter: | |
# yplus[0] = signal[0] + zi * add.reduce(powers * signal) | |
# for k in range(1, K): | |
# yplus[k] = signal[k] + zi * yplus[k - 1] | |
state = lfiltic(1, r_[1, -zi], atleast_1d(add.reduce(powers * signal))) | |
b = ones(1) | |
a = r_[1, -zi] | |
yplus, _ = lfilter(b, a, signal, zi=state) | |
# Reverse filter: | |
# output[K - 1] = zi / (zi - 1) * yplus[K - 1] | |
# for k in range(K - 2, -1, -1): | |
# output[k] = zi * (output[k + 1] - yplus[k]) | |
out_last = zi / (zi - 1) * yplus[K - 1] | |
state = lfiltic(-zi, r_[1, -zi], atleast_1d(out_last)) | |
b = asarray([-zi]) | |
output, _ = lfilter(b, a, yplus[-2::-1], zi=state) | |
output = r_[output[::-1], out_last] | |
return output * 6.0 | |
def _quadratic_coeff(signal): | |
zi = -3 + 2 * sqrt(2.0) | |
K = len(signal) | |
powers = zi ** arange(K) | |
if K == 1: | |
yplus = signal[0] + zi * add.reduce(powers * signal) | |
output = zi / (zi - 1) * yplus | |
return atleast_1d(output) | |
# Forward filter: | |
# yplus[0] = signal[0] + zi * add.reduce(powers * signal) | |
# for k in range(1, K): | |
# yplus[k] = signal[k] + zi * yplus[k - 1] | |
state = lfiltic(1, r_[1, -zi], atleast_1d(add.reduce(powers * signal))) | |
b = ones(1) | |
a = r_[1, -zi] | |
yplus, _ = lfilter(b, a, signal, zi=state) | |
# Reverse filter: | |
# output[K - 1] = zi / (zi - 1) * yplus[K - 1] | |
# for k in range(K - 2, -1, -1): | |
# output[k] = zi * (output[k + 1] - yplus[k]) | |
out_last = zi / (zi - 1) * yplus[K - 1] | |
state = lfiltic(-zi, r_[1, -zi], atleast_1d(out_last)) | |
b = asarray([-zi]) | |
output, _ = lfilter(b, a, yplus[-2::-1], zi=state) | |
output = r_[output[::-1], out_last] | |
return output * 8.0 | |
def cspline1d(signal, lamb=0.0): | |
""" | |
Compute cubic spline coefficients for rank-1 array. | |
Find the cubic spline coefficients for a 1-D signal assuming | |
mirror-symmetric boundary conditions. To obtain the signal back from the | |
spline representation mirror-symmetric-convolve these coefficients with a | |
length 3 FIR window [1.0, 4.0, 1.0]/ 6.0 . | |
Parameters | |
---------- | |
signal : ndarray | |
A rank-1 array representing samples of a signal. | |
lamb : float, optional | |
Smoothing coefficient, default is 0.0. | |
Returns | |
------- | |
c : ndarray | |
Cubic spline coefficients. | |
See Also | |
-------- | |
cspline1d_eval : Evaluate a cubic spline at the new set of points. | |
Examples | |
-------- | |
We can filter a signal to reduce and smooth out high-frequency noise with | |
a cubic spline: | |
>>> import numpy as np | |
>>> import matplotlib.pyplot as plt | |
>>> from scipy.signal import cspline1d, cspline1d_eval | |
>>> rng = np.random.default_rng() | |
>>> sig = np.repeat([0., 1., 0.], 100) | |
>>> sig += rng.standard_normal(len(sig))*0.05 # add noise | |
>>> time = np.linspace(0, len(sig)) | |
>>> filtered = cspline1d_eval(cspline1d(sig), time) | |
>>> plt.plot(sig, label="signal") | |
>>> plt.plot(time, filtered, label="filtered") | |
>>> plt.legend() | |
>>> plt.show() | |
""" | |
if lamb != 0.0: | |
return _cubic_smooth_coeff(signal, lamb) | |
else: | |
return _cubic_coeff(signal) | |
def qspline1d(signal, lamb=0.0): | |
"""Compute quadratic spline coefficients for rank-1 array. | |
Parameters | |
---------- | |
signal : ndarray | |
A rank-1 array representing samples of a signal. | |
lamb : float, optional | |
Smoothing coefficient (must be zero for now). | |
Returns | |
------- | |
c : ndarray | |
Quadratic spline coefficients. | |
See Also | |
-------- | |
qspline1d_eval : Evaluate a quadratic spline at the new set of points. | |
Notes | |
----- | |
Find the quadratic spline coefficients for a 1-D signal assuming | |
mirror-symmetric boundary conditions. To obtain the signal back from the | |
spline representation mirror-symmetric-convolve these coefficients with a | |
length 3 FIR window [1.0, 6.0, 1.0]/ 8.0 . | |
Examples | |
-------- | |
We can filter a signal to reduce and smooth out high-frequency noise with | |
a quadratic spline: | |
>>> import numpy as np | |
>>> import matplotlib.pyplot as plt | |
>>> from scipy.signal import qspline1d, qspline1d_eval | |
>>> rng = np.random.default_rng() | |
>>> sig = np.repeat([0., 1., 0.], 100) | |
>>> sig += rng.standard_normal(len(sig))*0.05 # add noise | |
>>> time = np.linspace(0, len(sig)) | |
>>> filtered = qspline1d_eval(qspline1d(sig), time) | |
>>> plt.plot(sig, label="signal") | |
>>> plt.plot(time, filtered, label="filtered") | |
>>> plt.legend() | |
>>> plt.show() | |
""" | |
if lamb != 0.0: | |
raise ValueError("Smoothing quadratic splines not supported yet.") | |
else: | |
return _quadratic_coeff(signal) | |
def cspline1d_eval(cj, newx, dx=1.0, x0=0): | |
"""Evaluate a cubic spline at the new set of points. | |
`dx` is the old sample-spacing while `x0` was the old origin. In | |
other-words the old-sample points (knot-points) for which the `cj` | |
represent spline coefficients were at equally-spaced points of: | |
oldx = x0 + j*dx j=0...N-1, with N=len(cj) | |
Edges are handled using mirror-symmetric boundary conditions. | |
Parameters | |
---------- | |
cj : ndarray | |
cublic spline coefficients | |
newx : ndarray | |
New set of points. | |
dx : float, optional | |
Old sample-spacing, the default value is 1.0. | |
x0 : int, optional | |
Old origin, the default value is 0. | |
Returns | |
------- | |
res : ndarray | |
Evaluated a cubic spline points. | |
See Also | |
-------- | |
cspline1d : Compute cubic spline coefficients for rank-1 array. | |
Examples | |
-------- | |
We can filter a signal to reduce and smooth out high-frequency noise with | |
a cubic spline: | |
>>> import numpy as np | |
>>> import matplotlib.pyplot as plt | |
>>> from scipy.signal import cspline1d, cspline1d_eval | |
>>> rng = np.random.default_rng() | |
>>> sig = np.repeat([0., 1., 0.], 100) | |
>>> sig += rng.standard_normal(len(sig))*0.05 # add noise | |
>>> time = np.linspace(0, len(sig)) | |
>>> filtered = cspline1d_eval(cspline1d(sig), time) | |
>>> plt.plot(sig, label="signal") | |
>>> plt.plot(time, filtered, label="filtered") | |
>>> plt.legend() | |
>>> plt.show() | |
""" | |
newx = (asarray(newx) - x0) / float(dx) | |
res = zeros_like(newx, dtype=cj.dtype) | |
if res.size == 0: | |
return res | |
N = len(cj) | |
cond1 = newx < 0 | |
cond2 = newx > (N - 1) | |
cond3 = ~(cond1 | cond2) | |
# handle general mirror-symmetry | |
res[cond1] = cspline1d_eval(cj, -newx[cond1]) | |
res[cond2] = cspline1d_eval(cj, 2 * (N - 1) - newx[cond2]) | |
newx = newx[cond3] | |
if newx.size == 0: | |
return res | |
result = zeros_like(newx, dtype=cj.dtype) | |
jlower = floor(newx - 2).astype(int) + 1 | |
for i in range(4): | |
thisj = jlower + i | |
indj = thisj.clip(0, N - 1) # handle edge cases | |
result += cj[indj] * _cubic(newx - thisj) | |
res[cond3] = result | |
return res | |
def qspline1d_eval(cj, newx, dx=1.0, x0=0): | |
"""Evaluate a quadratic spline at the new set of points. | |
Parameters | |
---------- | |
cj : ndarray | |
Quadratic spline coefficients | |
newx : ndarray | |
New set of points. | |
dx : float, optional | |
Old sample-spacing, the default value is 1.0. | |
x0 : int, optional | |
Old origin, the default value is 0. | |
Returns | |
------- | |
res : ndarray | |
Evaluated a quadratic spline points. | |
See Also | |
-------- | |
qspline1d : Compute quadratic spline coefficients for rank-1 array. | |
Notes | |
----- | |
`dx` is the old sample-spacing while `x0` was the old origin. In | |
other-words the old-sample points (knot-points) for which the `cj` | |
represent spline coefficients were at equally-spaced points of:: | |
oldx = x0 + j*dx j=0...N-1, with N=len(cj) | |
Edges are handled using mirror-symmetric boundary conditions. | |
Examples | |
-------- | |
We can filter a signal to reduce and smooth out high-frequency noise with | |
a quadratic spline: | |
>>> import numpy as np | |
>>> import matplotlib.pyplot as plt | |
>>> from scipy.signal import qspline1d, qspline1d_eval | |
>>> rng = np.random.default_rng() | |
>>> sig = np.repeat([0., 1., 0.], 100) | |
>>> sig += rng.standard_normal(len(sig))*0.05 # add noise | |
>>> time = np.linspace(0, len(sig)) | |
>>> filtered = qspline1d_eval(qspline1d(sig), time) | |
>>> plt.plot(sig, label="signal") | |
>>> plt.plot(time, filtered, label="filtered") | |
>>> plt.legend() | |
>>> plt.show() | |
""" | |
newx = (asarray(newx) - x0) / dx | |
res = zeros_like(newx) | |
if res.size == 0: | |
return res | |
N = len(cj) | |
cond1 = newx < 0 | |
cond2 = newx > (N - 1) | |
cond3 = ~(cond1 | cond2) | |
# handle general mirror-symmetry | |
res[cond1] = qspline1d_eval(cj, -newx[cond1]) | |
res[cond2] = qspline1d_eval(cj, 2 * (N - 1) - newx[cond2]) | |
newx = newx[cond3] | |
if newx.size == 0: | |
return res | |
result = zeros_like(newx) | |
jlower = floor(newx - 1.5).astype(int) + 1 | |
for i in range(3): | |
thisj = jlower + i | |
indj = thisj.clip(0, N - 1) # handle edge cases | |
result += cj[indj] * _quadratic(newx - thisj) | |
res[cond3] = result | |
return res | |