peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/special
/tests
/test_cdflib.py
""" | |
Test cdflib functions versus mpmath, if available. | |
The following functions still need tests: | |
- ncfdtr | |
- ncfdtri | |
- ncfdtridfn | |
- ncfdtridfd | |
- ncfdtrinc | |
- nbdtrik | |
- nbdtrin | |
- pdtrik | |
- nctdtr | |
- nctdtrit | |
- nctdtridf | |
- nctdtrinc | |
""" | |
import itertools | |
import numpy as np | |
from numpy.testing import assert_equal, assert_allclose | |
import pytest | |
import scipy.special as sp | |
from scipy.special._testutils import ( | |
MissingModule, check_version, FuncData) | |
from scipy.special._mptestutils import ( | |
Arg, IntArg, get_args, mpf2float, assert_mpmath_equal) | |
try: | |
import mpmath | |
except ImportError: | |
mpmath = MissingModule('mpmath') | |
class ProbArg: | |
"""Generate a set of probabilities on [0, 1].""" | |
def __init__(self): | |
# Include the endpoints for compatibility with Arg et. al. | |
self.a = 0 | |
self.b = 1 | |
def values(self, n): | |
"""Return an array containing approximately n numbers.""" | |
m = max(1, n//3) | |
v1 = np.logspace(-30, np.log10(0.3), m) | |
v2 = np.linspace(0.3, 0.7, m + 1, endpoint=False)[1:] | |
v3 = 1 - np.logspace(np.log10(0.3), -15, m) | |
v = np.r_[v1, v2, v3] | |
return np.unique(v) | |
class EndpointFilter: | |
def __init__(self, a, b, rtol, atol): | |
self.a = a | |
self.b = b | |
self.rtol = rtol | |
self.atol = atol | |
def __call__(self, x): | |
mask1 = np.abs(x - self.a) < self.rtol*np.abs(self.a) + self.atol | |
mask2 = np.abs(x - self.b) < self.rtol*np.abs(self.b) + self.atol | |
return np.where(mask1 | mask2, False, True) | |
class _CDFData: | |
def __init__(self, spfunc, mpfunc, index, argspec, spfunc_first=True, | |
dps=20, n=5000, rtol=None, atol=None, | |
endpt_rtol=None, endpt_atol=None): | |
self.spfunc = spfunc | |
self.mpfunc = mpfunc | |
self.index = index | |
self.argspec = argspec | |
self.spfunc_first = spfunc_first | |
self.dps = dps | |
self.n = n | |
self.rtol = rtol | |
self.atol = atol | |
if not isinstance(argspec, list): | |
self.endpt_rtol = None | |
self.endpt_atol = None | |
elif endpt_rtol is not None or endpt_atol is not None: | |
if isinstance(endpt_rtol, list): | |
self.endpt_rtol = endpt_rtol | |
else: | |
self.endpt_rtol = [endpt_rtol]*len(self.argspec) | |
if isinstance(endpt_atol, list): | |
self.endpt_atol = endpt_atol | |
else: | |
self.endpt_atol = [endpt_atol]*len(self.argspec) | |
else: | |
self.endpt_rtol = None | |
self.endpt_atol = None | |
def idmap(self, *args): | |
if self.spfunc_first: | |
res = self.spfunc(*args) | |
if np.isnan(res): | |
return np.nan | |
args = list(args) | |
args[self.index] = res | |
with mpmath.workdps(self.dps): | |
res = self.mpfunc(*tuple(args)) | |
# Imaginary parts are spurious | |
res = mpf2float(res.real) | |
else: | |
with mpmath.workdps(self.dps): | |
res = self.mpfunc(*args) | |
res = mpf2float(res.real) | |
args = list(args) | |
args[self.index] = res | |
res = self.spfunc(*tuple(args)) | |
return res | |
def get_param_filter(self): | |
if self.endpt_rtol is None and self.endpt_atol is None: | |
return None | |
filters = [] | |
for rtol, atol, spec in zip(self.endpt_rtol, self.endpt_atol, self.argspec): | |
if rtol is None and atol is None: | |
filters.append(None) | |
continue | |
elif rtol is None: | |
rtol = 0.0 | |
elif atol is None: | |
atol = 0.0 | |
filters.append(EndpointFilter(spec.a, spec.b, rtol, atol)) | |
return filters | |
def check(self): | |
# Generate values for the arguments | |
args = get_args(self.argspec, self.n) | |
param_filter = self.get_param_filter() | |
param_columns = tuple(range(args.shape[1])) | |
result_columns = args.shape[1] | |
args = np.hstack((args, args[:, self.index].reshape(args.shape[0], 1))) | |
FuncData(self.idmap, args, | |
param_columns=param_columns, result_columns=result_columns, | |
rtol=self.rtol, atol=self.atol, vectorized=False, | |
param_filter=param_filter).check() | |
def _assert_inverts(*a, **kw): | |
d = _CDFData(*a, **kw) | |
d.check() | |
def _binomial_cdf(k, n, p): | |
k, n, p = mpmath.mpf(k), mpmath.mpf(n), mpmath.mpf(p) | |
if k <= 0: | |
return mpmath.mpf(0) | |
elif k >= n: | |
return mpmath.mpf(1) | |
onemp = mpmath.fsub(1, p, exact=True) | |
return mpmath.betainc(n - k, k + 1, x2=onemp, regularized=True) | |
def _f_cdf(dfn, dfd, x): | |
if x < 0: | |
return mpmath.mpf(0) | |
dfn, dfd, x = mpmath.mpf(dfn), mpmath.mpf(dfd), mpmath.mpf(x) | |
ub = dfn*x/(dfn*x + dfd) | |
res = mpmath.betainc(dfn/2, dfd/2, x2=ub, regularized=True) | |
return res | |
def _student_t_cdf(df, t, dps=None): | |
if dps is None: | |
dps = mpmath.mp.dps | |
with mpmath.workdps(dps): | |
df, t = mpmath.mpf(df), mpmath.mpf(t) | |
fac = mpmath.hyp2f1(0.5, 0.5*(df + 1), 1.5, -t**2/df) | |
fac *= t*mpmath.gamma(0.5*(df + 1)) | |
fac /= mpmath.sqrt(mpmath.pi*df)*mpmath.gamma(0.5*df) | |
return 0.5 + fac | |
def _noncentral_chi_pdf(t, df, nc): | |
res = mpmath.besseli(df/2 - 1, mpmath.sqrt(nc*t)) | |
res *= mpmath.exp(-(t + nc)/2)*(t/nc)**(df/4 - 1/2)/2 | |
return res | |
def _noncentral_chi_cdf(x, df, nc, dps=None): | |
if dps is None: | |
dps = mpmath.mp.dps | |
x, df, nc = mpmath.mpf(x), mpmath.mpf(df), mpmath.mpf(nc) | |
with mpmath.workdps(dps): | |
res = mpmath.quad(lambda t: _noncentral_chi_pdf(t, df, nc), [0, x]) | |
return res | |
def _tukey_lmbda_quantile(p, lmbda): | |
# For lmbda != 0 | |
return (p**lmbda - (1 - p)**lmbda)/lmbda | |
class TestCDFlib: | |
def test_bdtrik(self): | |
_assert_inverts( | |
sp.bdtrik, | |
_binomial_cdf, | |
0, [ProbArg(), IntArg(1, 1000), ProbArg()], | |
rtol=1e-4) | |
def test_bdtrin(self): | |
_assert_inverts( | |
sp.bdtrin, | |
_binomial_cdf, | |
1, [IntArg(1, 1000), ProbArg(), ProbArg()], | |
rtol=1e-4, endpt_atol=[None, None, 1e-6]) | |
def test_btdtria(self): | |
_assert_inverts( | |
sp.btdtria, | |
lambda a, b, x: mpmath.betainc(a, b, x2=x, regularized=True), | |
0, [ProbArg(), Arg(0, 1e2, inclusive_a=False), | |
Arg(0, 1, inclusive_a=False, inclusive_b=False)], | |
rtol=1e-6) | |
def test_btdtrib(self): | |
# Use small values of a or mpmath doesn't converge | |
_assert_inverts( | |
sp.btdtrib, | |
lambda a, b, x: mpmath.betainc(a, b, x2=x, regularized=True), | |
1, | |
[Arg(0, 1e2, inclusive_a=False), ProbArg(), | |
Arg(0, 1, inclusive_a=False, inclusive_b=False)], | |
rtol=1e-7, | |
endpt_atol=[None, 1e-18, 1e-15]) | |
def test_fdtridfd(self): | |
_assert_inverts( | |
sp.fdtridfd, | |
_f_cdf, | |
1, | |
[IntArg(1, 100), ProbArg(), Arg(0, 100, inclusive_a=False)], | |
rtol=1e-7) | |
def test_gdtria(self): | |
_assert_inverts( | |
sp.gdtria, | |
lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True), | |
0, | |
[ProbArg(), Arg(0, 1e3, inclusive_a=False), | |
Arg(0, 1e4, inclusive_a=False)], | |
rtol=1e-7, | |
endpt_atol=[None, 1e-7, 1e-10]) | |
def test_gdtrib(self): | |
# Use small values of a and x or mpmath doesn't converge | |
_assert_inverts( | |
sp.gdtrib, | |
lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True), | |
1, | |
[Arg(0, 1e2, inclusive_a=False), ProbArg(), | |
Arg(0, 1e3, inclusive_a=False)], | |
rtol=1e-5) | |
def test_gdtrix(self): | |
_assert_inverts( | |
sp.gdtrix, | |
lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True), | |
2, | |
[Arg(0, 1e3, inclusive_a=False), Arg(0, 1e3, inclusive_a=False), | |
ProbArg()], | |
rtol=1e-7, | |
endpt_atol=[None, 1e-7, 1e-10]) | |
# Overall nrdtrimn and nrdtrisd are not performing well with infeasible/edge | |
# combinations of sigma and x, hence restricted the domains to still use the | |
# testing machinery, also see gh-20069 | |
# nrdtrimn signature: p, sd, x | |
# nrdtrisd signature: mn, p, x | |
def test_nrdtrimn(self): | |
_assert_inverts( | |
sp.nrdtrimn, | |
lambda x, y, z: mpmath.ncdf(z, x, y), | |
0, | |
[ProbArg(), # CDF value p | |
Arg(0.1, np.inf, inclusive_a=False, inclusive_b=False), # sigma | |
Arg(-1e10, 1e10)], # x | |
rtol=1e-5) | |
def test_nrdtrisd(self): | |
_assert_inverts( | |
sp.nrdtrisd, | |
lambda x, y, z: mpmath.ncdf(z, x, y), | |
1, | |
[Arg(-np.inf, 10, inclusive_a=False, inclusive_b=False), # mn | |
ProbArg(), # CDF value p | |
Arg(10, 1e100)], # x | |
rtol=1e-5) | |
def test_stdtr(self): | |
# Ideally the left endpoint for Arg() should be 0. | |
assert_mpmath_equal( | |
sp.stdtr, | |
_student_t_cdf, | |
[IntArg(1, 100), Arg(1e-10, np.inf)], rtol=1e-7) | |
def test_stdtridf(self): | |
_assert_inverts( | |
sp.stdtridf, | |
_student_t_cdf, | |
0, [ProbArg(), Arg()], rtol=1e-7) | |
def test_stdtrit(self): | |
_assert_inverts( | |
sp.stdtrit, | |
_student_t_cdf, | |
1, [IntArg(1, 100), ProbArg()], rtol=1e-7, | |
endpt_atol=[None, 1e-10]) | |
def test_chdtriv(self): | |
_assert_inverts( | |
sp.chdtriv, | |
lambda v, x: mpmath.gammainc(v/2, b=x/2, regularized=True), | |
0, [ProbArg(), IntArg(1, 100)], rtol=1e-4) | |
def test_chndtridf(self): | |
# Use a larger atol since mpmath is doing numerical integration | |
_assert_inverts( | |
sp.chndtridf, | |
_noncentral_chi_cdf, | |
1, [Arg(0, 100, inclusive_a=False), ProbArg(), | |
Arg(0, 100, inclusive_a=False)], | |
n=1000, rtol=1e-4, atol=1e-15) | |
def test_chndtrinc(self): | |
# Use a larger atol since mpmath is doing numerical integration | |
_assert_inverts( | |
sp.chndtrinc, | |
_noncentral_chi_cdf, | |
2, [Arg(0, 100, inclusive_a=False), IntArg(1, 100), ProbArg()], | |
n=1000, rtol=1e-4, atol=1e-15) | |
def test_chndtrix(self): | |
# Use a larger atol since mpmath is doing numerical integration | |
_assert_inverts( | |
sp.chndtrix, | |
_noncentral_chi_cdf, | |
0, [ProbArg(), IntArg(1, 100), Arg(0, 100, inclusive_a=False)], | |
n=1000, rtol=1e-4, atol=1e-15, | |
endpt_atol=[1e-6, None, None]) | |
def test_tklmbda_zero_shape(self): | |
# When lmbda = 0 the CDF has a simple closed form | |
one = mpmath.mpf(1) | |
assert_mpmath_equal( | |
lambda x: sp.tklmbda(x, 0), | |
lambda x: one/(mpmath.exp(-x) + one), | |
[Arg()], rtol=1e-7) | |
def test_tklmbda_neg_shape(self): | |
_assert_inverts( | |
sp.tklmbda, | |
_tukey_lmbda_quantile, | |
0, [ProbArg(), Arg(-25, 0, inclusive_b=False)], | |
spfunc_first=False, rtol=1e-5, | |
endpt_atol=[1e-9, 1e-5]) | |
def test_tklmbda_pos_shape(self): | |
_assert_inverts( | |
sp.tklmbda, | |
_tukey_lmbda_quantile, | |
0, [ProbArg(), Arg(0, 100, inclusive_a=False)], | |
spfunc_first=False, rtol=1e-5) | |
# The values of lmdba are chosen so that 1/lmbda is exact. | |
def test_tklmbda_lmbda1(self, lmbda): | |
bound = 1/lmbda | |
assert_equal(sp.tklmbda([-bound, bound], lmbda), [0.0, 1.0]) | |
funcs = [ | |
("btdtria", 3), | |
("btdtrib", 3), | |
("bdtrik", 3), | |
("bdtrin", 3), | |
("chdtriv", 2), | |
("chndtr", 3), | |
("chndtrix", 3), | |
("chndtridf", 3), | |
("chndtrinc", 3), | |
("fdtridfd", 3), | |
("ncfdtr", 4), | |
("ncfdtri", 4), | |
("ncfdtridfn", 4), | |
("ncfdtridfd", 4), | |
("ncfdtrinc", 4), | |
("gdtrix", 3), | |
("gdtrib", 3), | |
("gdtria", 3), | |
("nbdtrik", 3), | |
("nbdtrin", 3), | |
("nrdtrimn", 3), | |
("nrdtrisd", 3), | |
("pdtrik", 2), | |
("stdtr", 2), | |
("stdtrit", 2), | |
("stdtridf", 2), | |
("nctdtr", 3), | |
("nctdtrit", 3), | |
("nctdtridf", 3), | |
("nctdtrinc", 3), | |
("tklmbda", 2), | |
] | |
def test_nonfinite(func, numargs): | |
rng = np.random.default_rng(1701299355559735) | |
func = getattr(sp, func) | |
args_choices = [(float(x), np.nan, np.inf, -np.inf) for x in rng.random(numargs)] | |
for args in itertools.product(*args_choices): | |
res = func(*args) | |
if any(np.isnan(x) for x in args): | |
# Nan inputs should result to nan output | |
assert_equal(res, np.nan) | |
else: | |
# All other inputs should return something (but not | |
# raise exceptions or cause hangs) | |
pass | |
def test_chndtrix_gh2158(): | |
# test that gh-2158 is resolved; previously this blew up | |
res = sp.chndtrix(0.999999, 2, np.arange(20.)+1e-6) | |
# Generated in R | |
# options(digits=16) | |
# ncp <- seq(0, 19) + 1e-6 | |
# print(qchisq(0.999999, df = 2, ncp = ncp)) | |
res_exp = [27.63103493142305, 35.25728589950540, 39.97396073236288, | |
43.88033702110538, 47.35206403482798, 50.54112500166103, | |
53.52720257322766, 56.35830042867810, 59.06600769498512, | |
61.67243118946381, 64.19376191277179, 66.64228141346548, | |
69.02756927200180, 71.35726934749408, 73.63759723904816, | |
75.87368842650227, 78.06984431185720, 80.22971052389806, | |
82.35640899964173, 84.45263768373256] | |
assert_allclose(res, res_exp) | |
def test_nctdtr_gh19896(): | |
# test that gh-19896 is resolved. | |
# Compared to SciPy 1.11 results from Fortran code. | |
dfarr = [0.98, 9.8, 98, 980] | |
pnoncarr = [-3.8, 0.38, 3.8, 38] | |
tarr = [0.0015, 0.15, 1.5, 15] | |
resarr = [0.9999276519560749, 0.9999276519560749, 0.9999908831755221, | |
0.9999990265452424, 0.3524153312279712, 0.39749697267251416, | |
0.7168629634895805, 0.9656246449259646, 7.234804392512006e-05, | |
7.234804392512006e-05, 0.03538804607509127, 0.795482701508521, | |
0.0, 0.0, 0.0, | |
0.011927908523093889, 0.9999276519560749, 0.9999276519560749, | |
0.9999997441133123, 1.0, 0.3525155979118013, | |
0.4076312014048369, 0.8476794017035086, 0.9999999297116268, | |
7.234804392512006e-05, 7.234804392512006e-05, 0.013477443099785824, | |
0.9998501512331494, 0.0, 0.0, | |
0.0, 6.561112613212572e-07, 0.9999276519560749, | |
0.9999276519560749, 0.9999999313496014, 1.0, | |
0.3525281784865706, 0.40890253001898014, 0.8664672830017024, | |
1.0, 7.234804392512006e-05, 7.234804392512006e-05, | |
0.010990889489704836, 1.0, 0.0, | |
0.0, 0.0, 0.0, | |
0.9999276519560749, 0.9999276519560749, 0.9999999418789304, | |
1.0, 0.35252945487817355, 0.40903153246690993, | |
0.8684247068528264, 1.0, 7.234804392512006e-05, | |
7.234804392512006e-05, 0.01075068918582911, 1.0, | |
0.0, 0.0, 0.0, 0.0] | |
actarr = [] | |
for df, p, t in itertools.product(dfarr, pnoncarr, tarr): | |
actarr += [sp.nctdtr(df, p, t)] | |
# The rtol is kept high on purpose to make it pass on 32bit systems | |
assert_allclose(actarr, resarr, rtol=1e-6, atol=0.0) | |
def test_nctdtrinc_gh19896(): | |
# test that gh-19896 is resolved. | |
# Compared to SciPy 1.11 results from Fortran code. | |
dfarr = [0.001, 0.98, 9.8, 98, 980, 10000, 98, 9.8, 0.98, 0.001] | |
parr = [0.001, 0.1, 0.3, 0.8, 0.999, 0.001, 0.1, 0.3, 0.8, 0.999] | |
tarr = [0.0015, 0.15, 1.5, 15, 300, 0.0015, 0.15, 1.5, 15, 300] | |
desired = [3.090232306168629, 1.406141304556198, 2.014225177124157, | |
13.727067118283456, 278.9765683871208, 3.090232306168629, | |
1.4312427877936222, 2.014225177124157, 3.712743137978295, | |
-3.086951096691082] | |
actual = sp.nctdtrinc(dfarr, parr, tarr) | |
assert_allclose(actual, desired, rtol=5e-12, atol=0.0) | |
def test_stdtr_stdtrit_neg_inf(): | |
# -inf was treated as +inf and values from the normal were returned | |
assert np.all(np.isnan(sp.stdtr(-np.inf, [-np.inf, -1.0, 0.0, 1.0, np.inf]))) | |
assert np.all(np.isnan(sp.stdtrit(-np.inf, [0.0, 0.25, 0.5, 0.75, 1.0]))) | |
def test_bdtrik_nbdtrik_inf(): | |
y = np.array( | |
[np.nan,-np.inf,-10.0, -1.0, 0.0, .00001, .5, 0.9999, 1.0, 10.0, np.inf]) | |
y = y[:,None] | |
p = np.atleast_2d( | |
[np.nan, -np.inf, -10.0, -1.0, 0.0, .00001, .5, 1.0, np.inf]) | |
assert np.all(np.isnan(sp.bdtrik(y, np.inf, p))) | |
assert np.all(np.isnan(sp.nbdtrik(y, np.inf, p))) | |