peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/special
/tests
/test_logit.py
import numpy as np | |
from numpy.testing import (assert_equal, assert_almost_equal, | |
assert_allclose) | |
from scipy.special import logit, expit, log_expit | |
class TestLogit: | |
def check_logit_out(self, dtype, expected): | |
a = np.linspace(0, 1, 10) | |
a = np.array(a, dtype=dtype) | |
with np.errstate(divide='ignore'): | |
actual = logit(a) | |
assert_almost_equal(actual, expected) | |
assert_equal(actual.dtype, np.dtype(dtype)) | |
def test_float32(self): | |
expected = np.array([-np.inf, -2.07944155, | |
-1.25276291, -0.69314718, | |
-0.22314353, 0.22314365, | |
0.6931473, 1.25276303, | |
2.07944155, np.inf], dtype=np.float32) | |
self.check_logit_out('f4', expected) | |
def test_float64(self): | |
expected = np.array([-np.inf, -2.07944154, | |
-1.25276297, -0.69314718, | |
-0.22314355, 0.22314355, | |
0.69314718, 1.25276297, | |
2.07944154, np.inf]) | |
self.check_logit_out('f8', expected) | |
def test_nan(self): | |
expected = np.array([np.nan]*4) | |
with np.errstate(invalid='ignore'): | |
actual = logit(np.array([-3., -2., 2., 3.])) | |
assert_equal(expected, actual) | |
class TestExpit: | |
def check_expit_out(self, dtype, expected): | |
a = np.linspace(-4, 4, 10) | |
a = np.array(a, dtype=dtype) | |
actual = expit(a) | |
assert_almost_equal(actual, expected) | |
assert_equal(actual.dtype, np.dtype(dtype)) | |
def test_float32(self): | |
expected = np.array([0.01798621, 0.04265125, | |
0.09777259, 0.20860852, | |
0.39068246, 0.60931754, | |
0.79139149, 0.9022274, | |
0.95734876, 0.98201376], dtype=np.float32) | |
self.check_expit_out('f4', expected) | |
def test_float64(self): | |
expected = np.array([0.01798621, 0.04265125, | |
0.0977726, 0.20860853, | |
0.39068246, 0.60931754, | |
0.79139147, 0.9022274, | |
0.95734875, 0.98201379]) | |
self.check_expit_out('f8', expected) | |
def test_large(self): | |
for dtype in (np.float32, np.float64, np.longdouble): | |
for n in (88, 89, 709, 710, 11356, 11357): | |
n = np.array(n, dtype=dtype) | |
assert_allclose(expit(n), 1.0, atol=1e-20) | |
assert_allclose(expit(-n), 0.0, atol=1e-20) | |
assert_equal(expit(n).dtype, dtype) | |
assert_equal(expit(-n).dtype, dtype) | |
class TestLogExpit: | |
def test_large_negative(self): | |
x = np.array([-10000.0, -750.0, -500.0, -35.0]) | |
y = log_expit(x) | |
assert_equal(y, x) | |
def test_large_positive(self): | |
x = np.array([750.0, 1000.0, 10000.0]) | |
y = log_expit(x) | |
# y will contain -0.0, and -0.0 is used in the expected value, | |
# but assert_equal does not check the sign of zeros, and I don't | |
# think the sign is an essential part of the test (i.e. it would | |
# probably be OK if log_expit(1000) returned 0.0 instead of -0.0). | |
assert_equal(y, np.array([-0.0, -0.0, -0.0])) | |
def test_basic_float64(self): | |
x = np.array([-32, -20, -10, -3, -1, -0.1, -1e-9, | |
0, 1e-9, 0.1, 1, 10, 100, 500, 710, 725, 735]) | |
y = log_expit(x) | |
# | |
# Expected values were computed with mpmath: | |
# | |
# import mpmath | |
# | |
# mpmath.mp.dps = 100 | |
# | |
# def mp_log_expit(x): | |
# return -mpmath.log1p(mpmath.exp(-x)) | |
# | |
# expected = [float(mp_log_expit(t)) for t in x] | |
# | |
expected = [-32.000000000000014, -20.000000002061153, | |
-10.000045398899218, -3.048587351573742, | |
-1.3132616875182228, -0.7443966600735709, | |
-0.6931471810599453, -0.6931471805599453, | |
-0.6931471800599454, -0.6443966600735709, | |
-0.3132616875182228, -4.539889921686465e-05, | |
-3.720075976020836e-44, -7.124576406741286e-218, | |
-4.47628622567513e-309, -1.36930634e-315, | |
-6.217e-320] | |
# When tested locally, only one value in y was not exactly equal to | |
# expected. That was for x=1, and the y value differed from the | |
# expected by 1 ULP. For this test, however, I'll use rtol=1e-15. | |
assert_allclose(y, expected, rtol=1e-15) | |
def test_basic_float32(self): | |
x = np.array([-32, -20, -10, -3, -1, -0.1, -1e-9, | |
0, 1e-9, 0.1, 1, 10, 100], dtype=np.float32) | |
y = log_expit(x) | |
# | |
# Expected values were computed with mpmath: | |
# | |
# import mpmath | |
# | |
# mpmath.mp.dps = 100 | |
# | |
# def mp_log_expit(x): | |
# return -mpmath.log1p(mpmath.exp(-x)) | |
# | |
# expected = [np.float32(mp_log_expit(t)) for t in x] | |
# | |
expected = np.array([-32.0, -20.0, -10.000046, -3.0485873, | |
-1.3132616, -0.7443967, -0.6931472, | |
-0.6931472, -0.6931472, -0.64439666, | |
-0.3132617, -4.5398898e-05, -3.8e-44], | |
dtype=np.float32) | |
assert_allclose(y, expected, rtol=5e-7) | |