peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/special
/tests
/test_mpmath.py
""" | |
Test SciPy functions versus mpmath, if available. | |
""" | |
import numpy as np | |
from numpy.testing import assert_, assert_allclose | |
from numpy import pi | |
import pytest | |
import itertools | |
from scipy._lib import _pep440 | |
import scipy.special as sc | |
from scipy.special._testutils import ( | |
MissingModule, check_version, FuncData, | |
assert_func_equal) | |
from scipy.special._mptestutils import ( | |
Arg, FixedArg, ComplexArg, IntArg, assert_mpmath_equal, | |
nonfunctional_tooslow, trace_args, time_limited, exception_to_nan, | |
inf_to_nan) | |
from scipy.special._ufuncs import ( | |
_sinpi, _cospi, _lgam1p, _lanczos_sum_expg_scaled, _log1pmx, | |
_igam_fac) | |
try: | |
import mpmath | |
except ImportError: | |
mpmath = MissingModule('mpmath') | |
# ------------------------------------------------------------------------------ | |
# expi | |
# ------------------------------------------------------------------------------ | |
def test_expi_complex(): | |
dataset = [] | |
for r in np.logspace(-99, 2, 10): | |
for p in np.linspace(0, 2*np.pi, 30): | |
z = r*np.exp(1j*p) | |
dataset.append((z, complex(mpmath.ei(z)))) | |
dataset = np.array(dataset, dtype=np.cdouble) | |
FuncData(sc.expi, dataset, 0, 1).check() | |
# ------------------------------------------------------------------------------ | |
# expn | |
# ------------------------------------------------------------------------------ | |
def test_expn_large_n(): | |
# Test the transition to the asymptotic regime of n. | |
dataset = [] | |
for n in [50, 51]: | |
for x in np.logspace(0, 4, 200): | |
with mpmath.workdps(100): | |
dataset.append((n, x, float(mpmath.expint(n, x)))) | |
dataset = np.asarray(dataset) | |
FuncData(sc.expn, dataset, (0, 1), 2, rtol=1e-13).check() | |
# ------------------------------------------------------------------------------ | |
# hyp0f1 | |
# ------------------------------------------------------------------------------ | |
def test_hyp0f1_gh5764(): | |
# Do a small and somewhat systematic test that runs quickly | |
dataset = [] | |
axis = [-99.5, -9.5, -0.5, 0.5, 9.5, 99.5] | |
for v in axis: | |
for x in axis: | |
for y in axis: | |
z = x + 1j*y | |
# mpmath computes the answer correctly at dps ~ 17 but | |
# fails for 20 < dps < 120 (uses a different method); | |
# set the dps high enough that this isn't an issue | |
with mpmath.workdps(120): | |
res = complex(mpmath.hyp0f1(v, z)) | |
dataset.append((v, z, res)) | |
dataset = np.array(dataset) | |
FuncData(lambda v, z: sc.hyp0f1(v.real, z), dataset, (0, 1), 2, | |
rtol=1e-13).check() | |
def test_hyp0f1_gh_1609(): | |
# this is a regression test for gh-1609 | |
vv = np.linspace(150, 180, 21) | |
af = sc.hyp0f1(vv, 0.5) | |
mf = np.array([mpmath.hyp0f1(v, 0.5) for v in vv]) | |
assert_allclose(af, mf.astype(float), rtol=1e-12) | |
# ------------------------------------------------------------------------------ | |
# hyperu | |
# ------------------------------------------------------------------------------ | |
def test_hyperu_around_0(): | |
dataset = [] | |
# DLMF 13.2.14-15 test points. | |
for n in np.arange(-5, 5): | |
for b in np.linspace(-5, 5, 20): | |
a = -n | |
dataset.append((a, b, 0, float(mpmath.hyperu(a, b, 0)))) | |
a = -n + b - 1 | |
dataset.append((a, b, 0, float(mpmath.hyperu(a, b, 0)))) | |
# DLMF 13.2.16-22 test points. | |
for a in [-10.5, -1.5, -0.5, 0, 0.5, 1, 10]: | |
for b in [-1.0, -0.5, 0, 0.5, 1, 1.5, 2, 2.5]: | |
dataset.append((a, b, 0, float(mpmath.hyperu(a, b, 0)))) | |
dataset = np.array(dataset) | |
FuncData(sc.hyperu, dataset, (0, 1, 2), 3, rtol=1e-15, atol=5e-13).check() | |
# ------------------------------------------------------------------------------ | |
# hyp2f1 | |
# ------------------------------------------------------------------------------ | |
def test_hyp2f1_strange_points(): | |
pts = [ | |
(2, -1, -1, 0.7), # expected: 2.4 | |
(2, -2, -2, 0.7), # expected: 3.87 | |
] | |
pts += list(itertools.product([2, 1, -0.7, -1000], repeat=4)) | |
pts = [ | |
(a, b, c, x) for a, b, c, x in pts | |
if b == c and round(b) == b and b < 0 and b != -1000 | |
] | |
kw = dict(eliminate=True) | |
dataset = [p + (float(mpmath.hyp2f1(*p, **kw)),) for p in pts] | |
dataset = np.array(dataset, dtype=np.float64) | |
FuncData(sc.hyp2f1, dataset, (0,1,2,3), 4, rtol=1e-10).check() | |
def test_hyp2f1_real_some_points(): | |
pts = [ | |
(1, 2, 3, 0), | |
(1./3, 2./3, 5./6, 27./32), | |
(1./4, 1./2, 3./4, 80./81), | |
(2,-2, -3, 3), | |
(2, -3, -2, 3), | |
(2, -1.5, -1.5, 3), | |
(1, 2, 3, 0), | |
(0.7235, -1, -5, 0.3), | |
(0.25, 1./3, 2, 0.999), | |
(0.25, 1./3, 2, -1), | |
(2, 3, 5, 0.99), | |
(3./2, -0.5, 3, 0.99), | |
(2, 2.5, -3.25, 0.999), | |
(-8, 18.016500331508873, 10.805295997850628, 0.90875647507000001), | |
(-10, 900, -10.5, 0.99), | |
(-10, 900, 10.5, 0.99), | |
(-1, 2, 1, 1.0), | |
(-1, 2, 1, -1.0), | |
(-3, 13, 5, 1.0), | |
(-3, 13, 5, -1.0), | |
(0.5, 1 - 270.5, 1.5, 0.999**2), # from issue 1561 | |
] | |
dataset = [p + (float(mpmath.hyp2f1(*p)),) for p in pts] | |
dataset = np.array(dataset, dtype=np.float64) | |
with np.errstate(invalid='ignore'): | |
FuncData(sc.hyp2f1, dataset, (0,1,2,3), 4, rtol=1e-10).check() | |
def test_hyp2f1_some_points_2(): | |
# Taken from mpmath unit tests -- this point failed for mpmath 0.13 but | |
# was fixed in their SVN since then | |
pts = [ | |
(112, (51,10), (-9,10), -0.99999), | |
(10,-900,10.5,0.99), | |
(10,-900,-10.5,0.99), | |
] | |
def fev(x): | |
if isinstance(x, tuple): | |
return float(x[0]) / x[1] | |
else: | |
return x | |
dataset = [tuple(map(fev, p)) + (float(mpmath.hyp2f1(*p)),) for p in pts] | |
dataset = np.array(dataset, dtype=np.float64) | |
FuncData(sc.hyp2f1, dataset, (0,1,2,3), 4, rtol=1e-10).check() | |
def test_hyp2f1_real_some(): | |
dataset = [] | |
for a in [-10, -5, -1.8, 1.8, 5, 10]: | |
for b in [-2.5, -1, 1, 7.4]: | |
for c in [-9, -1.8, 5, 20.4]: | |
for z in [-10, -1.01, -0.99, 0, 0.6, 0.95, 1.5, 10]: | |
try: | |
v = float(mpmath.hyp2f1(a, b, c, z)) | |
except Exception: | |
continue | |
dataset.append((a, b, c, z, v)) | |
dataset = np.array(dataset, dtype=np.float64) | |
with np.errstate(invalid='ignore'): | |
FuncData(sc.hyp2f1, dataset, (0,1,2,3), 4, rtol=1e-9, | |
ignore_inf_sign=True).check() | |
def test_hyp2f1_real_random(): | |
npoints = 500 | |
dataset = np.zeros((npoints, 5), np.float64) | |
np.random.seed(1234) | |
dataset[:, 0] = np.random.pareto(1.5, npoints) | |
dataset[:, 1] = np.random.pareto(1.5, npoints) | |
dataset[:, 2] = np.random.pareto(1.5, npoints) | |
dataset[:, 3] = 2*np.random.rand(npoints) - 1 | |
dataset[:, 0] *= (-1)**np.random.randint(2, npoints) | |
dataset[:, 1] *= (-1)**np.random.randint(2, npoints) | |
dataset[:, 2] *= (-1)**np.random.randint(2, npoints) | |
for ds in dataset: | |
if mpmath.__version__ < '0.14': | |
# mpmath < 0.14 fails for c too much smaller than a, b | |
if abs(ds[:2]).max() > abs(ds[2]): | |
ds[2] = abs(ds[:2]).max() | |
ds[4] = float(mpmath.hyp2f1(*tuple(ds[:4]))) | |
FuncData(sc.hyp2f1, dataset, (0, 1, 2, 3), 4, rtol=1e-9).check() | |
# ------------------------------------------------------------------------------ | |
# erf (complex) | |
# ------------------------------------------------------------------------------ | |
def test_erf_complex(): | |
# need to increase mpmath precision for this test | |
old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec | |
try: | |
mpmath.mp.dps = 70 | |
x1, y1 = np.meshgrid(np.linspace(-10, 1, 31), np.linspace(-10, 1, 11)) | |
x2, y2 = np.meshgrid(np.logspace(-80, .8, 31), np.logspace(-80, .8, 11)) | |
points = np.r_[x1.ravel(),x2.ravel()] + 1j*np.r_[y1.ravel(), y2.ravel()] | |
assert_func_equal(sc.erf, lambda x: complex(mpmath.erf(x)), points, | |
vectorized=False, rtol=1e-13) | |
assert_func_equal(sc.erfc, lambda x: complex(mpmath.erfc(x)), points, | |
vectorized=False, rtol=1e-13) | |
finally: | |
mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec | |
# ------------------------------------------------------------------------------ | |
# lpmv | |
# ------------------------------------------------------------------------------ | |
def test_lpmv(): | |
pts = [] | |
for x in [-0.99, -0.557, 1e-6, 0.132, 1]: | |
pts.extend([ | |
(1, 1, x), | |
(1, -1, x), | |
(-1, 1, x), | |
(-1, -2, x), | |
(1, 1.7, x), | |
(1, -1.7, x), | |
(-1, 1.7, x), | |
(-1, -2.7, x), | |
(1, 10, x), | |
(1, 11, x), | |
(3, 8, x), | |
(5, 11, x), | |
(-3, 8, x), | |
(-5, 11, x), | |
(3, -8, x), | |
(5, -11, x), | |
(-3, -8, x), | |
(-5, -11, x), | |
(3, 8.3, x), | |
(5, 11.3, x), | |
(-3, 8.3, x), | |
(-5, 11.3, x), | |
(3, -8.3, x), | |
(5, -11.3, x), | |
(-3, -8.3, x), | |
(-5, -11.3, x), | |
]) | |
def mplegenp(nu, mu, x): | |
if mu == int(mu) and x == 1: | |
# mpmath 0.17 gets this wrong | |
if mu == 0: | |
return 1 | |
else: | |
return 0 | |
return mpmath.legenp(nu, mu, x) | |
dataset = [p + (mplegenp(p[1], p[0], p[2]),) for p in pts] | |
dataset = np.array(dataset, dtype=np.float64) | |
def evf(mu, nu, x): | |
return sc.lpmv(mu.astype(int), nu, x) | |
with np.errstate(invalid='ignore'): | |
FuncData(evf, dataset, (0,1,2), 3, rtol=1e-10, atol=1e-14).check() | |
# ------------------------------------------------------------------------------ | |
# beta | |
# ------------------------------------------------------------------------------ | |
def test_beta(): | |
np.random.seed(1234) | |
b = np.r_[np.logspace(-200, 200, 4), | |
np.logspace(-10, 10, 4), | |
np.logspace(-1, 1, 4), | |
np.arange(-10, 11, 1), | |
np.arange(-10, 11, 1) + 0.5, | |
-1, -2.3, -3, -100.3, -10003.4] | |
a = b | |
ab = np.array(np.broadcast_arrays(a[:,None], b[None,:])).reshape(2, -1).T | |
old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec | |
try: | |
mpmath.mp.dps = 400 | |
assert_func_equal(sc.beta, | |
lambda a, b: float(mpmath.beta(a, b)), | |
ab, | |
vectorized=False, | |
rtol=1e-10, | |
ignore_inf_sign=True) | |
assert_func_equal( | |
sc.betaln, | |
lambda a, b: float(mpmath.log(abs(mpmath.beta(a, b)))), | |
ab, | |
vectorized=False, | |
rtol=1e-10) | |
finally: | |
mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec | |
# ------------------------------------------------------------------------------ | |
# loggamma | |
# ------------------------------------------------------------------------------ | |
LOGGAMMA_TAYLOR_RADIUS = 0.2 | |
def test_loggamma_taylor_transition(): | |
# Make sure there isn't a big jump in accuracy when we move from | |
# using the Taylor series to using the recurrence relation. | |
r = LOGGAMMA_TAYLOR_RADIUS + np.array([-0.1, -0.01, 0, 0.01, 0.1]) | |
theta = np.linspace(0, 2*np.pi, 20) | |
r, theta = np.meshgrid(r, theta) | |
dz = r*np.exp(1j*theta) | |
z = np.r_[1 + dz, 2 + dz].flatten() | |
dataset = [(z0, complex(mpmath.loggamma(z0))) for z0 in z] | |
dataset = np.array(dataset) | |
FuncData(sc.loggamma, dataset, 0, 1, rtol=5e-14).check() | |
def test_loggamma_taylor(): | |
# Test around the zeros at z = 1, 2. | |
r = np.logspace(-16, np.log10(LOGGAMMA_TAYLOR_RADIUS), 10) | |
theta = np.linspace(0, 2*np.pi, 20) | |
r, theta = np.meshgrid(r, theta) | |
dz = r*np.exp(1j*theta) | |
z = np.r_[1 + dz, 2 + dz].flatten() | |
dataset = [(z0, complex(mpmath.loggamma(z0))) for z0 in z] | |
dataset = np.array(dataset) | |
FuncData(sc.loggamma, dataset, 0, 1, rtol=5e-14).check() | |
# ------------------------------------------------------------------------------ | |
# rgamma | |
# ------------------------------------------------------------------------------ | |
def test_rgamma_zeros(): | |
# Test around the zeros at z = 0, -1, -2, ..., -169. (After -169 we | |
# get values that are out of floating point range even when we're | |
# within 0.1 of the zero.) | |
# Can't use too many points here or the test takes forever. | |
dx = np.r_[-np.logspace(-1, -13, 3), 0, np.logspace(-13, -1, 3)] | |
dy = dx.copy() | |
dx, dy = np.meshgrid(dx, dy) | |
dz = dx + 1j*dy | |
zeros = np.arange(0, -170, -1).reshape(1, 1, -1) | |
z = (zeros + np.dstack((dz,)*zeros.size)).flatten() | |
with mpmath.workdps(100): | |
dataset = [(z0, complex(mpmath.rgamma(z0))) for z0 in z] | |
dataset = np.array(dataset) | |
FuncData(sc.rgamma, dataset, 0, 1, rtol=1e-12).check() | |
# ------------------------------------------------------------------------------ | |
# digamma | |
# ------------------------------------------------------------------------------ | |
def test_digamma_roots(): | |
# Test the special-cased roots for digamma. | |
root = mpmath.findroot(mpmath.digamma, 1.5) | |
roots = [float(root)] | |
root = mpmath.findroot(mpmath.digamma, -0.5) | |
roots.append(float(root)) | |
roots = np.array(roots) | |
# If we test beyond a radius of 0.24 mpmath will take forever. | |
dx = np.r_[-0.24, -np.logspace(-1, -15, 10), 0, np.logspace(-15, -1, 10), 0.24] | |
dy = dx.copy() | |
dx, dy = np.meshgrid(dx, dy) | |
dz = dx + 1j*dy | |
z = (roots + np.dstack((dz,)*roots.size)).flatten() | |
with mpmath.workdps(30): | |
dataset = [(z0, complex(mpmath.digamma(z0))) for z0 in z] | |
dataset = np.array(dataset) | |
FuncData(sc.digamma, dataset, 0, 1, rtol=1e-14).check() | |
def test_digamma_negreal(): | |
# Test digamma around the negative real axis. Don't do this in | |
# TestSystematic because the points need some jiggering so that | |
# mpmath doesn't take forever. | |
digamma = exception_to_nan(mpmath.digamma) | |
x = -np.logspace(300, -30, 100) | |
y = np.r_[-np.logspace(0, -3, 5), 0, np.logspace(-3, 0, 5)] | |
x, y = np.meshgrid(x, y) | |
z = (x + 1j*y).flatten() | |
with mpmath.workdps(40): | |
dataset = [(z0, complex(digamma(z0))) for z0 in z] | |
dataset = np.asarray(dataset) | |
FuncData(sc.digamma, dataset, 0, 1, rtol=1e-13).check() | |
def test_digamma_boundary(): | |
# Check that there isn't a jump in accuracy when we switch from | |
# using the asymptotic series to the reflection formula. | |
x = -np.logspace(300, -30, 100) | |
y = np.array([-6.1, -5.9, 5.9, 6.1]) | |
x, y = np.meshgrid(x, y) | |
z = (x + 1j*y).flatten() | |
with mpmath.workdps(30): | |
dataset = [(z0, complex(mpmath.digamma(z0))) for z0 in z] | |
dataset = np.asarray(dataset) | |
FuncData(sc.digamma, dataset, 0, 1, rtol=1e-13).check() | |
# ------------------------------------------------------------------------------ | |
# gammainc | |
# ------------------------------------------------------------------------------ | |
def test_gammainc_boundary(): | |
# Test the transition to the asymptotic series. | |
small = 20 | |
a = np.linspace(0.5*small, 2*small, 50) | |
x = a.copy() | |
a, x = np.meshgrid(a, x) | |
a, x = a.flatten(), x.flatten() | |
with mpmath.workdps(100): | |
dataset = [(a0, x0, float(mpmath.gammainc(a0, b=x0, regularized=True))) | |
for a0, x0 in zip(a, x)] | |
dataset = np.array(dataset) | |
FuncData(sc.gammainc, dataset, (0, 1), 2, rtol=1e-12).check() | |
# ------------------------------------------------------------------------------ | |
# spence | |
# ------------------------------------------------------------------------------ | |
def test_spence_circle(): | |
# The trickiest region for spence is around the circle |z - 1| = 1, | |
# so test that region carefully. | |
def spence(z): | |
return complex(mpmath.polylog(2, 1 - z)) | |
r = np.linspace(0.5, 1.5) | |
theta = np.linspace(0, 2*pi) | |
z = (1 + np.outer(r, np.exp(1j*theta))).flatten() | |
dataset = np.asarray([(z0, spence(z0)) for z0 in z]) | |
FuncData(sc.spence, dataset, 0, 1, rtol=1e-14).check() | |
# ------------------------------------------------------------------------------ | |
# sinpi and cospi | |
# ------------------------------------------------------------------------------ | |
def test_sinpi_zeros(): | |
eps = np.finfo(float).eps | |
dx = np.r_[-np.logspace(0, -13, 3), 0, np.logspace(-13, 0, 3)] | |
dy = dx.copy() | |
dx, dy = np.meshgrid(dx, dy) | |
dz = dx + 1j*dy | |
zeros = np.arange(-100, 100, 1).reshape(1, 1, -1) | |
z = (zeros + np.dstack((dz,)*zeros.size)).flatten() | |
dataset = np.asarray([(z0, complex(mpmath.sinpi(z0))) | |
for z0 in z]) | |
FuncData(_sinpi, dataset, 0, 1, rtol=2*eps).check() | |
def test_cospi_zeros(): | |
eps = np.finfo(float).eps | |
dx = np.r_[-np.logspace(0, -13, 3), 0, np.logspace(-13, 0, 3)] | |
dy = dx.copy() | |
dx, dy = np.meshgrid(dx, dy) | |
dz = dx + 1j*dy | |
zeros = (np.arange(-100, 100, 1) + 0.5).reshape(1, 1, -1) | |
z = (zeros + np.dstack((dz,)*zeros.size)).flatten() | |
dataset = np.asarray([(z0, complex(mpmath.cospi(z0))) | |
for z0 in z]) | |
FuncData(_cospi, dataset, 0, 1, rtol=2*eps).check() | |
# ------------------------------------------------------------------------------ | |
# ellipj | |
# ------------------------------------------------------------------------------ | |
def test_dn_quarter_period(): | |
def dn(u, m): | |
return sc.ellipj(u, m)[2] | |
def mpmath_dn(u, m): | |
return float(mpmath.ellipfun("dn", u=u, m=m)) | |
m = np.linspace(0, 1, 20) | |
du = np.r_[-np.logspace(-1, -15, 10), 0, np.logspace(-15, -1, 10)] | |
dataset = [] | |
for m0 in m: | |
u0 = float(mpmath.ellipk(m0)) | |
for du0 in du: | |
p = u0 + du0 | |
dataset.append((p, m0, mpmath_dn(p, m0))) | |
dataset = np.asarray(dataset) | |
FuncData(dn, dataset, (0, 1), 2, rtol=1e-10).check() | |
# ------------------------------------------------------------------------------ | |
# Wright Omega | |
# ------------------------------------------------------------------------------ | |
def _mpmath_wrightomega(z, dps): | |
with mpmath.workdps(dps): | |
z = mpmath.mpc(z) | |
unwind = mpmath.ceil((z.imag - mpmath.pi)/(2*mpmath.pi)) | |
res = mpmath.lambertw(mpmath.exp(z), unwind) | |
return res | |
def test_wrightomega_branch(): | |
x = -np.logspace(10, 0, 25) | |
picut_above = [np.nextafter(np.pi, np.inf)] | |
picut_below = [np.nextafter(np.pi, -np.inf)] | |
npicut_above = [np.nextafter(-np.pi, np.inf)] | |
npicut_below = [np.nextafter(-np.pi, -np.inf)] | |
for i in range(50): | |
picut_above.append(np.nextafter(picut_above[-1], np.inf)) | |
picut_below.append(np.nextafter(picut_below[-1], -np.inf)) | |
npicut_above.append(np.nextafter(npicut_above[-1], np.inf)) | |
npicut_below.append(np.nextafter(npicut_below[-1], -np.inf)) | |
y = np.hstack((picut_above, picut_below, npicut_above, npicut_below)) | |
x, y = np.meshgrid(x, y) | |
z = (x + 1j*y).flatten() | |
dataset = np.asarray([(z0, complex(_mpmath_wrightomega(z0, 25))) | |
for z0 in z]) | |
FuncData(sc.wrightomega, dataset, 0, 1, rtol=1e-8).check() | |
def test_wrightomega_region1(): | |
# This region gets less coverage in the TestSystematic test | |
x = np.linspace(-2, 1) | |
y = np.linspace(1, 2*np.pi) | |
x, y = np.meshgrid(x, y) | |
z = (x + 1j*y).flatten() | |
dataset = np.asarray([(z0, complex(_mpmath_wrightomega(z0, 25))) | |
for z0 in z]) | |
FuncData(sc.wrightomega, dataset, 0, 1, rtol=1e-15).check() | |
def test_wrightomega_region2(): | |
# This region gets less coverage in the TestSystematic test | |
x = np.linspace(-2, 1) | |
y = np.linspace(-2*np.pi, -1) | |
x, y = np.meshgrid(x, y) | |
z = (x + 1j*y).flatten() | |
dataset = np.asarray([(z0, complex(_mpmath_wrightomega(z0, 25))) | |
for z0 in z]) | |
FuncData(sc.wrightomega, dataset, 0, 1, rtol=1e-15).check() | |
# ------------------------------------------------------------------------------ | |
# lambertw | |
# ------------------------------------------------------------------------------ | |
def test_lambertw_smallz(): | |
x, y = np.linspace(-1, 1, 25), np.linspace(-1, 1, 25) | |
x, y = np.meshgrid(x, y) | |
z = (x + 1j*y).flatten() | |
dataset = np.asarray([(z0, complex(mpmath.lambertw(z0))) | |
for z0 in z]) | |
FuncData(sc.lambertw, dataset, 0, 1, rtol=1e-13).check() | |
# ------------------------------------------------------------------------------ | |
# Systematic tests | |
# ------------------------------------------------------------------------------ | |
HYPERKW = dict(maxprec=200, maxterms=200) | |
class TestSystematic: | |
def test_airyai(self): | |
# oscillating function, limit range | |
assert_mpmath_equal(lambda z: sc.airy(z)[0], | |
mpmath.airyai, | |
[Arg(-1e8, 1e8)], | |
rtol=1e-5) | |
assert_mpmath_equal(lambda z: sc.airy(z)[0], | |
mpmath.airyai, | |
[Arg(-1e3, 1e3)]) | |
def test_airyai_complex(self): | |
assert_mpmath_equal(lambda z: sc.airy(z)[0], | |
mpmath.airyai, | |
[ComplexArg()]) | |
def test_airyai_prime(self): | |
# oscillating function, limit range | |
assert_mpmath_equal(lambda z: sc.airy(z)[1], lambda z: | |
mpmath.airyai(z, derivative=1), | |
[Arg(-1e8, 1e8)], | |
rtol=1e-5) | |
assert_mpmath_equal(lambda z: sc.airy(z)[1], lambda z: | |
mpmath.airyai(z, derivative=1), | |
[Arg(-1e3, 1e3)]) | |
def test_airyai_prime_complex(self): | |
assert_mpmath_equal(lambda z: sc.airy(z)[1], lambda z: | |
mpmath.airyai(z, derivative=1), | |
[ComplexArg()]) | |
def test_airybi(self): | |
# oscillating function, limit range | |
assert_mpmath_equal(lambda z: sc.airy(z)[2], lambda z: | |
mpmath.airybi(z), | |
[Arg(-1e8, 1e8)], | |
rtol=1e-5) | |
assert_mpmath_equal(lambda z: sc.airy(z)[2], lambda z: | |
mpmath.airybi(z), | |
[Arg(-1e3, 1e3)]) | |
def test_airybi_complex(self): | |
assert_mpmath_equal(lambda z: sc.airy(z)[2], lambda z: | |
mpmath.airybi(z), | |
[ComplexArg()]) | |
def test_airybi_prime(self): | |
# oscillating function, limit range | |
assert_mpmath_equal(lambda z: sc.airy(z)[3], lambda z: | |
mpmath.airybi(z, derivative=1), | |
[Arg(-1e8, 1e8)], | |
rtol=1e-5) | |
assert_mpmath_equal(lambda z: sc.airy(z)[3], lambda z: | |
mpmath.airybi(z, derivative=1), | |
[Arg(-1e3, 1e3)]) | |
def test_airybi_prime_complex(self): | |
assert_mpmath_equal(lambda z: sc.airy(z)[3], lambda z: | |
mpmath.airybi(z, derivative=1), | |
[ComplexArg()]) | |
def test_bei(self): | |
assert_mpmath_equal(sc.bei, | |
exception_to_nan(lambda z: mpmath.bei(0, z, **HYPERKW)), | |
[Arg(-1e3, 1e3)]) | |
def test_ber(self): | |
assert_mpmath_equal(sc.ber, | |
exception_to_nan(lambda z: mpmath.ber(0, z, **HYPERKW)), | |
[Arg(-1e3, 1e3)]) | |
def test_bernoulli(self): | |
assert_mpmath_equal(lambda n: sc.bernoulli(int(n))[int(n)], | |
lambda n: float(mpmath.bernoulli(int(n))), | |
[IntArg(0, 13000)], | |
rtol=1e-9, n=13000) | |
def test_besseli(self): | |
assert_mpmath_equal( | |
sc.iv, | |
exception_to_nan(lambda v, z: mpmath.besseli(v, z, **HYPERKW)), | |
[Arg(-1e100, 1e100), Arg()], | |
atol=1e-270, | |
) | |
def test_besseli_complex(self): | |
assert_mpmath_equal( | |
lambda v, z: sc.iv(v.real, z), | |
exception_to_nan(lambda v, z: mpmath.besseli(v, z, **HYPERKW)), | |
[Arg(-1e100, 1e100), ComplexArg()], | |
) | |
def test_besselj(self): | |
assert_mpmath_equal( | |
sc.jv, | |
exception_to_nan(lambda v, z: mpmath.besselj(v, z, **HYPERKW)), | |
[Arg(-1e100, 1e100), Arg(-1e3, 1e3)], | |
ignore_inf_sign=True, | |
) | |
# loss of precision at large arguments due to oscillation | |
assert_mpmath_equal( | |
sc.jv, | |
exception_to_nan(lambda v, z: mpmath.besselj(v, z, **HYPERKW)), | |
[Arg(-1e100, 1e100), Arg(-1e8, 1e8)], | |
ignore_inf_sign=True, | |
rtol=1e-5, | |
) | |
def test_besselj_complex(self): | |
assert_mpmath_equal( | |
lambda v, z: sc.jv(v.real, z), | |
exception_to_nan(lambda v, z: mpmath.besselj(v, z, **HYPERKW)), | |
[Arg(), ComplexArg()] | |
) | |
def test_besselk(self): | |
assert_mpmath_equal( | |
sc.kv, | |
mpmath.besselk, | |
[Arg(-200, 200), Arg(0, np.inf)], | |
nan_ok=False, | |
rtol=1e-12, | |
) | |
def test_besselk_int(self): | |
assert_mpmath_equal( | |
sc.kn, | |
mpmath.besselk, | |
[IntArg(-200, 200), Arg(0, np.inf)], | |
nan_ok=False, | |
rtol=1e-12, | |
) | |
def test_besselk_complex(self): | |
assert_mpmath_equal( | |
lambda v, z: sc.kv(v.real, z), | |
exception_to_nan(lambda v, z: mpmath.besselk(v, z, **HYPERKW)), | |
[Arg(-1e100, 1e100), ComplexArg()], | |
) | |
def test_bessely(self): | |
def mpbessely(v, x): | |
r = float(mpmath.bessely(v, x, **HYPERKW)) | |
if abs(r) > 1e305: | |
# overflowing to inf a bit earlier is OK | |
r = np.inf * np.sign(r) | |
if abs(r) == 0 and x == 0: | |
# invalid result from mpmath, point x=0 is a divergence | |
return np.nan | |
return r | |
assert_mpmath_equal( | |
sc.yv, | |
exception_to_nan(mpbessely), | |
[Arg(-1e100, 1e100), Arg(-1e8, 1e8)], | |
n=5000, | |
) | |
def test_bessely_complex(self): | |
def mpbessely(v, x): | |
r = complex(mpmath.bessely(v, x, **HYPERKW)) | |
if abs(r) > 1e305: | |
# overflowing to inf a bit earlier is OK | |
with np.errstate(invalid='ignore'): | |
r = np.inf * np.sign(r) | |
return r | |
assert_mpmath_equal( | |
lambda v, z: sc.yv(v.real, z), | |
exception_to_nan(mpbessely), | |
[Arg(), ComplexArg()], | |
n=15000, | |
) | |
def test_bessely_int(self): | |
def mpbessely(v, x): | |
r = float(mpmath.bessely(v, x)) | |
if abs(r) == 0 and x == 0: | |
# invalid result from mpmath, point x=0 is a divergence | |
return np.nan | |
return r | |
assert_mpmath_equal( | |
lambda v, z: sc.yn(int(v), z), | |
exception_to_nan(mpbessely), | |
[IntArg(-1000, 1000), Arg(-1e8, 1e8)], | |
) | |
def test_beta(self): | |
bad_points = [] | |
def beta(a, b, nonzero=False): | |
if a < -1e12 or b < -1e12: | |
# Function is defined here only at integers, but due | |
# to loss of precision this is numerically | |
# ill-defined. Don't compare values here. | |
return np.nan | |
if (a < 0 or b < 0) and (abs(float(a + b)) % 1) == 0: | |
# close to a zero of the function: mpmath and scipy | |
# will not round here the same, so the test needs to be | |
# run with an absolute tolerance | |
if nonzero: | |
bad_points.append((float(a), float(b))) | |
return np.nan | |
return mpmath.beta(a, b) | |
assert_mpmath_equal( | |
sc.beta, | |
lambda a, b: beta(a, b, nonzero=True), | |
[Arg(), Arg()], | |
dps=400, | |
ignore_inf_sign=True, | |
) | |
assert_mpmath_equal( | |
sc.beta, | |
beta, | |
np.array(bad_points), | |
dps=400, | |
ignore_inf_sign=True, | |
atol=1e-11, | |
) | |
def test_betainc(self): | |
assert_mpmath_equal( | |
sc.betainc, | |
time_limited()( | |
exception_to_nan( | |
lambda a, b, x: mpmath.betainc(a, b, 0, x, regularized=True) | |
) | |
), | |
[Arg(), Arg(), Arg()], | |
) | |
def test_betaincc(self): | |
assert_mpmath_equal( | |
sc.betaincc, | |
time_limited()( | |
exception_to_nan( | |
lambda a, b, x: mpmath.betainc(a, b, x, 1, regularized=True) | |
) | |
), | |
[Arg(), Arg(), Arg()], | |
dps=400, | |
) | |
def test_binom(self): | |
bad_points = [] | |
def binomial(n, k, nonzero=False): | |
if abs(k) > 1e8*(abs(n) + 1): | |
# The binomial is rapidly oscillating in this region, | |
# and the function is numerically ill-defined. Don't | |
# compare values here. | |
return np.nan | |
if n < k and abs(float(n-k) - np.round(float(n-k))) < 1e-15: | |
# close to a zero of the function: mpmath and scipy | |
# will not round here the same, so the test needs to be | |
# run with an absolute tolerance | |
if nonzero: | |
bad_points.append((float(n), float(k))) | |
return np.nan | |
return mpmath.binomial(n, k) | |
assert_mpmath_equal( | |
sc.binom, | |
lambda n, k: binomial(n, k, nonzero=True), | |
[Arg(), Arg()], | |
dps=400, | |
) | |
assert_mpmath_equal( | |
sc.binom, | |
binomial, | |
np.array(bad_points), | |
dps=400, | |
atol=1e-14, | |
) | |
def test_chebyt_int(self): | |
assert_mpmath_equal( | |
lambda n, x: sc.eval_chebyt(int(n), x), | |
exception_to_nan(lambda n, x: mpmath.chebyt(n, x, **HYPERKW)), | |
[IntArg(), Arg()], | |
dps=50, | |
) | |
def test_chebyt(self): | |
assert_mpmath_equal( | |
sc.eval_chebyt, | |
lambda n, x: time_limited()( | |
exception_to_nan(mpmath.chebyt) | |
)(n, x, **HYPERKW), | |
[Arg(-101, 101), Arg()], | |
n=10000, | |
) | |
def test_chebyu_int(self): | |
assert_mpmath_equal( | |
lambda n, x: sc.eval_chebyu(int(n), x), | |
exception_to_nan(lambda n, x: mpmath.chebyu(n, x, **HYPERKW)), | |
[IntArg(), Arg()], | |
dps=50, | |
) | |
def test_chebyu(self): | |
assert_mpmath_equal( | |
sc.eval_chebyu, | |
lambda n, x: time_limited()( | |
exception_to_nan(mpmath.chebyu) | |
)(n, x, **HYPERKW), | |
[Arg(-101, 101), Arg()], | |
) | |
def test_chi(self): | |
def chi(x): | |
return sc.shichi(x)[1] | |
assert_mpmath_equal(chi, mpmath.chi, [Arg()]) | |
# check asymptotic series cross-over | |
assert_mpmath_equal(chi, mpmath.chi, [FixedArg([88 - 1e-9, 88, 88 + 1e-9])]) | |
def test_chi_complex(self): | |
def chi(z): | |
return sc.shichi(z)[1] | |
# chi oscillates as Im[z] -> +- inf, so limit range | |
assert_mpmath_equal( | |
chi, | |
mpmath.chi, | |
[ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))], | |
rtol=1e-12, | |
) | |
def test_ci(self): | |
def ci(x): | |
return sc.sici(x)[1] | |
# oscillating function: limit range | |
assert_mpmath_equal(ci, mpmath.ci, [Arg(-1e8, 1e8)]) | |
def test_ci_complex(self): | |
def ci(z): | |
return sc.sici(z)[1] | |
# ci oscillates as Re[z] -> +- inf, so limit range | |
assert_mpmath_equal( | |
ci, | |
mpmath.ci, | |
[ComplexArg(complex(-1e8, -np.inf), complex(1e8, np.inf))], | |
rtol=1e-8, | |
) | |
def test_cospi(self): | |
eps = np.finfo(float).eps | |
assert_mpmath_equal(_cospi, mpmath.cospi, [Arg()], nan_ok=False, rtol=2*eps) | |
def test_cospi_complex(self): | |
assert_mpmath_equal( | |
_cospi, | |
mpmath.cospi, | |
[ComplexArg()], | |
nan_ok=False, | |
rtol=1e-13, | |
) | |
def test_digamma(self): | |
assert_mpmath_equal( | |
sc.digamma, | |
exception_to_nan(mpmath.digamma), | |
[Arg()], | |
rtol=1e-12, | |
dps=50, | |
) | |
def test_digamma_complex(self): | |
# Test on a cut plane because mpmath will hang. See | |
# test_digamma_negreal for tests on the negative real axis. | |
def param_filter(z): | |
return np.where((z.real < 0) & (np.abs(z.imag) < 1.12), False, True) | |
assert_mpmath_equal( | |
sc.digamma, | |
exception_to_nan(mpmath.digamma), | |
[ComplexArg()], | |
rtol=1e-13, | |
dps=40, | |
param_filter=param_filter | |
) | |
def test_e1(self): | |
assert_mpmath_equal( | |
sc.exp1, | |
mpmath.e1, | |
[Arg()], | |
rtol=1e-14, | |
) | |
def test_e1_complex(self): | |
# E_1 oscillates as Im[z] -> +- inf, so limit range | |
assert_mpmath_equal( | |
sc.exp1, | |
mpmath.e1, | |
[ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))], | |
rtol=1e-11, | |
) | |
# Check cross-over region | |
assert_mpmath_equal( | |
sc.exp1, | |
mpmath.e1, | |
(np.linspace(-50, 50, 171)[:, None] | |
+ np.r_[0, np.logspace(-3, 2, 61), -np.logspace(-3, 2, 11)]*1j).ravel(), | |
rtol=1e-11, | |
) | |
assert_mpmath_equal( | |
sc.exp1, | |
mpmath.e1, | |
(np.linspace(-50, -35, 10000) + 0j), | |
rtol=1e-11, | |
) | |
def test_exprel(self): | |
assert_mpmath_equal( | |
sc.exprel, | |
lambda x: mpmath.expm1(x)/x if x != 0 else mpmath.mpf('1.0'), | |
[Arg(a=-np.log(np.finfo(np.float64).max), | |
b=np.log(np.finfo(np.float64).max))], | |
) | |
assert_mpmath_equal( | |
sc.exprel, | |
lambda x: mpmath.expm1(x)/x if x != 0 else mpmath.mpf('1.0'), | |
np.array([1e-12, 1e-24, 0, 1e12, 1e24, np.inf]), | |
rtol=1e-11, | |
) | |
assert_(np.isinf(sc.exprel(np.inf))) | |
assert_(sc.exprel(-np.inf) == 0) | |
def test_expm1_complex(self): | |
# Oscillates as a function of Im[z], so limit range to avoid loss of precision | |
assert_mpmath_equal( | |
sc.expm1, | |
mpmath.expm1, | |
[ComplexArg(complex(-np.inf, -1e7), complex(np.inf, 1e7))], | |
) | |
def test_log1p_complex(self): | |
assert_mpmath_equal( | |
sc.log1p, | |
lambda x: mpmath.log(x+1), | |
[ComplexArg()], | |
dps=60, | |
) | |
def test_log1pmx(self): | |
assert_mpmath_equal( | |
_log1pmx, | |
lambda x: mpmath.log(x + 1) - x, | |
[Arg()], | |
dps=60, | |
rtol=1e-14, | |
) | |
def test_ei(self): | |
assert_mpmath_equal(sc.expi, mpmath.ei, [Arg()], rtol=1e-11) | |
def test_ei_complex(self): | |
# Ei oscillates as Im[z] -> +- inf, so limit range | |
assert_mpmath_equal( | |
sc.expi, | |
mpmath.ei, | |
[ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))], | |
rtol=1e-9, | |
) | |
def test_ellipe(self): | |
assert_mpmath_equal(sc.ellipe, mpmath.ellipe, [Arg(b=1.0)]) | |
def test_ellipeinc(self): | |
assert_mpmath_equal(sc.ellipeinc, mpmath.ellipe, [Arg(-1e3, 1e3), Arg(b=1.0)]) | |
def test_ellipeinc_largephi(self): | |
assert_mpmath_equal(sc.ellipeinc, mpmath.ellipe, [Arg(), Arg()]) | |
def test_ellipf(self): | |
assert_mpmath_equal(sc.ellipkinc, mpmath.ellipf, [Arg(-1e3, 1e3), Arg()]) | |
def test_ellipf_largephi(self): | |
assert_mpmath_equal(sc.ellipkinc, mpmath.ellipf, [Arg(), Arg()]) | |
def test_ellipk(self): | |
assert_mpmath_equal(sc.ellipk, mpmath.ellipk, [Arg(b=1.0)]) | |
assert_mpmath_equal( | |
sc.ellipkm1, | |
lambda m: mpmath.ellipk(1 - m), | |
[Arg(a=0.0)], | |
dps=400, | |
) | |
def test_ellipkinc(self): | |
def ellipkinc(phi, m): | |
return mpmath.ellippi(0, phi, m) | |
assert_mpmath_equal( | |
sc.ellipkinc, | |
ellipkinc, | |
[Arg(-1e3, 1e3), Arg(b=1.0)], | |
ignore_inf_sign=True, | |
) | |
def test_ellipkinc_largephi(self): | |
def ellipkinc(phi, m): | |
return mpmath.ellippi(0, phi, m) | |
assert_mpmath_equal( | |
sc.ellipkinc, | |
ellipkinc, | |
[Arg(), Arg(b=1.0)], | |
ignore_inf_sign=True, | |
) | |
def test_ellipfun_sn(self): | |
def sn(u, m): | |
# mpmath doesn't get the zero at u = 0--fix that | |
if u == 0: | |
return 0 | |
else: | |
return mpmath.ellipfun("sn", u=u, m=m) | |
# Oscillating function --- limit range of first argument; the | |
# loss of precision there is an expected numerical feature | |
# rather than an actual bug | |
assert_mpmath_equal( | |
lambda u, m: sc.ellipj(u, m)[0], | |
sn, | |
[Arg(-1e6, 1e6), Arg(a=0, b=1)], | |
rtol=1e-8, | |
) | |
def test_ellipfun_cn(self): | |
# see comment in ellipfun_sn | |
assert_mpmath_equal( | |
lambda u, m: sc.ellipj(u, m)[1], | |
lambda u, m: mpmath.ellipfun("cn", u=u, m=m), | |
[Arg(-1e6, 1e6), Arg(a=0, b=1)], | |
rtol=1e-8, | |
) | |
def test_ellipfun_dn(self): | |
# see comment in ellipfun_sn | |
assert_mpmath_equal( | |
lambda u, m: sc.ellipj(u, m)[2], | |
lambda u, m: mpmath.ellipfun("dn", u=u, m=m), | |
[Arg(-1e6, 1e6), Arg(a=0, b=1)], | |
rtol=1e-8, | |
) | |
def test_erf(self): | |
assert_mpmath_equal(sc.erf, lambda z: mpmath.erf(z), [Arg()]) | |
def test_erf_complex(self): | |
assert_mpmath_equal(sc.erf, lambda z: mpmath.erf(z), [ComplexArg()], n=200) | |
def test_erfc(self): | |
assert_mpmath_equal( | |
sc.erfc, | |
exception_to_nan(lambda z: mpmath.erfc(z)), | |
[Arg()], | |
rtol=1e-13, | |
) | |
def test_erfc_complex(self): | |
assert_mpmath_equal( | |
sc.erfc, | |
exception_to_nan(lambda z: mpmath.erfc(z)), | |
[ComplexArg()], | |
n=200, | |
) | |
def test_erfi(self): | |
assert_mpmath_equal(sc.erfi, mpmath.erfi, [Arg()], n=200) | |
def test_erfi_complex(self): | |
assert_mpmath_equal(sc.erfi, mpmath.erfi, [ComplexArg()], n=200) | |
def test_ndtr(self): | |
assert_mpmath_equal( | |
sc.ndtr, | |
exception_to_nan(lambda z: mpmath.ncdf(z)), | |
[Arg()], | |
n=200, | |
) | |
def test_ndtr_complex(self): | |
assert_mpmath_equal( | |
sc.ndtr, | |
lambda z: mpmath.erfc(-z/np.sqrt(2.))/2., | |
[ComplexArg(a=complex(-10000, -10000), b=complex(10000, 10000))], | |
n=400, | |
) | |
def test_log_ndtr(self): | |
assert_mpmath_equal( | |
sc.log_ndtr, | |
exception_to_nan(lambda z: mpmath.log(mpmath.ncdf(z))), | |
[Arg()], n=600, dps=300, rtol=1e-13, | |
) | |
def test_log_ndtr_complex(self): | |
assert_mpmath_equal( | |
sc.log_ndtr, | |
exception_to_nan(lambda z: mpmath.log(mpmath.erfc(-z/np.sqrt(2.))/2.)), | |
[ComplexArg(a=complex(-10000, -100), b=complex(10000, 100))], | |
n=200, dps=300, | |
) | |
def test_eulernum(self): | |
assert_mpmath_equal( | |
lambda n: sc.euler(n)[-1], | |
mpmath.eulernum, | |
[IntArg(1, 10000)], | |
n=10000, | |
) | |
def test_expint(self): | |
assert_mpmath_equal( | |
sc.expn, | |
mpmath.expint, | |
[IntArg(0, 200), Arg(0, np.inf)], | |
rtol=1e-13, | |
dps=160, | |
) | |
def test_fresnels(self): | |
def fresnels(x): | |
return sc.fresnel(x)[0] | |
assert_mpmath_equal(fresnels, mpmath.fresnels, [Arg()]) | |
def test_fresnelc(self): | |
def fresnelc(x): | |
return sc.fresnel(x)[1] | |
assert_mpmath_equal(fresnelc, mpmath.fresnelc, [Arg()]) | |
def test_gamma(self): | |
assert_mpmath_equal(sc.gamma, exception_to_nan(mpmath.gamma), [Arg()]) | |
def test_gamma_complex(self): | |
assert_mpmath_equal( | |
sc.gamma, | |
exception_to_nan(mpmath.gamma), | |
[ComplexArg()], | |
rtol=5e-13, | |
) | |
def test_gammainc(self): | |
# Larger arguments are tested in test_data.py:test_local | |
assert_mpmath_equal( | |
sc.gammainc, | |
lambda z, b: mpmath.gammainc(z, b=b, regularized=True), | |
[Arg(0, 1e4, inclusive_a=False), Arg(0, 1e4)], | |
nan_ok=False, | |
rtol=1e-11, | |
) | |
def test_gammaincc(self): | |
# Larger arguments are tested in test_data.py:test_local | |
assert_mpmath_equal( | |
sc.gammaincc, | |
lambda z, a: mpmath.gammainc(z, a=a, regularized=True), | |
[Arg(0, 1e4, inclusive_a=False), Arg(0, 1e4)], | |
nan_ok=False, | |
rtol=1e-11, | |
) | |
def test_gammaln(self): | |
# The real part of loggamma is log(|gamma(z)|). | |
def f(z): | |
return mpmath.loggamma(z).real | |
assert_mpmath_equal(sc.gammaln, exception_to_nan(f), [Arg()]) | |
def test_gegenbauer(self): | |
assert_mpmath_equal( | |
sc.eval_gegenbauer, | |
exception_to_nan(mpmath.gegenbauer), | |
[Arg(-1e3, 1e3), Arg(), Arg()], | |
) | |
def test_gegenbauer_int(self): | |
# Redefine functions to deal with numerical + mpmath issues | |
def gegenbauer(n, a, x): | |
# Avoid overflow at large `a` (mpmath would need an even larger | |
# dps to handle this correctly, so just skip this region) | |
if abs(a) > 1e100: | |
return np.nan | |
# Deal with n=0, n=1 correctly; mpmath 0.17 doesn't do these | |
# always correctly | |
if n == 0: | |
r = 1.0 | |
elif n == 1: | |
r = 2*a*x | |
else: | |
r = mpmath.gegenbauer(n, a, x) | |
# Mpmath 0.17 gives wrong results (spurious zero) in some cases, so | |
# compute the value by perturbing the result | |
if float(r) == 0 and a < -1 and float(a) == int(float(a)): | |
r = mpmath.gegenbauer(n, a + mpmath.mpf('1e-50'), x) | |
if abs(r) < mpmath.mpf('1e-50'): | |
r = mpmath.mpf('0.0') | |
# Differing overflow thresholds in scipy vs. mpmath | |
if abs(r) > 1e270: | |
return np.inf | |
return r | |
def sc_gegenbauer(n, a, x): | |
r = sc.eval_gegenbauer(int(n), a, x) | |
# Differing overflow thresholds in scipy vs. mpmath | |
if abs(r) > 1e270: | |
return np.inf | |
return r | |
assert_mpmath_equal( | |
sc_gegenbauer, | |
exception_to_nan(gegenbauer), | |
[IntArg(0, 100), Arg(-1e9, 1e9), Arg()], | |
n=40000, dps=100, ignore_inf_sign=True, rtol=1e-6, | |
) | |
# Check the small-x expansion | |
assert_mpmath_equal( | |
sc_gegenbauer, | |
exception_to_nan(gegenbauer), | |
[IntArg(0, 100), Arg(), FixedArg(np.logspace(-30, -4, 30))], | |
dps=100, ignore_inf_sign=True, | |
) | |
def test_gegenbauer_complex(self): | |
assert_mpmath_equal( | |
lambda n, a, x: sc.eval_gegenbauer(int(n), a.real, x), | |
exception_to_nan(mpmath.gegenbauer), | |
[IntArg(0, 100), Arg(), ComplexArg()], | |
) | |
def test_gegenbauer_complex_general(self): | |
assert_mpmath_equal( | |
lambda n, a, x: sc.eval_gegenbauer(n.real, a.real, x), | |
exception_to_nan(mpmath.gegenbauer), | |
[Arg(-1e3, 1e3), Arg(), ComplexArg()], | |
) | |
def test_hankel1(self): | |
assert_mpmath_equal( | |
sc.hankel1, | |
exception_to_nan(lambda v, x: mpmath.hankel1(v, x, **HYPERKW)), | |
[Arg(-1e20, 1e20), Arg()], | |
) | |
def test_hankel2(self): | |
assert_mpmath_equal( | |
sc.hankel2, | |
exception_to_nan(lambda v, x: mpmath.hankel2(v, x, **HYPERKW)), | |
[Arg(-1e20, 1e20), Arg()], | |
) | |
def test_hermite(self): | |
assert_mpmath_equal( | |
lambda n, x: sc.eval_hermite(int(n), x), | |
exception_to_nan(mpmath.hermite), | |
[IntArg(0, 10000), Arg()], | |
) | |
# hurwitz: same as zeta | |
def test_hyp0f1(self): | |
# mpmath reports no convergence unless maxterms is large enough | |
KW = dict(maxprec=400, maxterms=1500) | |
# n=500 (non-xslow default) fails for one bad point | |
assert_mpmath_equal( | |
sc.hyp0f1, | |
lambda a, x: mpmath.hyp0f1(a, x, **KW), | |
[Arg(-1e7, 1e7), Arg(0, 1e5)], | |
n=5000, | |
) | |
# NB: The range of the second parameter ("z") is limited from below | |
# because of an overflow in the intermediate calculations. The way | |
# for fix it is to implement an asymptotic expansion for Bessel J | |
# (similar to what is implemented for Bessel I here). | |
def test_hyp0f1_complex(self): | |
assert_mpmath_equal( | |
lambda a, z: sc.hyp0f1(a.real, z), | |
exception_to_nan(lambda a, x: mpmath.hyp0f1(a, x, **HYPERKW)), | |
[Arg(-10, 10), ComplexArg(complex(-120, -120), complex(120, 120))], | |
) | |
# NB: The range of the first parameter ("v") are limited by an overflow | |
# in the intermediate calculations. Can be fixed by implementing an | |
# asymptotic expansion for Bessel functions for large order. | |
def test_hyp1f1(self): | |
def mpmath_hyp1f1(a, b, x): | |
try: | |
return mpmath.hyp1f1(a, b, x) | |
except ZeroDivisionError: | |
return np.inf | |
assert_mpmath_equal( | |
sc.hyp1f1, | |
mpmath_hyp1f1, | |
[Arg(-50, 50), Arg(1, 50, inclusive_a=False), Arg(-50, 50)], | |
n=500, | |
nan_ok=False, | |
) | |
def test_hyp1f1_complex(self): | |
assert_mpmath_equal( | |
inf_to_nan(lambda a, b, x: sc.hyp1f1(a.real, b.real, x)), | |
exception_to_nan(lambda a, b, x: mpmath.hyp1f1(a, b, x, **HYPERKW)), | |
[Arg(-1e3, 1e3), Arg(-1e3, 1e3), ComplexArg()], | |
n=2000, | |
) | |
def test_hyp2f1_complex(self): | |
# SciPy's hyp2f1 seems to have performance and accuracy problems | |
assert_mpmath_equal( | |
lambda a, b, c, x: sc.hyp2f1(a.real, b.real, c.real, x), | |
exception_to_nan(lambda a, b, c, x: mpmath.hyp2f1(a, b, c, x, **HYPERKW)), | |
[Arg(-1e2, 1e2), Arg(-1e2, 1e2), Arg(-1e2, 1e2), ComplexArg()], | |
n=10, | |
) | |
def test_hyperu(self): | |
assert_mpmath_equal( | |
sc.hyperu, | |
exception_to_nan(lambda a, b, x: mpmath.hyperu(a, b, x, **HYPERKW)), | |
[Arg(), Arg(), Arg()], | |
) | |
def test_igam_fac(self): | |
def mp_igam_fac(a, x): | |
return mpmath.power(x, a)*mpmath.exp(-x)/mpmath.gamma(a) | |
assert_mpmath_equal( | |
_igam_fac, | |
mp_igam_fac, | |
[Arg(0, 1e14, inclusive_a=False), Arg(0, 1e14)], | |
rtol=1e-10, | |
) | |
def test_j0(self): | |
# The Bessel function at large arguments is j0(x) ~ cos(x + phi)/sqrt(x) | |
# and at large arguments the phase of the cosine loses precision. | |
# | |
# This is numerically expected behavior, so we compare only up to | |
# 1e8 = 1e15 * 1e-7 | |
assert_mpmath_equal(sc.j0, mpmath.j0, [Arg(-1e3, 1e3)]) | |
assert_mpmath_equal(sc.j0, mpmath.j0, [Arg(-1e8, 1e8)], rtol=1e-5) | |
def test_j1(self): | |
# See comment in test_j0 | |
assert_mpmath_equal(sc.j1, mpmath.j1, [Arg(-1e3, 1e3)]) | |
assert_mpmath_equal(sc.j1, mpmath.j1, [Arg(-1e8, 1e8)], rtol=1e-5) | |
def test_jacobi(self): | |
assert_mpmath_equal( | |
sc.eval_jacobi, | |
exception_to_nan(lambda a, b, c, x: mpmath.jacobi(a, b, c, x, **HYPERKW)), | |
[Arg(), Arg(), Arg(), Arg()], | |
) | |
assert_mpmath_equal( | |
lambda n, b, c, x: sc.eval_jacobi(int(n), b, c, x), | |
exception_to_nan(lambda a, b, c, x: mpmath.jacobi(a, b, c, x, **HYPERKW)), | |
[IntArg(), Arg(), Arg(), Arg()], | |
) | |
def test_jacobi_int(self): | |
# Redefine functions to deal with numerical + mpmath issues | |
def jacobi(n, a, b, x): | |
# Mpmath does not handle n=0 case always correctly | |
if n == 0: | |
return 1.0 | |
return mpmath.jacobi(n, a, b, x) | |
assert_mpmath_equal( | |
lambda n, a, b, x: sc.eval_jacobi(int(n), a, b, x), | |
lambda n, a, b, x: exception_to_nan(jacobi)(n, a, b, x, **HYPERKW), | |
[IntArg(), Arg(), Arg(), Arg()], | |
n=20000, | |
dps=50, | |
) | |
def test_kei(self): | |
def kei(x): | |
if x == 0: | |
# work around mpmath issue at x=0 | |
return -pi/4 | |
return exception_to_nan(mpmath.kei)(0, x, **HYPERKW) | |
assert_mpmath_equal(sc.kei, kei, [Arg(-1e30, 1e30)], n=1000) | |
def test_ker(self): | |
assert_mpmath_equal( | |
sc.ker, | |
exception_to_nan(lambda x: mpmath.ker(0, x, **HYPERKW)), | |
[Arg(-1e30, 1e30)], | |
n=1000, | |
) | |
def test_laguerre(self): | |
assert_mpmath_equal( | |
trace_args(sc.eval_laguerre), | |
lambda n, x: exception_to_nan(mpmath.laguerre)(n, x, **HYPERKW), | |
[Arg(), Arg()], | |
) | |
def test_laguerre_int(self): | |
assert_mpmath_equal( | |
lambda n, x: sc.eval_laguerre(int(n), x), | |
lambda n, x: exception_to_nan(mpmath.laguerre)(n, x, **HYPERKW), | |
[IntArg(), Arg()], | |
n=20000, | |
) | |
def test_lambertw_real(self): | |
assert_mpmath_equal( | |
lambda x, k: sc.lambertw(x, int(k.real)), | |
lambda x, k: mpmath.lambertw(x, int(k.real)), | |
[ComplexArg(-np.inf, np.inf), IntArg(0, 10)], | |
rtol=1e-13, nan_ok=False, | |
) | |
def test_lanczos_sum_expg_scaled(self): | |
maxgamma = 171.624376956302725 | |
e = np.exp(1) | |
g = 6.024680040776729583740234375 | |
def gamma(x): | |
with np.errstate(over='ignore'): | |
fac = ((x + g - 0.5)/e)**(x - 0.5) | |
if fac != np.inf: | |
res = fac*_lanczos_sum_expg_scaled(x) | |
else: | |
fac = ((x + g - 0.5)/e)**(0.5*(x - 0.5)) | |
res = fac*_lanczos_sum_expg_scaled(x) | |
res *= fac | |
return res | |
assert_mpmath_equal( | |
gamma, | |
mpmath.gamma, | |
[Arg(0, maxgamma, inclusive_a=False)], | |
rtol=1e-13, | |
) | |
def test_legendre(self): | |
assert_mpmath_equal(sc.eval_legendre, mpmath.legendre, [Arg(), Arg()]) | |
def test_legendre_int(self): | |
assert_mpmath_equal( | |
lambda n, x: sc.eval_legendre(int(n), x), | |
lambda n, x: exception_to_nan(mpmath.legendre)(n, x, **HYPERKW), | |
[IntArg(), Arg()], | |
n=20000, | |
) | |
# Check the small-x expansion | |
assert_mpmath_equal( | |
lambda n, x: sc.eval_legendre(int(n), x), | |
lambda n, x: exception_to_nan(mpmath.legendre)(n, x, **HYPERKW), | |
[IntArg(), FixedArg(np.logspace(-30, -4, 20))], | |
) | |
def test_legenp(self): | |
def lpnm(n, m, z): | |
try: | |
v = sc.lpmn(m, n, z)[0][-1,-1] | |
except ValueError: | |
return np.nan | |
if abs(v) > 1e306: | |
# harmonize overflow to inf | |
v = np.inf * np.sign(v.real) | |
return v | |
def lpnm_2(n, m, z): | |
v = sc.lpmv(m, n, z) | |
if abs(v) > 1e306: | |
# harmonize overflow to inf | |
v = np.inf * np.sign(v.real) | |
return v | |
def legenp(n, m, z): | |
if (z == 1 or z == -1) and int(n) == n: | |
# Special case (mpmath may give inf, we take the limit by | |
# continuity) | |
if m == 0: | |
if n < 0: | |
n = -n - 1 | |
return mpmath.power(mpmath.sign(z), n) | |
else: | |
return 0 | |
if abs(z) < 1e-15: | |
# mpmath has bad performance here | |
return np.nan | |
typ = 2 if abs(z) < 1 else 3 | |
v = exception_to_nan(mpmath.legenp)(n, m, z, type=typ) | |
if abs(v) > 1e306: | |
# harmonize overflow to inf | |
v = mpmath.inf * mpmath.sign(v.real) | |
return v | |
assert_mpmath_equal(lpnm, legenp, [IntArg(-100, 100), IntArg(-100, 100), Arg()]) | |
assert_mpmath_equal( | |
lpnm_2, | |
legenp, | |
[IntArg(-100, 100), Arg(-100, 100), Arg(-1, 1)], | |
atol=1e-10, | |
) | |
def test_legenp_complex_2(self): | |
def clpnm(n, m, z): | |
try: | |
return sc.clpmn(m.real, n.real, z, type=2)[0][-1,-1] | |
except ValueError: | |
return np.nan | |
def legenp(n, m, z): | |
if abs(z) < 1e-15: | |
# mpmath has bad performance here | |
return np.nan | |
return exception_to_nan(mpmath.legenp)(int(n.real), int(m.real), z, type=2) | |
# mpmath is quite slow here | |
x = np.array([-2, -0.99, -0.5, 0, 1e-5, 0.5, 0.99, 20, 2e3]) | |
y = np.array([-1e3, -0.5, 0.5, 1.3]) | |
z = (x[:,None] + 1j*y[None,:]).ravel() | |
assert_mpmath_equal( | |
clpnm, | |
legenp, | |
[FixedArg([-2, -1, 0, 1, 2, 10]), | |
FixedArg([-2, -1, 0, 1, 2, 10]), | |
FixedArg(z)], | |
rtol=1e-6, | |
n=500, | |
) | |
def test_legenp_complex_3(self): | |
def clpnm(n, m, z): | |
try: | |
return sc.clpmn(m.real, n.real, z, type=3)[0][-1,-1] | |
except ValueError: | |
return np.nan | |
def legenp(n, m, z): | |
if abs(z) < 1e-15: | |
# mpmath has bad performance here | |
return np.nan | |
return exception_to_nan(mpmath.legenp)(int(n.real), int(m.real), z, type=3) | |
# mpmath is quite slow here | |
x = np.array([-2, -0.99, -0.5, 0, 1e-5, 0.5, 0.99, 20, 2e3]) | |
y = np.array([-1e3, -0.5, 0.5, 1.3]) | |
z = (x[:,None] + 1j*y[None,:]).ravel() | |
assert_mpmath_equal( | |
clpnm, | |
legenp, | |
[FixedArg([-2, -1, 0, 1, 2, 10]), | |
FixedArg([-2, -1, 0, 1, 2, 10]), | |
FixedArg(z)], | |
rtol=1e-6, | |
n=500, | |
) | |
def test_legenq(self): | |
def lqnm(n, m, z): | |
return sc.lqmn(m, n, z)[0][-1,-1] | |
def legenq(n, m, z): | |
if abs(z) < 1e-15: | |
# mpmath has bad performance here | |
return np.nan | |
return exception_to_nan(mpmath.legenq)(n, m, z, type=2) | |
assert_mpmath_equal( | |
lqnm, | |
legenq, | |
[IntArg(0, 100), IntArg(0, 100), Arg()], | |
) | |
def test_legenq_complex(self): | |
def lqnm(n, m, z): | |
return sc.lqmn(int(m.real), int(n.real), z)[0][-1,-1] | |
def legenq(n, m, z): | |
if abs(z) < 1e-15: | |
# mpmath has bad performance here | |
return np.nan | |
return exception_to_nan(mpmath.legenq)(int(n.real), int(m.real), z, type=2) | |
assert_mpmath_equal( | |
lqnm, | |
legenq, | |
[IntArg(0, 100), IntArg(0, 100), ComplexArg()], | |
n=100, | |
) | |
def test_lgam1p(self): | |
def param_filter(x): | |
# Filter the poles | |
return np.where((np.floor(x) == x) & (x <= 0), False, True) | |
def mp_lgam1p(z): | |
# The real part of loggamma is log(|gamma(z)|) | |
return mpmath.loggamma(1 + z).real | |
assert_mpmath_equal( | |
_lgam1p, | |
mp_lgam1p, | |
[Arg()], | |
rtol=1e-13, | |
dps=100, | |
param_filter=param_filter, | |
) | |
def test_loggamma(self): | |
def mpmath_loggamma(z): | |
try: | |
res = mpmath.loggamma(z) | |
except ValueError: | |
res = complex(np.nan, np.nan) | |
return res | |
assert_mpmath_equal( | |
sc.loggamma, | |
mpmath_loggamma, | |
[ComplexArg()], | |
nan_ok=False, | |
distinguish_nan_and_inf=False, | |
rtol=5e-14, | |
) | |
def test_pcfd(self): | |
def pcfd(v, x): | |
return sc.pbdv(v, x)[0] | |
assert_mpmath_equal( | |
pcfd, | |
exception_to_nan(lambda v, x: mpmath.pcfd(v, x, **HYPERKW)), | |
[Arg(), Arg()], | |
) | |
def test_pcfv(self): | |
def pcfv(v, x): | |
return sc.pbvv(v, x)[0] | |
assert_mpmath_equal( | |
pcfv, | |
lambda v, x: time_limited()(exception_to_nan(mpmath.pcfv))(v, x, **HYPERKW), | |
[Arg(), Arg()], | |
n=1000, | |
) | |
def test_pcfw(self): | |
def pcfw(a, x): | |
return sc.pbwa(a, x)[0] | |
def dpcfw(a, x): | |
return sc.pbwa(a, x)[1] | |
def mpmath_dpcfw(a, x): | |
return mpmath.diff(mpmath.pcfw, (a, x), (0, 1)) | |
# The Zhang and Jin implementation only uses Taylor series and | |
# is thus accurate in only a very small range. | |
assert_mpmath_equal( | |
pcfw, | |
mpmath.pcfw, | |
[Arg(-5, 5), Arg(-5, 5)], | |
rtol=2e-8, | |
n=100, | |
) | |
assert_mpmath_equal( | |
dpcfw, | |
mpmath_dpcfw, | |
[Arg(-5, 5), Arg(-5, 5)], | |
rtol=2e-9, | |
n=100, | |
) | |
def test_polygamma(self): | |
assert_mpmath_equal( | |
sc.polygamma, | |
time_limited()(exception_to_nan(mpmath.polygamma)), | |
[IntArg(0, 1000), Arg()], | |
) | |
def test_rgamma(self): | |
assert_mpmath_equal( | |
sc.rgamma, | |
mpmath.rgamma, | |
[Arg(-8000, np.inf)], | |
n=5000, | |
nan_ok=False, | |
ignore_inf_sign=True, | |
) | |
def test_rgamma_complex(self): | |
assert_mpmath_equal( | |
sc.rgamma, | |
exception_to_nan(mpmath.rgamma), | |
[ComplexArg()], | |
rtol=5e-13, | |
) | |
def test_rf(self): | |
if _pep440.parse(mpmath.__version__) >= _pep440.Version("1.0.0"): | |
# no workarounds needed | |
mppoch = mpmath.rf | |
else: | |
def mppoch(a, m): | |
# deal with cases where the result in double precision | |
# hits exactly a non-positive integer, but the | |
# corresponding extended-precision mpf floats don't | |
if float(a + m) == int(a + m) and float(a + m) <= 0: | |
a = mpmath.mpf(a) | |
m = int(a + m) - a | |
return mpmath.rf(a, m) | |
assert_mpmath_equal(sc.poch, mppoch, [Arg(), Arg()], dps=400) | |
def test_sinpi(self): | |
eps = np.finfo(float).eps | |
assert_mpmath_equal( | |
_sinpi, | |
mpmath.sinpi, | |
[Arg()], | |
nan_ok=False, | |
rtol=2*eps, | |
) | |
def test_sinpi_complex(self): | |
assert_mpmath_equal( | |
_sinpi, | |
mpmath.sinpi, | |
[ComplexArg()], | |
nan_ok=False, | |
rtol=2e-14, | |
) | |
def test_shi(self): | |
def shi(x): | |
return sc.shichi(x)[0] | |
assert_mpmath_equal(shi, mpmath.shi, [Arg()]) | |
# check asymptotic series cross-over | |
assert_mpmath_equal(shi, mpmath.shi, [FixedArg([88 - 1e-9, 88, 88 + 1e-9])]) | |
def test_shi_complex(self): | |
def shi(z): | |
return sc.shichi(z)[0] | |
# shi oscillates as Im[z] -> +- inf, so limit range | |
assert_mpmath_equal( | |
shi, | |
mpmath.shi, | |
[ComplexArg(complex(-np.inf, -1e8), complex(np.inf, 1e8))], | |
rtol=1e-12, | |
) | |
def test_si(self): | |
def si(x): | |
return sc.sici(x)[0] | |
assert_mpmath_equal(si, mpmath.si, [Arg()]) | |
def test_si_complex(self): | |
def si(z): | |
return sc.sici(z)[0] | |
# si oscillates as Re[z] -> +- inf, so limit range | |
assert_mpmath_equal( | |
si, | |
mpmath.si, | |
[ComplexArg(complex(-1e8, -np.inf), complex(1e8, np.inf))], | |
rtol=1e-12, | |
) | |
def test_spence(self): | |
# mpmath uses a different convention for the dilogarithm | |
def dilog(x): | |
return mpmath.polylog(2, 1 - x) | |
# Spence has a branch cut on the negative real axis | |
assert_mpmath_equal( | |
sc.spence, | |
exception_to_nan(dilog), | |
[Arg(0, np.inf)], | |
rtol=1e-14, | |
) | |
def test_spence_complex(self): | |
def dilog(z): | |
return mpmath.polylog(2, 1 - z) | |
assert_mpmath_equal( | |
sc.spence, | |
exception_to_nan(dilog), | |
[ComplexArg()], | |
rtol=1e-14, | |
) | |
def test_spherharm(self): | |
def spherharm(l, m, theta, phi): | |
if m > l: | |
return np.nan | |
return sc.sph_harm(m, l, phi, theta) | |
assert_mpmath_equal( | |
spherharm, | |
mpmath.spherharm, | |
[IntArg(0, 100), IntArg(0, 100), Arg(a=0, b=pi), Arg(a=0, b=2*pi)], | |
atol=1e-8, | |
n=6000, | |
dps=150, | |
) | |
def test_struveh(self): | |
assert_mpmath_equal( | |
sc.struve, | |
exception_to_nan(mpmath.struveh), | |
[Arg(-1e4, 1e4), Arg(0, 1e4)], | |
rtol=5e-10, | |
) | |
def test_struvel(self): | |
def mp_struvel(v, z): | |
if v < 0 and z < -v and abs(v) > 1000: | |
# larger DPS needed for correct results | |
old_dps = mpmath.mp.dps | |
try: | |
mpmath.mp.dps = 300 | |
return mpmath.struvel(v, z) | |
finally: | |
mpmath.mp.dps = old_dps | |
return mpmath.struvel(v, z) | |
assert_mpmath_equal( | |
sc.modstruve, | |
exception_to_nan(mp_struvel), | |
[Arg(-1e4, 1e4), Arg(0, 1e4)], | |
rtol=5e-10, | |
ignore_inf_sign=True, | |
) | |
def test_wrightomega_real(self): | |
def mpmath_wrightomega_real(x): | |
return mpmath.lambertw(mpmath.exp(x), mpmath.mpf('-0.5')) | |
# For x < -1000 the Wright Omega function is just 0 to double | |
# precision, and for x > 1e21 it is just x to double | |
# precision. | |
assert_mpmath_equal( | |
sc.wrightomega, | |
mpmath_wrightomega_real, | |
[Arg(-1000, 1e21)], | |
rtol=5e-15, | |
atol=0, | |
nan_ok=False, | |
) | |
def test_wrightomega(self): | |
assert_mpmath_equal( | |
sc.wrightomega, | |
lambda z: _mpmath_wrightomega(z, 25), | |
[ComplexArg()], | |
rtol=1e-14, | |
nan_ok=False, | |
) | |
def test_hurwitz_zeta(self): | |
assert_mpmath_equal( | |
sc.zeta, | |
exception_to_nan(mpmath.zeta), | |
[Arg(a=1, b=1e10, inclusive_a=False), Arg(a=0, inclusive_a=False)], | |
) | |
def test_riemann_zeta(self): | |
assert_mpmath_equal( | |
sc.zeta, | |
lambda x: mpmath.zeta(x) if x != 1 else mpmath.inf, | |
[Arg(-100, 100)], | |
nan_ok=False, | |
rtol=5e-13, | |
) | |
def test_zetac(self): | |
assert_mpmath_equal( | |
sc.zetac, | |
lambda x: mpmath.zeta(x) - 1 if x != 1 else mpmath.inf, | |
[Arg(-100, 100)], | |
nan_ok=False, | |
dps=45, | |
rtol=5e-13, | |
) | |
def test_boxcox(self): | |
def mp_boxcox(x, lmbda): | |
x = mpmath.mp.mpf(x) | |
lmbda = mpmath.mp.mpf(lmbda) | |
if lmbda == 0: | |
return mpmath.mp.log(x) | |
else: | |
return mpmath.mp.powm1(x, lmbda) / lmbda | |
assert_mpmath_equal( | |
sc.boxcox, | |
exception_to_nan(mp_boxcox), | |
[Arg(a=0, inclusive_a=False), Arg()], | |
n=200, | |
dps=60, | |
rtol=1e-13, | |
) | |
def test_boxcox1p(self): | |
def mp_boxcox1p(x, lmbda): | |
x = mpmath.mp.mpf(x) | |
lmbda = mpmath.mp.mpf(lmbda) | |
one = mpmath.mp.mpf(1) | |
if lmbda == 0: | |
return mpmath.mp.log(one + x) | |
else: | |
return mpmath.mp.powm1(one + x, lmbda) / lmbda | |
assert_mpmath_equal( | |
sc.boxcox1p, | |
exception_to_nan(mp_boxcox1p), | |
[Arg(a=-1, inclusive_a=False), Arg()], | |
n=200, | |
dps=60, | |
rtol=1e-13, | |
) | |
def test_spherical_jn(self): | |
def mp_spherical_jn(n, z): | |
arg = mpmath.mpmathify(z) | |
out = (mpmath.besselj(n + mpmath.mpf(1)/2, arg) / | |
mpmath.sqrt(2*arg/mpmath.pi)) | |
if arg.imag == 0: | |
return out.real | |
else: | |
return out | |
assert_mpmath_equal( | |
lambda n, z: sc.spherical_jn(int(n), z), | |
exception_to_nan(mp_spherical_jn), | |
[IntArg(0, 200), Arg(-1e8, 1e8)], | |
dps=300, | |
) | |
def test_spherical_jn_complex(self): | |
def mp_spherical_jn(n, z): | |
arg = mpmath.mpmathify(z) | |
out = (mpmath.besselj(n + mpmath.mpf(1)/2, arg) / | |
mpmath.sqrt(2*arg/mpmath.pi)) | |
if arg.imag == 0: | |
return out.real | |
else: | |
return out | |
assert_mpmath_equal( | |
lambda n, z: sc.spherical_jn(int(n.real), z), | |
exception_to_nan(mp_spherical_jn), | |
[IntArg(0, 200), ComplexArg()] | |
) | |
def test_spherical_yn(self): | |
def mp_spherical_yn(n, z): | |
arg = mpmath.mpmathify(z) | |
out = (mpmath.bessely(n + mpmath.mpf(1)/2, arg) / | |
mpmath.sqrt(2*arg/mpmath.pi)) | |
if arg.imag == 0: | |
return out.real | |
else: | |
return out | |
assert_mpmath_equal( | |
lambda n, z: sc.spherical_yn(int(n), z), | |
exception_to_nan(mp_spherical_yn), | |
[IntArg(0, 200), Arg(-1e10, 1e10)], | |
dps=100, | |
) | |
def test_spherical_yn_complex(self): | |
def mp_spherical_yn(n, z): | |
arg = mpmath.mpmathify(z) | |
out = (mpmath.bessely(n + mpmath.mpf(1)/2, arg) / | |
mpmath.sqrt(2*arg/mpmath.pi)) | |
if arg.imag == 0: | |
return out.real | |
else: | |
return out | |
assert_mpmath_equal( | |
lambda n, z: sc.spherical_yn(int(n.real), z), | |
exception_to_nan(mp_spherical_yn), | |
[IntArg(0, 200), ComplexArg()], | |
) | |
def test_spherical_in(self): | |
def mp_spherical_in(n, z): | |
arg = mpmath.mpmathify(z) | |
out = (mpmath.besseli(n + mpmath.mpf(1)/2, arg) / | |
mpmath.sqrt(2*arg/mpmath.pi)) | |
if arg.imag == 0: | |
return out.real | |
else: | |
return out | |
assert_mpmath_equal( | |
lambda n, z: sc.spherical_in(int(n), z), | |
exception_to_nan(mp_spherical_in), | |
[IntArg(0, 200), Arg()], | |
dps=200, | |
atol=10**(-278), | |
) | |
def test_spherical_in_complex(self): | |
def mp_spherical_in(n, z): | |
arg = mpmath.mpmathify(z) | |
out = (mpmath.besseli(n + mpmath.mpf(1)/2, arg) / | |
mpmath.sqrt(2*arg/mpmath.pi)) | |
if arg.imag == 0: | |
return out.real | |
else: | |
return out | |
assert_mpmath_equal( | |
lambda n, z: sc.spherical_in(int(n.real), z), | |
exception_to_nan(mp_spherical_in), | |
[IntArg(0, 200), ComplexArg()], | |
) | |
def test_spherical_kn(self): | |
def mp_spherical_kn(n, z): | |
out = (mpmath.besselk(n + mpmath.mpf(1)/2, z) * | |
mpmath.sqrt(mpmath.pi/(2*mpmath.mpmathify(z)))) | |
if mpmath.mpmathify(z).imag == 0: | |
return out.real | |
else: | |
return out | |
assert_mpmath_equal( | |
lambda n, z: sc.spherical_kn(int(n), z), | |
exception_to_nan(mp_spherical_kn), | |
[IntArg(0, 150), Arg()], | |
dps=100, | |
) | |
def test_spherical_kn_complex(self): | |
def mp_spherical_kn(n, z): | |
arg = mpmath.mpmathify(z) | |
out = (mpmath.besselk(n + mpmath.mpf(1)/2, arg) / | |
mpmath.sqrt(2*arg/mpmath.pi)) | |
if arg.imag == 0: | |
return out.real | |
else: | |
return out | |
assert_mpmath_equal( | |
lambda n, z: sc.spherical_kn(int(n.real), z), | |
exception_to_nan(mp_spherical_kn), | |
[IntArg(0, 200), ComplexArg()], | |
dps=200, | |
) | |