peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/special
/tests
/test_lambertw.py
# | |
# Tests for the lambertw function, | |
# Adapted from the MPMath tests [1] by Yosef Meller, [email protected] | |
# Distributed under the same license as SciPy itself. | |
# | |
# [1] mpmath source code, Subversion revision 992 | |
# http://code.google.com/p/mpmath/source/browse/trunk/mpmath/tests/test_functions2.py?spec=svn994&r=992 | |
import pytest | |
import numpy as np | |
from numpy.testing import assert_, assert_equal, assert_array_almost_equal | |
from scipy.special import lambertw | |
from numpy import nan, inf, pi, e, isnan, log, r_, array, complex128 | |
from scipy.special._testutils import FuncData | |
def test_values(): | |
assert_(isnan(lambertw(nan))) | |
assert_equal(lambertw(inf,1).real, inf) | |
assert_equal(lambertw(inf,1).imag, 2*pi) | |
assert_equal(lambertw(-inf,1).real, inf) | |
assert_equal(lambertw(-inf,1).imag, 3*pi) | |
assert_equal(lambertw(1.), lambertw(1., 0)) | |
data = [ | |
(0,0, 0), | |
(0+0j,0, 0), | |
(inf,0, inf), | |
(0,-1, -inf), | |
(0,1, -inf), | |
(0,3, -inf), | |
(e,0, 1), | |
(1,0, 0.567143290409783873), | |
(-pi/2,0, 1j*pi/2), | |
(-log(2)/2,0, -log(2)), | |
(0.25,0, 0.203888354702240164), | |
(-0.25,0, -0.357402956181388903), | |
(-1./10000,0, -0.000100010001500266719), | |
(-0.25,-1, -2.15329236411034965), | |
(0.25,-1, -3.00899800997004620-4.07652978899159763j), | |
(-0.25,-1, -2.15329236411034965), | |
(0.25,1, -3.00899800997004620+4.07652978899159763j), | |
(-0.25,1, -3.48973228422959210+7.41405453009603664j), | |
(-4,0, 0.67881197132094523+1.91195078174339937j), | |
(-4,1, -0.66743107129800988+7.76827456802783084j), | |
(-4,-1, 0.67881197132094523-1.91195078174339937j), | |
(1000,0, 5.24960285240159623), | |
(1000,1, 4.91492239981054535+5.44652615979447070j), | |
(1000,-1, 4.91492239981054535-5.44652615979447070j), | |
(1000,5, 3.5010625305312892+29.9614548941181328j), | |
(3+4j,0, 1.281561806123775878+0.533095222020971071j), | |
(-0.4+0.4j,0, -0.10396515323290657+0.61899273315171632j), | |
(3+4j,1, -0.11691092896595324+5.61888039871282334j), | |
(3+4j,-1, 0.25856740686699742-3.85211668616143559j), | |
(-0.5,-1, -0.794023632344689368-0.770111750510379110j), | |
(-1./10000,1, -11.82350837248724344+6.80546081842002101j), | |
(-1./10000,-1, -11.6671145325663544), | |
(-1./10000,-2, -11.82350837248724344-6.80546081842002101j), | |
(-1./100000,4, -14.9186890769540539+26.1856750178782046j), | |
(-1./100000,5, -15.0931437726379218666+32.5525721210262290086j), | |
((2+1j)/10,0, 0.173704503762911669+0.071781336752835511j), | |
((2+1j)/10,1, -3.21746028349820063+4.56175438896292539j), | |
((2+1j)/10,-1, -3.03781405002993088-3.53946629633505737j), | |
((2+1j)/10,4, -4.6878509692773249+23.8313630697683291j), | |
(-(2+1j)/10,0, -0.226933772515757933-0.164986470020154580j), | |
(-(2+1j)/10,1, -2.43569517046110001+0.76974067544756289j), | |
(-(2+1j)/10,-1, -3.54858738151989450-6.91627921869943589j), | |
(-(2+1j)/10,4, -4.5500846928118151+20.6672982215434637j), | |
(pi,0, 1.073658194796149172092178407024821347547745350410314531), | |
# Former bug in generated branch, | |
(-0.5+0.002j,0, -0.78917138132659918344 + 0.76743539379990327749j), | |
(-0.5-0.002j,0, -0.78917138132659918344 - 0.76743539379990327749j), | |
(-0.448+0.4j,0, -0.11855133765652382241 + 0.66570534313583423116j), | |
(-0.448-0.4j,0, -0.11855133765652382241 - 0.66570534313583423116j), | |
] | |
data = array(data, dtype=complex128) | |
def w(x, y): | |
return lambertw(x, y.real.astype(int)) | |
with np.errstate(all='ignore'): | |
FuncData(w, data, (0,1), 2, rtol=1e-10, atol=1e-13).check() | |
def test_ufunc(): | |
assert_array_almost_equal( | |
lambertw(r_[0., e, 1.]), r_[0., 1., 0.567143290409783873]) | |
def test_lambertw_ufunc_loop_selection(): | |
# see https://github.com/scipy/scipy/issues/4895 | |
dt = np.dtype(np.complex128) | |
assert_equal(lambertw(0, 0, 0).dtype, dt) | |
assert_equal(lambertw([0], 0, 0).dtype, dt) | |
assert_equal(lambertw(0, [0], 0).dtype, dt) | |
assert_equal(lambertw(0, 0, [0]).dtype, dt) | |
assert_equal(lambertw([0], [0], [0]).dtype, dt) | |
def test_lambertw_subnormal_k0(z): | |
# Verify that subnormal inputs are handled correctly on | |
# the branch k=0 (regression test for gh-16291). | |
w = lambertw(z) | |
# For values this small, we can be sure that numerically, | |
# lambertw(z) is z. | |
assert w == z | |